新型聚氨酯纳米复合材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)弹性体是一种介于橡胶与塑料之间的弹性材料,既具有橡胶的高弹性,又具有塑料的高强度。它的耐磨性、生物相容性与血液相容性特别突出。同时,它还具有优异的耐油、耐冲击、耐低温、耐臭氧、耐辐射和负重隔热、绝缘等性能。由于综合性能出众而被广泛应用于民用、体育、航天、军事等领域,成为不可缺少的重要材料之一。但由于其强度、生物相容性,耐热氧化等性能还不够理想,其应用受到了一定程度的限制。为了进一步拓宽其应用领域,研究者通常把某些纳米颗粒加入体系以改善聚氨醋材料的一些性能。
     本文在聚酯多元醇(PDA)、异佛尔酮二异氰酸酯(IPDI)、异佛尔酮二胺(IPDA)体系下,采用预聚体法制备了三种不同的聚氨酯纳米复合材料体系,并对其结构与性能进行了详细研究,所得主要研究结果如下:
     (1)结合了原位聚合与溶液浇铸法来制备聚氨酯/多壁碳纳米管(MWNT)复合材料。通过扫描电镜可以看出,在低含量的时候,碳管均匀分散在聚氨酯本体中,而且碳管聚合物本体与碳管之间有较强的界面相互作用力(由嵌在聚氨酯基体中被拉断的碳纳米管形貌特征),这有利于应力从聚合物本体传递到碳管,在保持高断裂伸长率的前提下成功制备了具有优异力学拉伸强度的纳米复合材料,并且这种材料的热稳定性能也有显著提高。
     (2)通过RAFT聚合方法合成了一系列不同分子量的PU-b-PTPM(PTPM,聚[3-(三甲氧基硅烷)丙基丙烯酸脂])两亲性嵌段共聚物,这种共聚物在THF/甲醇混合溶剂中可自组装成以PU为壳、以疏水的PTPM为核的核-壳结构,然后通过催化剂来水解和缩合成聚氨酯/聚倍半硅氧烷球纳米复合材料。由拉伸实验、TGA和原子力显微镜研究发现,相对于纯聚氨酯树脂,所得复合材料的机械性能与热稳定性能均有显著提高;且随嵌段聚合物分子量的提高,可得到数量越来越多的、尺寸均一的聚倍半硅氧烷纳米球。
     (3)采用十二烷基磺酸阴离子对CoAl-层状双氢氧化物(LDH)进行插层,并通过原位聚合方法首次制备出剥离型聚氨酯/CoAl-LDH纳米复合材料。使用X射线衍射、拉伸试验、热重分析法、实时傅里叶变换红外光谱等手段对纳米复合材料的结构/形态、力学性能、热稳定性进行了研究,发现其耐热氧化性能以及力学性能均显著优于纯聚氨酯树脂。
The properties of polyurethane elastomer(PUE) are between rubber and plastics. PUE not only owns the property of high elasticity and high strength,but also its abradability,especially the biologic and blood compatibility.Meanwhile,PUE has other property such as oil resistivity,shockproof,low temperature resistance, resistance to ozon,radio-resistance,insulation,and so on.PUE has outstanding comprehensive properties,and has been widely used in civil,sports,aerospace, military affairs and other fields,and thus has become one kind of indispensable important materials.However,strength,biocompatibility,and thermal oxidation resistance properties of PUE greatly limit its wider applications.In order to widen its realm of applications,particular nanoparticles are usually added in PU system to improve its physical properties.
     In this thesis,poly(diethylene adipate)(PDA),isophorone diisocyanate(IPDI), isophorone diamine(IPDA) were used to prepared three different types of polyurethane nanocomposites.The main contents and the results obtained are as follows:
     (1) A series of polyurethane/carbon nanotube composites has been prepared through in-situ polymerization and solution casting.Homogeneous dispersion of multi-walled carbon nanotubes(MWNTs) throughout PU matrix is observed by scanning electron microscopy on the fracture surfaces of the composites.Strong interfacial adhesion between the MWNTs and the PU matrix,as evidenced by the presence of broken but strongly embedded MWNTs in the matrix,is favorable to stress transfer from polymer matrix to the nanotubes.The fine dispersion of carbon nanotubes(CNTs) and strong interfacial adhesion between the CNTs with the matrix are responsible for the simultaneous and significant enhancement in the strengthening and toughening of PU matrix.In addition,the thermal stability of PU was also improved after incorporating CNTs into the matrix.
     (2) A series of organic/inorganic hybrid materials have been prepared by copolymerizing polyurethane and 3-(trimethoxysilyl) propyl methacrylate(TPM) via addition fragmentation chain transfer(RAFT),at several feeding ratios.The copolymer precursors could self-assemble into spherical micelles in selective solvents and then be hydrolyzed and condensed to generate PU-SiO_2 hybrid sol-gel materials. The silica spheres undergo a change from less number with larger diameter to more number with smaller and homogeneous diameter with increasing the TPM content. The hybrid copolymers possess excellent thermal stability and mechanical property.
     (3) The interlayer surface of CoAl-layered double hydroxide(CoAl-LDH) was modified by exchanging the interlayer carbonate anions by dodecyl sulfate anions (DS).PU was then intercalated by in situ polymerization to get the PU/CoAl-LDH nanocomposites.By using XRD technique,the nanoscale exfoliated dispersion of CoAl-LDH layers in the PU matrix was verified by the disappearance of the(003) reflection of the organically modified CoAl-LDH when the LDH loading is less than 2.0 wt%.The strong interaction between the LDH nanolayers and polyurethane chains is responsible for the excellent mechanical properties of PU/LDH nanocomposites.The weak alkaline catalysis of DS to polyurethane chain,together with the degradation of LDH below 300℃,accounts for the faster degradation process shown in the TGA profiles.The real-time Fourier transform infrared reveals that these nanocomposites have a slower thermo-oxidative rate than neat PU between 160℃and 340℃,due to the barrier effect of CoAl-LDH nanolayers.The nanocomposites obtained are one kind of promising flame-retardant materials.
引文
[1]Urelh Techn.Global Polyurethane Industry Directory,1998:5-9.
    [2]山西省化工研究所.聚氨酯弹性体手册[M].北京:化学工业出版社,2001:2.
    [3]吴持生.中国聚氨酯工业的发展.第一届聚氨酯中国95国际会议论文集.北京:1995,1.
    [4]翁汉元.我国聚氨酯工业现状和发展展望.中国聚氨酯工业协会第十次年会论文集.2001,1.
    [5]任志勇等.应用化学.1998,5:54.
    [6]徐培林.聚氨酯材料手册[M].北京:化学工业出版社,2002:7.
    [7]垣沼幸则.《日本こム协会志》2005,78:85-87.
    [8]张旭琴.聚氨酯弹性体及其性能[J].科技特报开发与经济,1994:4.
    [9]计剑,邱永兴,俞小洁等.抗血凝聚氨酯材料的研究发展[J].功能高分子学报,1995,8:225-235.
    [10]李绍雄,刘益军著.聚氨酯树脂及其应用.第1版.北京:化学工业出版社,2002.
    [11]梁宏斌,倪靖滨等.聚合物/纳米复合材料研究进展.化学工程师,2001.3:26.
    [12]万里强.聚氨酯/纳米复合材料的研究,浙江工业大学硕士研究生学位论文.
    [13]Wang,Z.,Pinnavaia,T.Nanolayer reinforcement of elastomeric polyurethane.J.Chem.Mater.,1998,10:3769-3771.
    [14]Chen,T.-K.,Tien,Y.-I.,Wei,K.-H.,Synthesis and characterization of novel segmented polyurethane/clay nanocomposites.Polymer,2000,41:1345-1353.
    [15]Chun,B.C.,Cho,T.K.,Chong,M.H.,Mechanical properties of polyurethane/montmorillonite nanocomposite prepared by melt mixing.J.Appl.Polym.Sci.,2007,106:712-721.
    [16]夏和生.纳米技术进展,高分子材料科学与工程,2001.17(4).
    [17]严满清,王平华.高分子/无机纳米复合材料的研究进展.现代塑料加工应用2002,14(5):63.
    [18]杨中文,刘西文.现代塑料加工应用,1999,11(6):38.
    [19]王相田,胡黎明.化学通报1995,3:13.
    [20]张金柱,汪信,陆路德等.工程塑料应用,2003,31:20.
    [21]尚修勇,朱子康,漆宗能.复合材料学报2000,17(4):5.
    [22]Chen,W.,Tao,X.,Liu,Y.,Carbon nanotube-reinforced polyurethane composite fibers.Compos.Sci.Technol.,2006,66:3029-3034.
    [23]Jung,Y.C.,Sahoo,N.G.,Cho,J.W.,Polymeric Nanocomposites of Polyurethane Block Copolymers and Functionalized Multi-Walled Carbon Nanotubes as Crosslinkers.Macromol.Rapid Commun.,2006,27:126-131.
    [24]Xiong,J.,Zhou,D.,Zheng,Z.,Yang,X.,Wang,X.,Fabrication and distribution characteristics of polyurethane/single-walled carbon nanotube composite with anisotropic structure.Polymer,2006,47:1763-1766.
    [25]Kuan,H.C.,Ma,C.C.M.,Chang,W.R,Yuen,S.M.,Wu,H.H.,Synthesis,thermal,mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite.Compos.Sci.Technol.,2005,65;1703-1710.
    [26]喻光辉,曾繁涤.聚氨酯/碳纳米管复合材料力学及电性能研究.工程塑料应用,2005,33(6):11-14.
    [27]Jung,Y.C.,Goo,N.S.,Cho,J.W.,Electrically conducting shape memory polymer composites for electroactive actuator.Proceedings of SPIE,2004,5385:230-234.
    [28]Raghu,A.V.,Lee,Y.R.,Jeong,H.M.,Shin,C.M.,Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites.Macromol.Chem.Phys.,2008,209;2487-2493.
    [29]Kimmer,D.,Slobodian,R,Petras,D.,Zatloukal,M.,Polyurethane/Multiwalled Carbon Nanotube Nanowebs Prepared by an Electrospinning Process.J.Appl.Polym.Sci.,2009,111;2711-2714.
    [30]Meng,J.,Kong,H.,Xu,H.Y.,Song,L.,Wang,C.Y.,Xie,S.S.,Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery.J.Biomed.Mater Res.Part A,2005,74:208-214.
    [31]Jang,M.K.,Hartwig,A.,Kim,B.K.,Shape memory polyurethanes cross-linked by surface modified silica particles.J.Mater.Chem.,2009,19:1166-1172.
    [32]Jell,G.,Verdejo,R.,Safinia,L.,Shaffer,M.S.P.,Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation.J.Mater.Chem.,2008,18:1865-1872.
    [33]Trakulsujaritchok,T.,Hourston,D.J.,Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks.Eur.Polym.J.,2006,42:2968-2976.
    [34]Chen,Y.,Zhou,S.,Yang,H.,Wu,L.,Structure and properties of polyurethane/nanosilica composites.J.Appl.Polym.Sci.,2005,95:1032-1039.
    [35]Chen,Y.,Zhou,S.,Yang,H.,Wu,L.,Preparation and characterization of nanocomposite polyurethane.J.Colloid Interf Sci.,2004,279:370-378.
    [36]Wouters,M.E.L.,Wolfs,D.P.,Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method.Prog.Org.Coatings,2004,51:312-320.
    [37]Zhou,H.,Chen,Y.,Fan,H.,Shi,H.,Luo,Z.,Shi,B.,The polyurethane/SiO_2nano-hybrid membrane with temperature sensitivity for water vapor permeation.J.Membr.Sci.,2008,318:71-78.
    [38]Giannelis,E.R,Polymer layered silicate nanocomposites.Adv.Mater.,1996,8:29-35.
    [39]Giannelis,E.P.,Krishnamoorti,R,Manias,E.,Polymer-silicate nanocomposites:model systems for confined polymers and polymer brushes.Adv.Polym.Sci.,1999,138:107-47.
    [40]Bharadwaj,R.K.,Modeling the barrier properties of polymer-layered silicate nanocomposites.Macromolecules,2001,34:1989-1992.
    [41]Messersmith,P.B.,Giannelis,E.R Synthesis and barrier properties of poly(s -caprolactone)-layered silicate nanocomposites.J.Polym.Sci.Part A:Polym.Chem.,1995,33:1047-1057.
    [42]Giannelis,E.P.,Polymer-layered silicate nanocomposites:synthesis,properties and applications.Appl.Organomet.Chem.,1998,12:675-680.
    [43]Gilman,J.W.,Flammability and thermal stability studies of polymer layered-silicate(clay) nanocomposites.Appl.Clay Sci.,1999,15:31-49.
    [44]Gilman,J.W.,Jackson,C.L.,Morgan,A.B.,Flammability properties of polymerLayered-silicate nanocomposites.Polypropylene and polystyrene nanocomposites.Chem.Mater.,2000,12:1866-1873.
    [45]Ray,S.S.,Yamada,K.,Okamoto,M..,Ueda,K.,Polylactide-layered silicate nanocomposite:a novel biodegradable material.Nano Lett.,2002,2:1093-1096.
    [46]Okada A,Kawasumi M,Kurauchi T,Kamigaito O.Synthesis and characterization of a nylon 6-clay hybrid.Polym.Prepr.(Am.Chem.Soc.,Div.Polym.Chem.),1987,28:447-448.
    [47]Finnigan,B.,Martin,D.,Halley,P.,Truss,R.,Morphology and Properties of Thermoplastic Polyurethane Composites Incorporating Hydrophobic Layered Silicates,J.Appl.Polym.Sci.,2005,97:300-305.
    [48]Ni,P.,Li,J.,Suo,J.,Li,S.,Novel Polyether Polyurethane/Clay Nanocomposites Synthesized with Organic-Modified Montrnorillonite as Chain Extenders.J.Appl.Polym.Sci.,2004.94:534-541.
    [49]Alexandre,M.,Dubois,P.,Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials.Mater.Sci.Eng.R.,2000,28:1-63.
    [50]刘立敏,乔放,朱晓光等,熔体插层制备尼龙6/蒙脱石纳米复合材料的表征.高分子学报,1998,3:304-310.
    [51]Gilman,J.W.,Flammability and thermal stability studies of polymer layeredsilicate (clay) nanocomposites.Appl.Clay Sci.,1999,15:31-49.
    [52]Gilman,J.W.,Kashiwagi,T.,Lomalcin,S.,Nanocomposites:radiative gasification and vinyl polymer flammability.Proceedings of the 6th European Meeting on Fire Retardancy September of Polymeric Materials(FRPM'97),University of Lille,France,1997,203-221.
    [53]Xu,R.,Manias,E.,Snyder,A.J.,Runt,J.,Low permeability biomedical polyurethane nanocomposites.J.Biomed.Mater.Res.,2003,64:114-119.
    [1]Li,Y.J.,Gao,T.,Liu,J.,Linliu,K.,Desper,C.R.and Chu,B.,Multiphase structure of a segmented polyurethane:effects of temperature and annealing.Macromolecules,1992,25:7365-7372.
    [2]Chattopadhyay,D.K.and Raju,K.V.S.N.,Structural engineering of polyurethane coatings for high performance applications.Prog.Polym.Sci.,2007,32:352-418.
    [3]Oprea,S.,Vlad,S.and Stanciu,A.,Poly(urethane-methacrylate) s.Synthesis and characterization.Polymer,2001,42:7257-7266.
    [4]Chen,T.-K.,Tien,Y.-I.,Wei,K.-H.,Synthesis and characterization of novel segmented polyurethane/clay nanocomposites.Polymer 2000,41:1345-1353.
    [5]Baughman,R.H.,Zakhidov,A.A.and de Heer,W.A.,Carbon nanotubes-the route toward applications.Science,2002,297:787-792.
    [6]Dresselhaus,M.,Avouris,P,Editors,Carbon nanotubes:synthesis,structure properties and applications.??? Springer,2001.
    [7]Peng,X.B.,Liu,T.X.,Wang,M.,Huang,W.and Zhang,W.D.,碳纳米管增强的聚合物复合材料.Huaxue Tongbao,2006,69:w016/1-w016/7.
    [8]Koerner,H.,Price,G.,Pearce,N.A.,Alexander,M.,Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers.Nature Mater,2004,3:115-120.
    [9]Kim,B.K.,Lee,S.Y.and Xu,M.,Polyurethanes having shape memory effects.Polymer,1996,37:5781-5793.
    [10]Tobushi,H.,Haray,H.,Yamaday,E.and Hayashi,S.,Thermomechanical properties in a thin film of shape memory polymer of polyurethane series.Smart Mater.Struct.,1996,5:483-491.
    [11]Liu,S.Q.,Lin,B.P,Yang,X.D.and Zhang,Q.Q.,Carbon-Nanotube-Enhanced Direct Electron-Transfer Reactivity of Hemoglobin Immobilized on Polyurethane Elastomer Film.J.Phys.Chem.B,2007,111:1182-1188.
    [12]Rahul,S.,Mikhail,E.,James,L.and Robert,C.,Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning.Nano Lett.,2004,4:459-464.
    [13]Koernera,H.,Liu W.,Alexander,M.and Mirau,P.,Deformation-morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites.Polymer,2005,46:4405-4420.
    [14]Yang,Y.K.,Xie,X.L.and Mai,Y.-W.,Multiwalled Carbon Nanotubes Functionalized by Hyperbranched Poly(urea-urethane)s by a One-Pot Polycondensation.Macromol.Rapid Commun.,2006,27:1695-1701.
    [15]Sahoo,N.G.,Jung Y.C.,Yoo H.J.,Cho J.W.,Influence of carbon nanotubes and polypyrrole on the thermal,mechanical and electroactive shape-memory properties of polyurethane nanocomposites.Compos.Sci.Technol.,2007,67:1920-1929.
    [16]Kuan,H.C.,Mc,C.,Chang,W.P.,Yuen,S.M.,Wu,H.H.,Lee,T,M.,Synthesis,thermal,mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite.Compos.Sci.Technol.,2005,65:1703-1710.
    [17]Xu,M.,Zhang,T.,Gu,B.,Wu,J.,Chen,Q.,Synthesis and Properties of Novel Polyurethane-Urea/Multiwalled Carbon Nanotube Composites.Macromolecules,2006,39:3540-3545.
    [18]Liao,K.and Li,S.,Interfacial characteristics of a carbon nanotube-polystyrene composite system.Appl.Phys.Lett.,2001,79:4225-4227.
    [19]Wong,M.,Paramsothy,M.,Xu,X.J.,Ren,Y.,Li,S.,Liao,K.,Physical interactions at carbon nanotube-polymer interface.Polymer,2003,44:7757-7764.
    [20]Zhu,J.,Kim,J.D.,Peng,H.,Margrave,J.L.,Khabashesku,V.N.and Barrera E.V.,Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization.Nano Lett.,2003,3:1107-1113.
    [21]Mitchell,C.A.,Bahr,J.L.,Arepalli,S.,Tour,J.M.and Krishnamoorti,R.,Dispersion of functionalized carbon nanotubes in polystyrene.Macromolecules, 2002,35:8825-8830.
    [22]Wagner,H.D.,Lourie,O.,Feldman,Y.and Tenne,R.,Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix.Appl.Phys.Lett.,1998,72:188-190.
    [23]Xie,X.L.,Mai,Y.-W.and Zhou,X.P,Dispersion and alignment of carbon nanotubes in polymer matrix:a review.Mater.Sci.Eng.,2005,49:89-112.
    [24]Meng,Q.H.,Hu,J.L.and Zhu,Y.J.,Shape-memory polyurethane/multiwalled carbon nanotube fibers.J.Appl.Polym.Sci.,2007,106:837-848.
    [25]Haggenmueller R.,Gommans H.H.,Rinzler A.G.,Fischer J.E.and Winey K.I.,Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods.Chem.Phys.Lett.,2000,330:219-225.
    [26]Chen,W.and Tao,X.M.,Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes.Appl.Surf Sci.,2006,252:3547-3552.
    [27]Sen,R.,Zhao,B.,Perea,D.,Itkis,M.E.,Hu,H.,Love,J.and Bekyarova,E.,Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning.Nano Lett.,2003,4:459-464.
    [28]Xiong,J.W.,Zheng,Z.,Qin,X.M.,Li,M.,Li,H.Q.and Wang,X.L.,The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite.Carbon,2006,44:2701-2707.
    [29]Kwon,J.and Kim,H.,Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization.J.Polym.Sci.Part A:Polym.Chem.,2005,43:3973-3985.
    [30]Kwon,J.Y.and Kim,H.D.,Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites.J.Appl.Polym.Sci.,2005,96:595-604.
    [31]Liu,T.X.,Phang,I.Y.,Shen,L.,Chow,S.Y.and Zhang,W.D.,Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6composites.Macromolecules,2004,37:7214-7222.
    [32]Yakobson,B.I.and Avouris,P.,Appl.Phys.A,1999,69:255-260.
    [33]Andrews,R.,Jacques,D.,Qian,D.L.and Rantell,T.,Multiwall carbon nanotubes:Synthesis and application,Accounts of Chemical Research.Acc.Chem.Res.,2002,35:1008-1017.
    [34]Koratkar,N.A.,Suhr,J.,Joshi,A.,Kane,R.S.,Schadler,L.S.,Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites.Appl.Phys.Lett.,2005,87:063102/1-063102/3.
    [35]Gorga,R.E.and Cohen,R.E.,Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes.J.Polym.Sci.Part B:Polym.Phys.,2004,42:2690-2702.
    [36]Satapathy,B.K.,Weidisch,R.and Janke,A.,Tough-to-brittle transiotn in multiwalled carbon nanotube(MWNT)/polycarbonate nanocomposites.Compos.Sci.Technol.,2007,67:867-879.
    [1]Dislich H.New routes to multicomponent oxide glasses.Angew.Chem.Int.Ed.,1971,10:363-369.
    [2]Zhulina EB,Borisov OV.Self-Assembly in Solution of Block Copolymers with Annealing Polyelectrolyte Blocks.Macromolecules,2002,35:9191-9203.
    [3]Shen H,Eisenberg A.Control of architecture in block copolyrner vesicles.Angew.Chem.Int.Ed.,2000,39:3310-3312.
    [4]Okada A,Usuki T,Kurauchi,Kamigaito O.Hybrid organic-inorganic composites.ACS Symp.Ser.,1995,585:55-65.
    [5]Han YH,Taylor A,Mantle MD,Knowles KM.Sol-gel-derived organic-inorganic hybrid materials.J.Non-Crystal Solids,2007,353:313-320.
    [6]Jang J,Park H.Formation and structure of polyacrylamide-silica nanocomposites by sol-gel process.J.Appl.Polym.Sci.,2002,85:2074-2083.
    [7]Jiang HM,Zheng Z,Song WH,Li ZM,Wang XL.Alkoxysilane Functionalized Polyurethane/Polysiloxane Copolymers:Synthesis and the Effect of End-Capping Agent.Polym.Bull.,2007,59:53-63.
    [8]Rodr(?)guez-Hern(?)ndez J,Ch(?)cot F,Gnanou Y,Lecommandoux S.Toward 'smart'nano-objects by self-assembly of block copolymers in solution.Prog.Polym.Sci.,2005,30:691-724.
    [9]Zhou J,Wang L,Dong X,Yang Q,Wang J,Yu H,et al.Preparation of organic/inorganic hybrid nanomaterials using aggregates of poly(stearyl methacrylate)-b-poly(3-(trimethoxysilyl) propyl methacrylate) as precursor.Eur.Polym.J.,2007,43:1736-1743.
    [10]Wu C,Xu T,Yang W.Synthesis and characterizations of novel,positively charged poly(methyl acrylate)-SiO2 nanocomposites.Eur.Polym.J.,2005,41:1901-1908.
    [11]Hsiue GH,Kuo W J,Huang YP,Jeng RJ.Microstructural and morphological characteristics of PS-SiO2 nanocomposites.Polymer,2000,41:2813-2825.
    [12]Zhang YW,Jiang M,Zhao JX,Wang ZX,Dou HJ,Chen DY.pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly. Langmuir,2005,21:1531-1538.
    [13]Pilon LN,Amies SP,Findlay P,Rannard SP.Synthesis and Characterization of Shell Cross-Linked Micelles with Hydroxy-Functional Coronas:A Pragmatic Alternative to Dendrimers.Langmuir,2005,21:3808-3813.
    [14]Zhao Q,Han B,Wang Z,Gao C,Peng C,Shen J.Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle:doxorubicin loading and in vitro and in vivo studies.Nanomedicine.Nanotechnology,Biology,and Medicine,2007,3:63-74.
    [15]Du J,Chen Y.Atom-Transfer Radical Polymerization of a Reactive Monomer:3-(Trimethoxysilyl)propyl Methacrylate.Macromolecules,2004,37:6322-6328.
    [16]Du JZ,Chen YM.Organic-Inorganic Hybrid Nanoparticles with a Complex Hollow Structure.Angew.Chem.,2004,116:5194-5197.
    [17]Du J,Chen Y,Zhang Y,Han CC,Fischer K,Schmidt,Ma.Organic/inorganic hybrid vesicles based on a reactive block copolymer.J.Am.Chem.Soc.,2003,125:14710-14711.
    [18]Sayari A,Hamoudi S.Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Materials.Chem.Mater.,2001,13:3151-3168.
    [19]Du JZ,Chen YM.Preparation of organic/inorganic hybrid hollow particles based on gelation of polymer vesicles.Macromolecules,2004,37:5710-5716.
    [20]Park JW,Thomas EL.A Surface-Reactive Rod-Coil Diblock Copolymer:Nano-and Micropatterned Polymer Brushes.J.Am.Chem.Soc.,2002;124:514-515.
    [21]Park JW,Thomas EL.Multiple Ordering Transitions:Hierarchical Self-Assembly of Rod-Coil Block Copolymers.Adv.Mater.,2003,15:585-588.
    [22]Du JZ,Chen YM.Organic-Inorganic Hybrid Nanoparticles with a Complex Hollow Structure.Angew.Chem.Int.Ed.,2004,43:5084-5087.
    [23]Ni H,Aaserud DJ,Simonsick WJ Jr,Soucek MD.Preparation and characterization of alkoxysilane functionalized isocyanurates.Polymer,2000,41:57-71.
    [24]Kannan RY,Salacinski HJ,De Groot,Clatworthy I,Bozec L,Horton M,et al. The antithrombogenic potential of a polyhedral oligomeric silsesquioxane(POSS)nanocomposite.Biomacromolecules,2006,7:215-223.
    [25]Liu Y,Ni Y,Zheng S.Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane.Macromol.Chem.Phys.,2006,207:1842-1851.
    [26]Hua DB,Sun W,Bai RK,Lu WQ,Pan CY.Study on controlled/living free-radical polymerization of methyl acrylate in the presence of benzyl 9H-carbazole-9-carbodithioate under thermal condition.Eur.Polym.J.,2005,41:1674-1680.
    [27]Charleux B,Nicolas J,Guerret O.Theoretical Expression of the Average Activation-Deactivation Equilibrium Constant in Controlled/Living Free-Radical Copolymerization Operating via Reversible Termination.Application to a Strongly Improved Control in Nitroxide-Mediated Polymerization of Methyl Methacrylate.Macromolecules,2005,38:5485-5492.
    [28]Xia J,Zhang X,Matyjaszewski K.Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an "Arm First" Approach.Macromolecules,1999,32:4482-4484.
    [29]Chiefari J,Mayadunne RTA,Moad CL,Moad G,Rizzardo E,Postma A,et al.Thiocarbonylthio Compounds(SC(Z)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer(RAFT Polymerization).Effect of the Activating Group Z.Macromolecules,2003,36:2273-2283.
    [30]Pyun J,Matyjaszewski K.Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/"Living" Radical Polymerization.Chem.Mater.,2001,13:3436-3448.
    [31]Smulders W,Gilbert RG,Monteiro MJ.A Kinetic Investigation of Seeded Emulsion Polymerization of Styrene Using Reversible Addition-Fragmentation Chain Transfer(RAFT) Agents with a Low Transfer Constant.Macromolecules,2003;36:4309-4318.
    [32]Le TP,Moad G,Rizzardo E,Thang SH.PCT Int.Pat.Appl.1998 WO 9801478.
    [33]Liu P,Song J,He L,Liang X,Ding H,Li Q.Alkoxysilane functionalized polycaprolactone/polysiloxane modified epoxy resin through sol-gel process.Eur.Polym.J.,2008,44:940-951.
    [34]Cho JW,Lee SH.Influence of silica on shape memory effect and mechanical properties of polyurethane-silica hybrids.Eur.Polym.J.,2004,40:1343-1348.
    [35]Nomura Y,Sato A,Sato S,Mori H,Endo T.Synthesis of novel moisture-curable polyurethanes end-capped with trialkoxysilane and their application to one-component adhesives.J.Polym.Sci.Part A:Polym.Chem.,2007,45:2689-2704.
    [36]Valentova H,Sedlakova Z,Nedbal J,Ilavsky M.Formation,structure,thermal and dynamic mechanical behaviour of ordered polyurethane networks based on mesogenic diol.Eur.Polym.J.,2001,37:1511-1517.
    [37]Uricanu V,Donescu D,Banu AG,Serban S,Olteanu M,Dudau M.Organic-inorganic hybrids made from polymerizable precursors.Mater.Chem.Phys.,2004,85:120-130.
    [1]Okada A,Kawasumi M,Kurauchi T,Kamigaito O.Synthesis and characterization of a nylon 6-clay hybrid.Polym.Prepr.(Am.Chem.Soc.,Div.Polym.Chem.),1987,28:447-448.
    [2]Choy JH,Kwak SY,Park JS,Portier J.Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide.J.Am.Chem.Soc.,1999,121:1399-1400.
    [3]Choy JH,Kwak SY,Jung YJ,Park JS.Inorganic Layered Double Hydroxides as Nonviral Vectors.Angew.Chem.Int.Ed,2000,39:4042-4045.
    [4]Portier J,Choy JH,Subramanian MA.Inoganic-organic-hybrids as precursors to functional materials.Int.J.Inorg.Mater.,2001,3:581-592.
    [5]Leroux F,Besse JP.Polymer interleaved layered double hydroxide:a new emerging class of nanocomposites.Chem.Mater.,2001,13:3507-3515.
    [6]You YW,Zhao HT,Vance GF.Hybrid organic-inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate:preparation and adsorption characteristics.J.Mater.Chem.,2002,12:907-912.
    [7]Chen W,Qu B.LLDPE/ZnAl LDH-exfoliated nanocomposites:effects of nanolayers on thermal and mechanical properties.J.Mater.Chem.,2004,14:1705-1710.
    [8]Song L,Hu Y,Tang Y,Zhang R,Chert Z,Fan W.Study on the properties of flame retardant polyurethane/organoclay nanocomposite.Polym.Degrad.Stabil.,2005,87:111-116.
    [9]Liu ZP,Ma RZ,Osada M,Iyi N,Ebina Y,Takada K,et al.Synthesis,Anion Exchange,and Delamination of Co-Al Layered Double Hydroxide:Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies.J.Am.Chem.Soc.,2006,128:4872-4880.
    [10]Qiu L,Chen W,Qu B.Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation.Polym.Degrad.Stabil.,2005,87:433-440.
    [11]Wu CL,Zhang MQ,Rong MZ,Friedrich K.Compos.Sci.Technol.,2002,62:1327-1340.
    [12]Ganter M,Gronski W,Reichert P,Miilhaupt R.Rubber nanocomposites:morphology and mechanical properties of BR and SBR vulcanizates reinforced by organophilic layered silicates.Rubber Chem.Technol.,2001,74:221-235.
    [13]Gatos KG,Sawanis NS,Apostolov AA,Thomann R,Karger-Kocsis J.Nanocomposite Formation in Hydrogenated Nitrile Rubber(HNBR)/Organo -Montmorillonite as a Function of the Intercalant Type.Macromol.Mater.Eng.,2004,289:1079-1086.
    [14]Rives V.Layered Double Hydroxides:Present and Future.Nova Publishers.New York(2001).
    [15]Du L,Qu B,Meng Y,Zhu Q.Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation.Compos.Sci.Technol.,2006,66:913-918.
    [16]Mangiacapra P,Raimondo M,Tammaro L,Vittoria V.Nanometric Dispersion of a Mg/Al Layered Double Hydroxide into a Chemically Modified Polycaprolactone.Biomacromolecules,2007,8:773-779.
    [17]Du L,Qu B,Zhang M.Thermal properties and combustion characteriza-tion of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation.Polym.Degrad.Stabil.,2007,92:497-502.
    [18]Xie RC,Qu BJ,.Hu KL.Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends.Polym.Degrad Stabil.,2001,72:313-321.
    [19]Wu Q,Qu BJ,Polym.Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene.Polym.Degrad.Stabil.,2001,74:255-261.
    [20]Petrovic ZS,Zavargo Z,Flynn JH,Macknight WJ.Thermal degradation of segmented polyurethanes.J.Appl.Polym.Sci.,1994,51:1087-1095.
    [21]Zhong JP,Li SD,Wei YC,Peng Z,Yu HP.Study on preparation of chlorinated natural rubber from latex and its thermal stability.J.Appl.Polym.Sci.,1999,73:2863-2867.
    [22]Ray SS,Okamoto M.Polymer/layered silicate nanocomposites:a review from preparation to processing.Prog.Polym.Sci.,2003,28:1539-1641.
    [23]Qiu L,Chen W,Qu B.Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites.Polymer,2006,47:922-930.
    [24]Qiu L,Chen W,Qu B.Exfoliation of layered double hydroxide in polystyrene by in-situ atom transfer radical polymerization using initiator-modified precursor.Colloid Polym.Sci.,2005,283:1241-1245.
    [25]Du L,Qu B.Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites.J.Mater.Chem.,2006,16:1549-1554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700