新型阴离子交换膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池具有储运及补充方便等特点被认为是适应未来能源和环境要求的理想动力源之一。它被认为最适宜作可移动动力电源和便携式电源,如电动车电源和手机电池。目前燃料电池研究面临两大主要难题,一是甲醇从阳极向阴极的透过率高,即膜的阻醇性能较差。二是阳极催化剂对甲醇氧化反应的活性低。
     甲醇氧化速度在碱性介质中比在酸性介质中要快,而且甲醇氧化催化剂的结构敏感性较小,也不存在反应中间产物使电极催化剂中毒现象。在碱性介质中,氢氧根基团与质子传递方向相反,可消除电渗析产生的甲醇渗透,从而可降低甲醇渗透速度等。碱性直接甲醇燃料电池有望从改变电池酸碱环境的角度来克服存在的两大难题。
     阴离子交换膜作为碱性直接甲醇燃料电池的关键部件,起到传导氢氧根离子、分隔燃料和氧化剂的双重功能。本论文工作集中在膜的制备与表征,并取得如下进展:
     聚苯乙烯基苄基氯(PVBCl)具有较高的玻璃化转变温度,良好的溶解性、成膜性、机械性能和化学稳定性,是一类用于制备分离膜的新型材料。
     使用合适的溶剂溶解聚合物PVBCl制成高分子溶液,选取合适的交联剂添加在高分子溶液中使其交联。将溶液浇铸在一块平整的载玻片上,然后让溶剂在室温下挥发足够长的时间(4小时)以确保溶剂能挥发完全。通过溶液浇铸法便可成功制备尺寸稳定性好、光滑平整、颜色透明的完整的PVBCl离子交换膜,并对PVBCl膜的力学性能和交换性能等进行了研究。分析了溶剂的种类、成膜载体、聚合物的浓度、交联剂的种类和用量等对成膜性能的影响,并对膜的含水率、交换容量等性能进行了表征。
     其次,用基团贡献法计算出了PVBCl膜材料的溶解度参数,与浊度滴定法测得的数值相近,说明基团贡献法和浊度滴定法均可有效得到聚合物的溶解度参数。从溶解度参数差可以得到乙酸乙酯(EA)和N-甲基吡咯烷酮(NMP)是PVBCl膜材料的良溶剂。将LCP关系分别用于研究PVBCl/NMP/Nonsolvent和PVBCl/EA/Nonsolvent铸膜液体系,通过实验研究了非溶剂添加剂(H_2O、正丁酮、乙二醇、冰醋酸、正丁醇和PEG400)对铸膜液体系相分离行为的影响:发现LCP关系可以用于描述该体系相分离时的浊点组成,并依据LCP半经验关系式外推计算出各体系的双节线。根据LCP线性相关曲线以及计算得到的铸膜液体系的双节点线结果,可以得出截距数值a与非溶剂的沉淀能力相对应,当a值越小时,非溶剂对聚合物溶液的沉淀能力越强。结果表明对于PVBCl/EA/Nonsolvent和PVBCl/NMP/Nonsolvent铸膜液体系,实验中所用非溶剂添加剂对聚合物溶液的沉淀能力相同,按H_2O、正丁酮、乙二醇、冰醋酸、正丁醇和PEG400依次减弱。通过LCP关系计算聚合物制膜体系的双节线与实验测得的浊点线一致。由此可以得到铸膜液体系中使用H_2O作为凝胶介质。
     第三,从在线红外光谱跟踪测定,可以得到交联度是随着交联反应进行在变大,变化速度由快到慢,会持续一个相当长的时间,交联反应一直在进行。从机理分析交联反应有可能是Sn1,也有可能是Sn2,由于能垒的作用,发生Sn2的可用性比较大。通过实验测定,在反应中段,得到了一个表观反应级数n=1.93,证明了交联反应是一个Sn1和Sn2的混合机理的反应,比较多的是进行了Sn2的反应。但是对反应速率与时间作图,发现反应在后期速度明显变慢,反应是中存在溶剂阱,也就是扩散作用在反应的后期控制了反应的进程。交联后玻璃化转变温度(Tg)升高。交联后聚合物膜的局部有序性提高。
     用等物质量的交联剂TMMDA、TMPDA、TMBDA、TMHDA和TMEDA与PVBCl交联后形成的膜平均孔径依次变大。TMEDA、TMPDA、TMBDA和TMMDA交联形成的PVBCl膜非结晶的XRD衍射峰都几乎重叠,TMHDA的峰比其它物质最尖锐,峰值较高,微区有序性最强。这几种交联剂对PVBCl膜Tg的影响几乎没有什么差别。用不同量的TMMDA交联形成的膜,其表面形貌变化较小。交联密度与△Tg成线性关系。膜的交联浓度对膜的厚度、含水量、重均交联度影响较小。膜在KOH溶液中交换的OH~-离子随着时间的增长而增加直到膜与溶液体系达到离子交换平衡。本课题采用了FTIR法表征交联度,并利用pH计准确测量膜的离子交换率。
Fuel-cell is considered to meet the needs of energy and environmental requirements of one of the ideal power source,which have the conveniences of storage,transportation and supplement.It is expected to find wide application as a portable or mobile power,exemplified by battery for cellular phones or engine for electric vehicles,Research of Fuel cell is currently facing two main difficulties.First,the high-transmission of methanol from the anode to the cathode is high,that is,the film's poor performance of alcohol resistance. Second,the anodic catalyst have low activity for methanol oxidation reaction.
     The oxidation rate of methanol in alkaline medium is higher than in acid medium.The structural sensitivity of Methanol oxidative catalyst is small. And there is also no poisoning phenomenon between the intermediate and electrode catalyst.In alkaline medium,the transfer direction of hydroxyl ion and hydrogen proton transfer is opposite.Thus it can eliminate the methanol permeability produced by electrodialysis.Furthermore,it can reduce the penetrative rate of methanol and so on.Alkaline direct methanol fuel cell is expected to change the environmental of the battery to overcome the two main problems
     As a basic key components of direct methanol fuel cell,anion-exchange membrane can conduct hydroxyl ion,separate fuel and oxidizer.In this paper, our experiments concentrate on the preparation and characterization of the film,and some progresses are obtained as follows:
     Poly vinylbenzyl chloride(PVBC1) is a kind of preparation for a new type of membrane material,which has a high glass transition temperature, good solubility,film-forming,mechanical properties and chemical stability.
     The appropriate solvent polymer dissolved PVBCI made of polymer solution,selecting a suitable cross-linking agent added in the polymer solution for cross-linking.Solution will be cast on the formation of a slide,and then let the solvents volatilize at room temperature for long enough time(4 hours) to ensure that the solvents can volatilize completely.Through solution casting method,we can successfully prepared complete PVBC1 ion-exchange membrane,which have the characters of dimensional stability,smooth surface quality,and transparent color.The PVBC1 membrane mechanical properties and the exchange of properties were studied.The solvent,the carrier,the concentration of polymer,cross-linking agent and amount of film-forming properties were analyzed.The moisture content of the film and the ion exchange capacity(IEC) were characterized.
     Group contribution method used to calculate the solubility parameters of the membrane material PVBC1.The turbidity titration measured value is similar to it.We can get polymer solubility parameters by group contribution method and turbidity titration.For it EA is good solvent for membrane material PVBC1..LCP will be used to study the relationship between the respective casting solution system between PVBC1/NMP/Nonsolvent and PVBC1/EA/ Nonsolvent.Through the experiment of non-solvent additions (H_2O,is butanone,ethylene glycol and glacial acetic acid,n-butyl alcohol and PEG400) in casting solution of the separate system:The resultes show that the relationship of LCP can be used to describe the system of separation. According to the LCP linear curve,intercept a non-solvent precipitation is inversely proportional.The results showed that the ability of precipitation of polymer non-solvent(H_2O,butanone,ethylene glycol and glacial acetic acid, n-butyl alcohol and PEG400) is weakened in turn.The results of calculation and experiment are same.This casting solution system used H_2O as a gel medium.
     The degree of cross-linked gradually becomes larger during the course of cross-linking reaction.The pace of change continues in a fairly long period. From the analysis of the mechanism of cross-linking,reaction may be Sn1.It is also possible the Sn2.Through experimental determination,in the middle of reaction,we get a series of apparent reaction,n = 1.93,to prove the cross-linking reaction is a mix of Sn1 and Sn2 mechanism of the reaction,the reaction of Sn2 has more chances.But the response rate and time mapping the latter was slowed.The reaction is the existence of solvent-well,that is,the spread of the latter reaction is the key to the process.After cross-linking,Tg became higher.After the cross-linked,polymer membrane became orderly local.
引文
[1]衣宝廉,燃料电池-原理、技术、应用,北京:化学工业出版社,2003
    [2]江船,燃料电池,北京:国防工业出版社,1983
    [3]林维明,燃料电池系统,北京:化学工业出版社,996
    [4]黄莎华,刘之景,王克逸,燃料电池开发现状及其发展趋势,化学通报,2004,67:W54
    [5]周运鸿,燃料电池,电源技术,1996,20(4):161-164
    [6]黄倬,屠海令,张冀强等,质子交换膜燃料电池的研究开发与应用,北京:冶金工业出版社,2000
    [7]衣宝廉,燃料电池-高效环境友好的发电方式,北京:化学工业出版社,2000
    [8]Wasmus S,Wang J T,Savinell R F,Real-time mass spectrometric investigationof the methanol oxidation in a direct methanol fuel cell,J.Electrochem.Soc.,1995,142:3825-3833
    [9]Wang J T,Wasmus S,Savinell R F,Real-time mass spectrometric study of themethanol crossover in a direct methanol fuel cell,J.Electrochem.Soc.,1996,143(4):1233-1239
    [10]Baldauf M,Preidel W.Status of the development of a directmethanol fuel cell[J].J Power Sources,1999,84:161-166.
    [11]Chu D,Jiang Rong-zhong.Novel eletrocatalyst for dirt methanol fuel cells[J].Solid State Ionics,2002,148:591-599.
    [12]Jorissenl,Gogelv,Kerresj,et al.Newmembranesfor direct methanol fuel cells[J].J Power Sources,2002,105:267-273.
    [13]Yang B,Manthiram A.Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells[J].Electrochemistry Communications,2004,6:231-236.
    [14]Yu E H,Scott K.Development of direct methanol alkaline fuel cells using anion exchange membrances[J].J Power Sources,2004,137:248-256.
    [15]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000.39-41.
    [16]Zhuang Lin,Wang Yang,Lu Jun-Tao.How can direct methanol fuel cell benefit from carbonate media[J].电化学,2001,7:18-24.
    [17]K.Pandey,A.Goswam,Formation and characterization of highly crosslinked anion-exchange membranes,J.membrane Sci.,2003,217:217-130
    [18]L li,Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells, J. membrane Sci., 2005, 262: 1- 4
    [19]J. R. Varcoe, An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells, Chem. Commun., 2006: 1428-1429
    [20] E. N. Komkova, D. F. Stamatialis, Anion-exchange membranes containing diamines: preparation and stability in alkaline solution, J. membrane Sci., 2004, 244: 257- 34
    [21] E. Agel, J. Bouet, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Source, 2001,101: 267-274
    [22]Juda,W.; USA Pat. 2,636,851,1953
    [23]Juda, W. and McRae, W. A.; Coherent ion-exchange gels and Membranes, J. Am. Chem. Soc, 1950, 72,1044
    [24] Gregor, H. P.; Jacobson, H.; Shair, R. C, et al., J. Phys. Chem., 1957, 61,141
    [25] Chem, W. K.; Mesrobian, R. B.; Ballantine, D. S., et al., J. Polym. Sci., 1957, 23, 903
    [26]Mizutani, Y; Yamane, R., Zhara, H., et al., Bull. Chem. Soc. Jpn., 1957, 23, 903
    [27]Elmidaoui, A.; Toufik, A.; Brunea J., et al., J. Membr. Sci., 1992, 67, 263
    [28]Lin, M. C. and Takai, N.; J. Membr. Sci., 1994,88,77
    [29]Elmidaoui,A.; Bouterin, B.; Belcadi, S., et al., J. Polymer Sci.; part B: Polymer Physics., 1991,29,705
    [30] 汪锰,王湛,李政雄,膜材料及其制备,化学工业出版社,2003.
    [31] S. P. Nunes, K. V. Peinemann, Membrane technology in the chemical industry, WILEY-VCH, 2001
    [32] V. R. Reddy, D. J. Mohan, A. Bhattacharya, V. J. Shah, P. K. Ghosh, Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer I. Permeation of water solube polymers and inorganic salt solutions and fouling resistance, Journal of Membrane Science, 2003,214 211-221,
    [33] W. K. Idol, J. L. Anderson, Effects of adsorbed polyelectrolytes on convective flow and diffusion in porous membranes, Journal of Membrane Science 1986,28,269-286
    [34] A. Kavitskaya, Separation characteristics of charged ultrafiltration membranes modified with the anionic surfactant, Desalination 2005,184,409-414
    [35] R. C. Reddy, Surface modification of polysulfone ultrafiltration membranes using natural polymers, MSc. (Tech)Dissertation, 1998
    [36]D.A.Musale,A.Kumar,G.Pleizier,Formation and characterization of poly(acrylonitrile)/Chitosan composite ultrafiltration membranes,Journal of Membrane Science,2005,154,163-173
    [37]Bottino,G.Capannelli,A.Comite,Novel porous membranes from chemically modified poly(vinylidene fluoride),Journal of Membrane Science,2006,273,20-24
    [38]P.Mukherjee,K.L.Jones,J.O.Abitoye,Surface modification of nanafiltration membranes by ion implantation,Journal of Membrane Science,2005,254,303-310
    [39]G.Greene,R.Tannenbaum,Adsorbtion of polyelectrolyte multilayers on plasma-modified porous polyethylene,Appllied Surface Science,2004,238,101-107
    [40]Q.T.Nguyen,K.Glinel,M.Pontie,Z.H.Ping,Immobilization of bio-macromolecules onto membranes via an adsorbed nanolayer An insight into the mechanism,Journal of Membrane Science,2004,232,123-132
    [41]M.L.Luo,J.Q.Zhao,W.Tang,C.S.Pu,Hydrophilic modification of poly(ether sulfone)ultrafiltration membrane surface by self-assembly of TiO2 nanopaticles,Appied Surface Science,2005,249,76-84
    [42]Gancarz,J.Bryjak,G.P.Niak,W.Tylus,Plasma modified polymers as a support for enzyme immobilization Ⅱ Amines plasma.Europe polymer journal,2003,39,2217-2224
    [43]刘振梅,聚丙烯微孔膜表面的生物相容性改性研究,浙江大学博士学位论文,2004
    [44]X.Wei,R.Wang,Z.S.Li,A.G.Fane,Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal,Journal of Membrane Science,2006,273,47-57
    [45]T.Carroll,N.A.Booker,J.Meier-Haack,Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water.Journal of Membrane Science,2002,203,3-13
    [46]H.Matsumoto,Y.Koyama,A.Tanioka,Interaction of organic molecules With weak amphoteric charged membranes surfaces:effect of interfacial charge structure,Langmuir,2002,18,3698-3703
    [47]H.Matsumoto,Y.Koyama,A.Tanioka,Interaction of proteins with weak amphoteric charged membrane surfaces:effect of pH,Journal of Colloid and Interface science,2003,264,82-88
    [48]D.E.Sek,G.Chowdhury,T.Matsuura,R.M.Narbaitz,P.Santerre,G.Pleizier,Y.Deslandes,Study on the kinetics of surface migration of surface modifying macromolecules in membrane preparation,Macromolecules,2002,35,3017-3012
    [49]F.Q.Nie, Z.K.Xu, X.J.Huang, P.Ye, J.Wu, Acrylonitrile-Based Copolymer Membranes Containing Reactive Groups: Surface Modification by the Immobilization of Poly(ethylene glycol) for Improving Antifouling Property and Biocompatibility, Langmuir, 2003,19 9889-9895
    [50]R.E. Kesting, Synthetic Polymetric Membranes; A Structural Perspective (Second Edition), JOHN WILEY & SONS, 1985
    [51]Fenton D E, Parker J M, Wright P V.Complexes of alkali metal ionswith poly(ethylene oxide) [J]·Polymer, 1973,14(11):589-591·
    [52] Armand M B, Chabagno J M, Duclot M J.Fast Ion Transport inSolids [M]·New York:North Holland,1979.131-136.
    [53]Fauvarque J F, Guinot S, Bouzir N,et al.Alkaline poly(ethyleneoxide) solid polymer electrolytes-Application to nickel secondary batteries[J]Electrochimica Acta, 1995, 40(13-14): 2449-2454.
    [54] Guinot S, Salmon E, Penneau J F,et al. A new class of PEO-based SPEs: structure, conductivity and application to alkaline secondary batteries [J]·Electrochimica Acta, 1998, 43(10-11):1163-1170·
    [55] 衣宝廉著。 燃料电池——原理、技术、应用[M]. 北京:化学工业出版社, 2003. 336.
    [56] Lu G Q, Wang C Y. Electrochemical and flow characterization of a direct methanol fuel cell [J]. Power Sources, 2004,134: 33.
    [57] Meier F, Kerres J, Gerhert E. Methanol diffusion in water swollen ionomer membranes for DMFC applications [J]. Mem-brane Science, 2004, 241: 137.
    [58]Chang H, Kim R, Cho J H, et al. Materials and processes for small fuel cells [J]. Solid State Ionics, 2002;148: 601.
    [59] Kim H J, Shul Y G, Han H S, et al. Nafion-Nafion/polyvinlidene fluoride-Nafion laminated polymer membrane for direct methanol fuel cells [J]. Power sources, 2004,135: 66.
    [60]Peled E, Livshits, Duvdevani T, et al. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane(NP-PCM) [J]. Power Sources, 2002, 106: 245.
    [61]Siwa V S, Ruffmann B, Sliva H, et al. Proton electrolyte membrane properties and direct methanol fuel call performance (I) [J]. Power Sources, 2005,140: 34.
    [62]Siwa V S, Ruffmann B, Sliva H, et al. Proton electrolyte membrane properties and direct methanol fuel cell performance (II) [J]. Power Sources, 2005,140: 41.
    [63]Yoon S R, Hwang G H, Cho W I, et al. Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering [J]. Power Sources, 2002,106: 215.
    [64]Hejze T, Gollas B R, Sauerbrey R K, et al. Preparation of Pd-coated polymer electrolyte membranes and their application in di-rect methanol fuel cells [J]. Power sources, 2005,140: 21.
    [65]Shul Y G, Chu Y H, Lee C H, et al. Effect of crossover rate on direct alcohol fuel cell [A]. 2000 Fuel Cell Seminar Abstracts [C]. October 30-November 2, Porland, OR, 2000.1193.
    [66] Yu E H, Scott K. Development of direct methanol alkaline fuel cells using anion exchange membranes [J]. Power sources, 2004,137: 248.
    [67] Abdel Rahim M A, Abdel Hameed R M, Khalia M W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium [J]. Power sources, 2004,134: 160.
    [68] Abdel Rahim M A, Abdel Hameed R M, Khalia M W. The role of a bimetallic catalyst in enhancing the electro-catalytic activity towards methanol oxidation [J]. Power sources, 2004,135: 42.
    [69] Sun J, MacFarlane D R, Forsyth M.Novel alkaline polymer electrolytes based on tetramethyl ammonium hydroxide [J]·Electrochimica Acta, 2003, 48(14-16): 1 971-1 976·
    [70]Fauvarque J F, Guinot S, Bouzir N,et al. Alkaline poly(ethyleneoxide) solid polymer electrolytes·Application to nickel secondary batteries[J]·Electrochimica Acta, 1995, 40(13-14): 2 449-2 454·
    [71]Zhu X M, Yang H X, Cao Y L, et al. Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution [J] Electrochimica Acta, 2004, 49(16):2 533-2 539·
    [72] Yang C G, Lin S J.reparation of composite alkaline polymer electrolyte [J]· Materials Letters, 2002, 57(4): 873-881·
    [73] Yang C C, Lin S J, Wu G M.Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes[J]·MaterialsChemistry and Physics, 2005, 92(1): 251-255·
    [74] Yang C C.Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte [J]Materials Letters, 2003, 58 (1-2):33-38·
    [75]Palacios I, Castillo R, Vargas R A. Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)-KOH-H2O [J]·Electrochimica Acta, 2003, 48(14-16): 2195-2199·
    [76]Yang C C.Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte [J]·J Power Sources,2002,109(1):22-31.
    [77]Wu G M,Lin S J,Yang C C.Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes[J].J Membrane Science,2006,280(1-2):802-808.
    [78]Vassal N,Salmon E,Fauvarque J F.Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO)[J]-Electrochimica Acta,2000,45(8-9):1527-1532.
    [79]Yang C C.Study of alkaline nano-composite polymer electrolytes based on PVA-ZrO2-KOH[J].Materials Science and Engineering B,2006,131(1-3):256-262.
    [80]ZHAO Jun(赵俊),YUAN An-bao(袁安保),SONG Wei-xiang(宋维相).碱性纳米复合聚合物电解质研究[J].Acta Chimica Sinica(化学学报),2005,63(3):219-222.
    [81]WU Feng(吴锋),MAO Li-cai(毛立彩).碱性电池用准固态聚合物电解质膜[J].Battery Bimonthly(电池),2005,35(5):335-337.
    [82]YUAN An-bao(袁安保),ZHAO Jun(赵俊).PVA-CMC-KOH-H2O碱性聚合物电解质研究[J].Electrochemistry(电化学),2006,12(1):40-45.
    [83]Yang C C,Lin S J.Alkaline composite PEO-PVA-glass-fibre-matpolymer electrolyte for Zn-air battery[J].J Power Sources,2002,112(2):497-503.
    [84]Guinot S,Salmon E,Penneau J F,et al.A new class of PEO-based SPEs:structure,conductivity and application to alkaline secondary batteries[J].Electrochimica Acta,1998,43(10-11):1 163-1 170..
    [85]Mohamad AA,Mohamed N S,Yahya M Z A,et al.Ionicconductivity studies of poly(vinyl alcohol) alkaline solid polymerelectrolyte and its use in nickel-zinc cells [J].Solid State Ionics,2003,156(1-2):171-177.
    [86]LIU Jian-min(刘建敏),WANG Jun-hong(王军红),YANG Hua-bin(杨化滨),et al.PVA 碱性凝胶聚合物电解质电化学稳定性及其在锌镍二次电池中的应用[J].[南开大学学报(自然科学版)],2005,38(4):37-41.
    [87]Mohamada AA,Mohamed N S,Alias Y,et al.Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries[J].J Alloys and Compounds,2002,337(1-2):208-213.
    [88]CHEN Guo-ping(陈国平),CHEN Bao-ji(陈宝激),SANG Shang-bin(桑商斌),et al.全固态碱性Cd/Ni二次电池的制备及其性能[J].Journal of Central South University (science and Technology)[中南大学学报(自然科学版)],2004,35(4):604-608.
    [89]ZHANG Guo-qing(张国庆),ZHANG Xiao-gang(张校刚).碱性固态Zn/MnO2电池研究[J].Battery Bimonthly(电池),2004,34(3):169-170.
    [90]Yuan C Z,Zhang X G,Wu Q F,et al.Effect of temperature on the hybrid super capacity or based on NiO and activated carbon with alkaline polymer gel electrolyte[J]Solid State Ionics,2006,177(13-14):1237-1242.
    [91]Lewandowski A,Zajder M,Frackowiak E,et al.Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte[J].Electrochimica Acta,2001,46(18):2777-2780.
    [92]Yang C C,Hsu S T,Chen W C.All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes[J].J Power Sources,2005,152:303-310.
    [93]张绍玲,徐铜文,刘兆明。阴离子交换膜的制备和改性研究进展[J]。离子交换与吸附。2006,22(4):375-384页
    [94]宋运伟。全氟离子膜的最新动态[J]。氯碱工业。1996(6):13-15页
    [95]高以垣,叶凌碧.膜分离技术基础[M].北京:科学出版社,1989.
    [96]朱思君,段友容,王庆瑞.酚酞基聚醚飒溶解度参数的测定.化工新型材料[J].2005,33(6):21-23.
    [97]ZemanL,Tkacik G.Thermodynamic analysis of a membrane-forming system water/N-methyl-2-Pyrrolidone/Polyethersuifone,J.Membr.[J]Sci.,1988,36(1):119-140.
    [98]Kok C M,Rudin A.predietion of Flory-Huggins interaction parameters from intrinsic vixcoxsities,J.Appl.Poly,[J]Sci.,1982,27(2):353-362.
    [99]Matsuyama H,Teramoto M,Nakatani R et al.Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase.I.phase diagram and mass transfer Procoss,J.Appl.Poly.Sci.,1999,74(1):159-170.
    [100]Flory P J.Principles of polymer Cheminstry[M],Comell University Press,Ithaca,NY,1953.
    [101]Craubner H.Thermodynamic Perturbation Theory of Phase Separation in Macromolecular Multicomponent Systems 2.Concentration Dependence,Maeromolecule,1978,11(6):1161-1167.
    [102]Boom R M,van der Boomgaard Th,van den Berg J W A et al.Linearized cloudpoint curve correlation for ternary systems oonsisting of one polymer,one solvent and one non-solvent,Polymer,1993,34(11):2348-2356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700