PEO基固态聚合物电解质交流阻抗谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用交流阻抗谱法测定固体聚合物电解质的电导率时,对于同一固体聚合物电解质而言,同样的测试条件常会出现不同的测试结果,即数据重现性不高,这与电极/固体聚合物电解质界面双电层的形成有很大关系。目前有很多关于电极/固体聚合物电解质界面双电层的研究,但仍未见深入的、全面的研究。因而,对于双电层的进一步探究还是很有必要。为此,本文从固体聚合物电解质/电极界面双电层角度出发,探讨了交流阻抗谱法测定聚合物电解质电导率时的若干问题。
     本文首先以聚环氧乙烷(PEO)为基质,加入LiClO_4、丁二腈(SN)和无机粒子SiO_2后,分别制得了PEO/LiClO_4,PEO/LiClO_4/SN,PEO/LiClO_4/SN/SiO_2三种固体聚合物电解质溶液,再采用溶液浇铸法制备了相应的电解质膜。采用交流阻抗谱法研究了聚合物电解质本体电阻测定时存在的一些问题以及聚合物电解质/阻塞电极体系界面双电层的性质。主要研究结果如下:
     (1)对聚合物电解质本体电阻(R_b)与膜厚(L)关系的研究表明,实验测得的聚合物电解质本体电阻(R_b)与膜厚(L)的关系并非为经过原点的一条直线而是与纵轴正向有一定的截距,因而从交流阻抗谱中直接读取的R_b(高频半圆与低频斜线交点对应的实轴截距)不是单指聚合物电解质的本体电阻。通过不同电极的测试,得知从阻抗谱中读取的R_b可能含有一定的界面阻抗。从古依-恰帕门-斯特恩双电层模型中进一步证明了R_b中含有界面阻抗。
     (2)改变初始直流电压的交流阻抗测试表明,随直流电压增大,交流阻抗谱中对应的R_b值减小。从古依-恰帕门-斯特恩双电层模型中得知,惰性电极与电解质之间的界面阻抗随直流电压的增大而减小,由于R_b中含有一定的界面阻抗,界面阻抗随电压的减小导致了阻抗谱中读取的R_b值减小。
     (3)等效电路分析表明,代表界面双电层电容值的CPE1-T值随直流电压增大而增大,界面阻抗相应减小,从阻抗谱中读取的R_b值也随之减小。
     (4)直流电压影响交流阻抗谱低频部分斜线斜率的研究表明,直流电压从0V升高到3V时,交流阻抗谱低频部分斜线斜率随之减小。当直流电压增大到1.5V时斜线部分开始出现半圆,且当电压增大到2V时半圆明显呈现,随着电压继续增大,圆弧范围增大。这是由于聚合物电解质中的阴阳离子在直流电压的影响下,分别在正负极富集,改变了电极界面双电层性质引起的。同时,离子在电极表面吸附使得界面离子扩散阻抗增加,导致了低频部分弧形增大。
     (5)研究电池陈放时间对交流阻抗谱的影响表明,随陈放时间的延长,交流阻抗谱低频部分斜线斜率先减小后增大。出现这种现象的原因是由于陷于钢片表面沟壑部分的聚合物电解质中的阴阳离子在一定初始直流电压以及陈放时间的影响下,分别吸附于正负两电极形成紧密的吸附单层,该吸附单层的侧压力造成的弥散电容以及随陈放时间的延长聚合物电解质缓慢的表面应力弛豫作用所造成的弥散电容导致了低频部分斜线斜率的改变。
     (6)研究阻塞电极种类对交流阻抗谱的影响表明,由于电极表面粗糙程度的不同,造成了以不锈钢为电极的交流阻抗谱图低频部分斜线的斜率最小,铜箔电极次之,铝箔电极最大。
The conductivity of solid polymer electrolyte was not consistent for the same electrolyte by using electrochemical impedance spectroscopy(EIS) under the same testing conditions when test it for many times.And it has a great relationship of electric double layer between interface of electrode and solid polymer electrode.In recent years,there were so many researches on electric double layer of electrode/solid polymer electrolyte interface,but they were not embedded and general.It was so necessary for a further research of electric double layer.Therefor,in this paper,it was discussed many problems of testing conductivity of solid polymer electrolyte by using electrochemical impedance spectroscopy from the point of view about electric double-layer.
     Three kinds of polymer electrolytes were prepared by a solution cast technique base on PEO,such as PEO/LiClO_4,PEO/LiClO_4/SN, PEO/LiClO_4/SN/SiO_2.It was studied many problems of the blocking resistance testing of polymer electrolyte by using electrochemical impedance spectroscopy.
     (1) The relationship between R_b and the thickness(L) of the polymer film was studied,it was found that the R_b obtained from the Nyquist plots maybe not only contain the bulk resistance but also has some other resistance because the straight line R_b~L didn't pass through the origin.It was found that Rb maybe contained interface resistance by testing with different electrodes,and this was proved by using Gouy-Chapman-Stem theory.
     (2) By using electrochemical impedance spectroscopy,it was found that R_b obtained from the Nyquist plots was step-down with the increase of dc voltage.One can see the interface resistance of the blocing electrode/SPE was step-down with the increase of dc voltage from the Gouy-Chapman-Stern theory,and then R_b was decreased for it had some interface resistance.
     (3) Equivalent circuit analysis showed that the CPE1-T which represents the value of capacitance of the electric double-layer was increased with the increase of dc voltage,and then interface resistance was decreased;R_b obtained from the Nyquist plots was step-down correspondingly.
     (4) Study on dc voltage influencing the slope of straight line in low-frequency shows that the bias' slope decreased with the increasing of dc voltage from 0v to 3v.A semicircle appeared instead of the straight line in low-frequency when dc voltage increased to 1.5v,and the circular arc appeared in focus and augment with the increasing of dc voltage. Anions and cations in the polymer electrolyte congregated at two poles under the influence of dc voltage,and then electric double-layer of blocking electrode/SPE interface changed.Meanwhile,ions adsorptions in the electrode cause the increasing of diffuse impedance,and leading the augment of circular arc.
     (5) Deposit time of battery could influence the Nyquist plots.Slope of the straight line in low-frequency first decreased then increased.At potentials,anions and cations in the polymer electrolyte which was immersed in the donga of steel interface adsorbed at anode and cathode separately,and then formed a compact monolayer.The lateral compression of the adsorption layer leaded to capacitance dispersion,the slow relaxation of surface stress of polymer electrolyte could lead to capacitance dispersion.This capacitance dispersion caused the changing of straight line's slope in the low-frequency.
     (6) The kind of blocking electrode could also influence the Nyquist plots.For the roughness of the blocking electrodes were different,which leaded to the straight line's slope in the low-frequency with stainless steels electrode was the least,the slope of copper foil electrode took second place,and the aluminum foil electrode was the biggest.
引文
[1]吴宇平,万春荣,姜长印等.锂离子二次电池.北京:化学工业出版社,2002,167-170
    [2]马建标.功能高分子材料.北京:化学工业出版社,2000,367-371
    [3]Wright P V.Complexes of alkali metal ions with poly(ethylene oxide).Polymer,1973,14(3):589-592
    [4]Armand M B,Chabagno J M,Duclot M.Extended abstracts of second international meeting on solid electrolytes.Extended Abstracts,1978,20-22
    [5]Murata K,Izuchi S,Yoshihisa Y.An over view of the research and development of solid polymer electrolyte batteries.Electrochimica Acta,2000,45:1501-1508
    [6]Fellude G,Perche P.Ion-conductive macromolecular gels and membranes for solid lithium cells.Applied Electrochemistry,1975,5(1):63-69
    [7]Armand M B,Chabano J M,Duclot M J.Fast Ion Transport in Solids(Ed.By P.Vashishta,J.N.Mundy,G.K.Shnovy),North Holland,NewYork,1979,131
    [8]丁黎明,董绍俊,汪尔康.高分子固体电解质研究进.电化学,1997,3(4):349-361
    [9]Angell C A,Liu C,Sanchez E.Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity.Nature,1993,362(6416):137-139
    [10]Lightfoot P,Mehta M A,Bruce P G.Crystal structure of the polymer electrolyte poly(ethylene oxide)a:LiCF_3SO_3.Science,1993,262(5135):883-885
    [11]Peng Z L,Wang B,Li S Q,et al.Free volume and ionic conductivity of poly(etherurethane)-LiClO_4 polymeric electrolyte studied by positron annihilation.Applied Physics,1995,77(39):334-338
    [12]Kloster G M,Thomas J A,Brazis P W,et al.Synthesis,Characterization,and Transport Properties of New Mixed Ionic-Electronic Conducting V_2O_5-Polymer Electrolyte Xerogel Nanocomposites.Chemistry Material,1996,8(10):2418-2420
    [13]Choe H S,Carroll B G,Pasquariello D M,et al.Characterization of some polyacrylonitdle-based electrolytes.Chemistry Material,1997,9(1):369-379
    [14]Lauter U,Meyer W H,Wegner G.Molecular Composites from Rigid-Rod Poly(p-phenylene) with oligo(oxyethylene)Side Chains as Novel Polymer Electrolytes.Macromolecules,1997,30(7):2092-2101
    [15]Croce F,Appetecchi G B,Persi L.Nanocomposite polymer electrolytes for lithium batteries.Nature,1998,394(6692):456-458
    [16]MacFarlane D R,Huang J,Fotsyth M.Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries.Nature,1999,402(6763):792-794
    [17]Mao G M,Perea R F,Howells W S,et al.Relaxation in polymer electrolytes on the nanosecond timescale.Nature,2000,405(6783):163-165
    [18]Gadjourova Z,Andreev Y G,Tunstall D P,et al.Ionic conductivity in crystalline polymer electrolytes.Nature,2001,412(6846):520-523
    [19]Christie A M,Lilley S J,Bruce P G.Increasing the conductivity of crystalline polymer electrolytes.Nature,2005,433(7021):50-53
    [20]Murata K,Lzuehi S,Yoshihisa Y.An over view of the research and development of solid polymer electrolyte batteries.Electrochimica Acta,2000,45(8-9):1501-1507
    [21]Wang Z,Huang B,Hunag H.Investigation of the position of Li~+ ion Sinapolyacry-lonirtile based electrolyte by Roman and infrared spectroscopy.Electrochimica Acta,1996,41(9):1443-1446
    [22]Peng X,Ba H,Chen D,et al.Two componentepoxy network LiClO_4 polymer electrolyte.Electrochimica Acta,1992,9(12):1569-1573
    [23]Xia D W,Soltz D,Smid J.Conductivities of solid polymer electrolyte complexes of alkali salts with polymers of methoxy polyethylene glycol methacrylates.Solid State Ionics,1984,14(3):221-224
    [24]Silva G G,Marzana B E.A statistically designed study of ternary electrolyte polymer material(PEO/LiClO_4/ethylene carbonate).J.materials science,2000,35(18):4721-4728
    [25]Appetecchi G B,Croce F,Scrosati B.Kinetics and stability of the lithium electrolyte in Poly(methylmethacrvlate)-based gel electrolytes.Electrochimica Acta,1995,40(8):991-997
    [26]Ahmad S,Agnihotry S A.Nanocomposite electrolytes with fumed silica in poly (methylmethacrylate):thermal,rheological and conductivity studies.Power Sources,2005,140(1):151-156
    [27]Song J Y,Cheng C L,Wang Y Y.Microstructure of poly(vinylidene fluoride)based polymer electrolyte and its effect on transport properties.Electrochemistry Society,2002,149(9):A1230-A1236
    [28]唐致远,王占良.聚丙烯腈基聚合物电解质.化学通报,2002,65(6):379-383
    [29]Slane S,Salomon M.The interface performance of PAN-based solid state electrolytes.Power Sources,1995,55(1):7-10
    [30]Appetecchi G B,Croce F,Depaolis A,et al.A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries.Electroanalytical Chemistry.1999,463(2):248-252
    [31]汪国杰等.聚合物锂离子蓄电池用凝胶聚合物电解.电源技术,2001,1(25):62-65
    [32]Wu P W,Holm S R,Duong A T,et al.A sol-gel solid electrolyte with high lithium ion conductivity.Chemistry Material,1997,9(4):1004-1010
    [33]史美伦等.交流阻抗谱原理与应用.北京:国防工业出版社,2003
    [34]曹楚南,张鉴清.电化学阻抗谱导论.科学技术出版社,2002
    [35]胡细车,姚禄安,张小武,鲁宗智.用时域法测量电极阻抗.中国腐蚀与防护学报,1986,3(6):22-31
    [36]王江涛,张挺芳.FFT时域法测量电极阻抗.中国腐蚀与防护学报,1988,8(3):173-180
    [37]姚天任,江太辉.数字信号处理.华中科技大学出版社,2002:79-90
    [38]Ito K,Ohno H.Solid State Ionics,1995,79:300-305
    [39]柳厚田等.电化学中的仪器方法.上海:复旦大学出版社,1992
    [40]田昭武.电化学研究方法.北京:科学出版社,1984
    [41]周伟舫.电化学测量.上海:上海科学技术出版社,1985
    [42]吴浩青,李永舫.电化学动力学.北京:高等教育出版社,1998
    [43]Conwa Y B E,Ralphe I T E,Andrze J L.Modern aspects of electrochemistry,electrochemical impedance spectroscopy and its applications[M].Kluwer Academic/Plenum Publishers,New York,1999,143-248
    [44]Janek R P,Fawcett W R,Ulman A.Impedance spectroscopy of self-assembled monolayer on Au(Ⅲ):sodium ferrocecyanide charge transfer at modified electrodes.Langmuir,1998,14:3011-3018
    [45]Randles J E B.Kinetics of Rapid Electrode Reactions.Faraday Discuss Chemistry Society,1947,1:11-19
    [46]Jaffe G.Theory of conductivity of semiconductors.Physics Review,1952,85:354-363
    [47]Chang H,Jaffe G.Polarization in electrolytic solutions,part Ⅰ,Theory.Chemistry Physics,1952,20:1071-1077
    [48]Macdonald J R.Theory of a.c.space-charge polarization effects in photoconductors,semiconductors,and electrolytes.Physics Review,1953,92: 4-17
    [49]Friauf R J.Polarization effects in the ionic conductivity of silver bromide.Chemistry Physics,1954,22:1329-1338
    [50]Germain P S,Pell W G,Conway B E.Evaluation and origins of the difference between double-layer capacitance behaviour at Au-metal and oxidized Au surfaces.Electrochimica Acta,2004,49:1775-1788
    [51]Cahan B D C,Chen T.The nature of the passive film on iron(Ⅱ) AC impedance Studies.Electrochemistry Society,1982,129:474-480
    [52]Macdonald J R,Schoonman J,Lehnen A P.Solid State Ionics,1981,5:137-140
    [53]Hans G L C,Terry C C,Adelle C F C.Impedance spectroscopy of interfaces,membranes and ultrastructures.Bioelectrochem Bioenerg,1996,20:79-98
    [54]Amemiya T,Hashimoto K,Fujishima A.Faradaic charge transfer with doublelayer charging and/or adsorption-related charging at polmer-modified electrodes as observed by color impedance spectroscopy.Physics Chemistry,1993,97(38):9736-9740
    [55]Rubinstein I,Sabatan I E,Rishpon J.Electrochemical impedance analysis of polyartiline films on electrodes.J.Electrochemistry Society,1987,134(12):3078-3083
    [56]崔晓莉,江志裕.交流阻抗谱的表示及应用.上海师范大学学报(自然科学版),2001,30(4):53-61
    [57]张亚利,孙典亭,郭国霖,等.电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则(Ⅱ)-含有Warburg阻抗的等效电路的变换.高等学校化学学报,2000,21(7):1086-1092
    [58]刁鹏,蒋殿录,贾振斌,等.电容平面图在交流阻抗数据中的应用.河北师范大学学报(自然科学版),1999,23(3):372-375
    [59]Albery W J,Chen Z,Horrocks B R.Faraday Discuss Chemistry Society,1989,88:247-259
    [60]Albery W J,Elliott C M,Mount A R.Electroanalytical Chemistry,1992,288:15-34
    [61]Albery W J,Mount A R.Electroanalytical Chemistry,1991,305:3-18
    [62]Vorotyntsev M A,Daikhin L I,Levi M D.Electroanalytical Chemistry,1994,364:37-49
    [63]Vorotyntsev M A,Badiali J P,Vieil E.Electrochimica Acta,1996,41:1375-1381
    [64]Deslouis C,Musiani M M,Tribollet B.Electrochemistry Society,1995,142(6): 1902-1908
    [65]Deslouis C,Moustafid T E L,Musiani Metal.Electrochimica Acta,1996,41(78):1343-1349
    [66]Bird R B et al.Transport Phenomena.New York 1960
    [67]Mears D E.Ind.Eng.Chem.Process Des.Dev.,1971(10):541
    [68]Nieto F J R,Tucceri R I.Electroanalytical Chemistry,1996(416):1-24
    [69]J(u|¨)ttern K,Schmitz R H J,Hudsm A.Electrochimica Acta,1999,44:4177-4187
    [70]Watanabe M,Togo M,Sanui K,et al.Ionic conductivity of polymer complexes by poly(β-propiolactone) and lithium perchlorate.Macromolecules,1984,17:2908-2912
    [71]王果庭.胶体稳定性.北京:科学出版社,1990,17
    [72]Peeter J M M.Characterization membranes by streaming potential measurements characterization of nanoffiltration membrane.1997
    [73]菅义夫.静电手册.北京:科学出版社,1981
    [74]Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries.Nature,2001,414(6861):359-367
    [75]Wright P V.Polymer electrolytes-the early days.Electrochimica Acta,1998,43(10-11):1137-1143
    [76]Watanabe M,Sanui K,Ogata N.Ionic conductivity and mobility of poly(propylene oxide) net-works dissolving alkali metal thiocyanates.Polymer Journal,1985,17(4):549-555
    [77]Vachon C,Labreche C,Vallee A,et al.Microphase separation and conductivity behavior of poly-(propylene oxide)-lithium salt electrolytes.Macromolecules,1995,28(16):5585-5594
    [78]Munichandraiah N,Scanlon L G,Marsh R A.Influence of zeolite on electrochemical and physico-chemical properties of polyethylene oxide solid electrolyte.Applied Electrochemistry,1995,25(9):857-63
    [79]Bruce P G,McGregor E S,Vincent C A.The perfectly polarized polymer electrolyte/electrode interface.Electrochimica Acta,1992,37(9):1525-1527
    [80]Oldham K B.A Gouy-Chapman-Stern model of the double layer at a(metal)/(ionic liquid) interface.Electroanalytical Chemistry,2008,613(2):131-138
    [81]Armstrong R D,Horrocks B R.The double layer structure at the metal-solid electrolyte interface.Solid State Ionics,1997,94(5):181-187
    [82]张升水,仇卫华等。PAN/PEO-LiClO_4界面的交流阻抗研究.物理化学学报, 1992,8(4):517
    [83]Armstrong R D.The double layer structure at the metal-solid electrolyte interface.Solid State Ionics,1997,84:181-187
    [84]赵峰,钱新明,古宁宇等.阻抗虚部计算聚合物电解质电导率.分析化学,2002,30(10):1153-1157
    [85]Macdonald J R.Impedance spectroscopy.Annals of biomedical engineering,1992,20(3):289-305
    [86]Bandeira M C E,Franco C V,Martini E.Electrochemical impedance spectroscopy of poly{pyrrole-trans-[(RuCl_2(pmp)_4]} copoly-mer films deposited on platinum electrodes.Solid State Electrochem,1999,3(4):210-214
    [87]Aeosta J L,morales E.Synthesis and charaeterization of polymeric electrolytes for solid state magnesium batteries.Electrochimica Acta,1998,43(7):791-797
    [88]余晴春,朱沁伟,吴益华.导电高分子电解质电导率测定的方法.电源技术,1999,23:106-108
    [89]钱新明,古宁宇,汪尔康,董绍俊.聚环氧乙烷复合聚合物电解质/惰性电极交流阻抗谱的研究.中国科学院研究生院学报,2000,17(2):39-48
    [90]Thomas M G S R,Bruce P G,Goodenough J B.Ac impedance analysis of polycrystalline insertion electrodes:application to Li(1-x)-CoO_2.Electrochem Society,1985,132:1521-1528
    [91]Tamas P,Impedance of rough capacitive electrodes.Electroanalytical Chemistry,1994,364:111-125
    [92]Tamas P,Impedance spectroscopy at interfaces of metals and aqueous solutionssurface roughness,CPE and related issues.Solid State Ionics,2005,176:1997-2003
    [93]Pajkossy T,Wandlowski T H,Kolb D M.Electroanalytical Chemistry,1996,414:209
    [94]La'ng G,Heusler K E.Electroanalytical Chemistry,1995,391:169
    [95]Frackowiak E,Khomenko V,Jurewicz K,Lota K,B'eguin F.Supercapacitors based on conducting polymers/nanotubes composites.Power Sources,2006,153:413-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700