PEO基层状硅酸盐复合聚合物电解质的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池作为目前广泛应用的一种高性能二次电池,正在朝着能量密度更高、使用更安全的全固态聚合物电池(聚合物正极+固体聚合物电解质+金属锂负极)方向发展。普通的无机纳米粒子掺杂制备的聚合物-锂盐-纳米粒子型复合聚合物电解质(简称复合聚合物电解质)较原始的聚合物-锂盐型复合聚合物电解质表现出许多优点,但是仍然不能够满足实用要求。作为一个新兴的研究领域,聚合物-锂盐-层状硅酸盐型复合聚合物电解质的研究表现出特殊意义。
     本项研究使用溶液浇铸法分别引入改性蒙脱土(MMT)和皂石制备PEO-LiClO4-层状硅酸盐型复合聚合物电解质,首先研究了硅酸盐含量、插层时间、热处理等制备工艺对复合聚合物电解质离子电导率的影响,确定优化的制备工艺;进而利用FTIR,SEM和XRD等手段对制备的产品进行表征,观测材料离子电导率增强时的表面形貌变化和微观结构变化。
     实验利用优化的工艺制得的PEO-LiClO4-蒙脱土型和PEO-LiClO4-皂石型复合聚合物电解质20℃离子电导率分别达到6.5×10-5S/cm和1.4×10-4S/cm,优于一般的无机纳米粒子掺杂的复合聚合物电解质。XRD测试发现蒙脱土和LiClO4的引入都降低了PEO的结晶度。皂石的引入起到同样的效果,而引入皂石时LiClO4的存在不但进一步降低了材料的结晶度,也导致了PEO峰特征峰位置的明显移动。FTIR测试发现蒙脱土和皂石片层与片层表面物质都有较强的相互作用。SEM观测结果表明,LiClO4引入到PEO中时,PEO表面细化,而蒙脱土的加入使得表面更加平滑,有利于获得低阻的聚合物界面。此外,本项研究依据经验公式对本课题的得到的电导率数据作拟合,发现所研究的体系在离子传导方面虽然呈现了较大的离子跃迁性特征,但是聚合物体系粘度对离子电导也有影响。
As a widely applied high-powered chargeable battery, lithium ion secondary batteries are developed into pure solid state polymer battery (polymer cathode, solid polymer electrolyte and lithium anode) with higher energy density and better safety performance. Composite solid polymer electrolyte(in short, Composite polymer electrolyte), described as polymer-lithium salt-nano particle, prepared by adding common nano particles, acts better than the original polymer-lithium salt composite polymer electrolyte, but it still can not meet the request of application. As a novel field of composite polymer electrolyte, those ones on composite polymer electrolyte prepared by adding layered silicate have showed a special future.
     PEO-LiClO4-layered silicate composite polymer electrolytes are prepared on the introduction of MMT and saponite in this research by solution-casting method. Factors of the concentration of silicate、the intercalating time and the time for heat treatment and so on are checked to confirm their effect on the conductivity of composite polymer electrolyte to obtain optimal techniques. Furthermore, FTIR, SEM and XRD are used to test the product with the aim to get the details of changes of surface and structure when the ionic conductivity is enhanced.
     Prepared PEO-LiClO4-MMT and PEO-LiClO4-saponite composite polymer electrolyte by optimal techniques present ionic conductivity of 6.5×10-5S/cm and 7.3×10-5S/cm at 20℃respectively, which are better than composite polymer electrolyte prepared by adding common nano particles. XRD tests indicate that the introduction of MMT and LiClO4 both decrease the crystallization of PEO. The addition of saponite has the similar effect, but the introduction of LiClO4 at the same time does not only lower the crystallization of PEO, but also move the characteristic absorption of PEO. FTIR tests show that the layers of MMT and saponite both interact with other components on the surface area. SEM tests present an idea that the introduction of LiClO4 is resulted in lubricity of the surface of PEO film, while the addition of MMT smooth the surface, which would help gain a low-impedance polymer interface. Besides, the experimental data on conductivity are fitted by experiential formula, indicating that although the composite polymer electrolyte owns some ion-conducting feature with hopping mechanism, the viscosity of electrolyte affects its conductivity at the same time.
引文
1 P. P. Prosini, R. Mancini, L. Petrucci, et al. Li4Ti5O12 as Anode in All Solid-state, Plastic, Lithium-ion Batteries for Low-power Applications. Solid State Ionics. 2001, 144(1-2) :185~192
    2付延鲍,马晓华,杨清河等.锂及锂离子蓄电池聚合物电解质研究进展.电源技术. 2002, 26(1):47~55
    3吴宇平,万春荣.锂离子二次电池.化学工业出版社, 2002:171~172
    4 Z. Florjanczyk. On the Reactivity of Aromatic Acrylates in Free-radical Copolymerization with SO2 and Terpolymerization with SO2 and 1-heptene. Polymer. 1991, 32(15):2853~2855
    5 M. K. Song, J. Y. Cho, B. W. Cho, et al. Characterization of UV-cured Gel Polymer Electrolytes for Rechargeable Lithium Batteries. Journal of Power Sources. 2002, 110(1):209~215
    6刘路,王九林,解晶莹等. P(VdF-HFP)-PMMA聚合物电解质的研究.功能材料与器件学报, 2003, 9(1):8~10
    7郭炳,徐徽,王先友等.锂离子电池.中南大学出版社, 2002:312~314
    8 F. Croce, A. D'Epifanio, J. Hassoun, et al. Advanced Electrolyte and Electrode Materials for Lithium Polymer Batteries. Journal of Power Sources. 2003, 119-121:399~402
    9 K. M. Abraham. PEO-like Polymer Electrolytes with High Room Temperature Conductivity. Journal of The Electrochemical Society. 1997, 144(6):136~137
    10 K. Fusaji, S. Hiedo, K. Akira, et al. Electronic Structures and Electrochemical Properties of LiPF6-n (CF3) n. J. Power Sources. 2001, 97-98:581~583
    11禹筱元,胡国荣,刘业翔.锂离子电池非水电解液的研究.电池, 2003, 33:177~179
    12 K. Nairn, M. Forsyth, H. Every, et al. Dynamics in a Poly (ethylene oxide)-based Nanocomposite Polymer Electrolyte Probed by Solid State NMR. Solid State Ionics. 1996, 86~88:547~557
    13黄维垣,闻建勋.高技术有机高分子材料进展.化学工业出版社, 1994:122~125
    14 H. Y. Sun, H. J. Sohn, O. Yamamoto, et al. Enhanced Lithium-Ion Transport in PEO-Based Composite Polymer Electrolytes with Ferroelectric BaTiO3. Journalof The Electrochemical Society. 1999, 146:1672
    15 C. Berthier, W. Gorecki, M. Minier, et al. Microscopic Investigation of Ionic Conductivity Inalkalimetalsalts-poly (ethylene oxide) Adducts. Solid State Ionics. 1983, 11(1):91~95
    16 L. A. Dominey, V. R. Koch, T. J. Blakley. Thermally Stable Lithium Salts for Polymer electrolytes. Electrochimica Acta. 1992, 37(9):1551
    17 J. E. Weston, B. C. H. Steele. Effects of Inert Fillers on the Mechanical and Electrochemical Properties of Lithium Salt Poly (ethylene oxide) Polymer Electrolytes. Solid State Ionics. 1982, 7(1):75~79
    18 W. Wieczorek, K. Such, H. Wycislik, et al. Modifications of Crystalline Structure of PEO Polymer Electrolytes with Ceramic Additives. Solid State Ionics. 1989, 36(3-4):255~257
    19 H. Y. Sun, H. J. Sohn, O. Yamamoto, et al. Enhanced Lithium-Ion Transport in PEO-based with Composite Polyethylene Oxide-Based Electrolytes. Journal of The Electrochemical Society. 2000, 147(7):2462~2467
    20 F. Croce, G. B. Appetecchi, L. Persi, et al. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature. 1998, 394:456~458
    21 A. S. Best, A. Ferry, D. R. Macfarlane, et al. Conductivity in Amorphous Polyether Nanocomposite Materials. Solid State Ionics. 1999, 126:269~276
    22 H. W. Chen, C. Y. Chiu, F. C. Chang. Conductivity Enhancement Mechanism of the Poly (ethylene oxide)/Modified-Clay/LiClO4 Systems. Journal of Polymer Science, Part B: Polymer Physics. 2002, 40:1342~1353
    23 H. W. Chen, F. C. Chang. The Novel Polymer Electrolyte Nanocomposite Composed of POLY (ethylene oxide), Lithium Triflate and Mineral Clay. Polymer. 2001, 42:9763~9769
    24 Y. W. Zhao, H. G. Zhong, I. Takahito, et al. An Investigation of Poly (ethylene oxide)/saponite-based Composite Electrolytes. Journal of Power Sources. 2006, 119–121:427~431
    25 P. S. Francis, R. C. Cooke, J. H. Elliott. Fraction of Polyethylene. Journal of Polymer Science. 1958, 31:453~466
    26 P. Lightfoot, M. A. Mehta, P. G. Bruce. Crystal Structure of the Polymer Electrolyte Poly (ethylene oxide) 3: LiCF3SO3. Science. 1993, 262:883
    27 M. B. Armand, J. M. Chabagno, M. J. Duclot. in Fast Ion Transport in Solids,Eds by Duclot M J, Vashishta P, Mundy J N, Shenoy G K, Elsevier North-Holland: Amsterdam, 1979
    28 Z. Stoeva, I. Martin-Litas, E. Staunton, et al. Ionic Conductivity in the Crystalline Polymer Electrolytes PEO6:LiXF6, X=P, As, Sb. Journal of the American Chemical Society. 2003, 125:4619~4626
    29 L. Edman. Ion Association and Ion Solvation Effects at the Crystalline-Amorphous Phase Transition in PEO-LiTFSI. Journal of Physical Chemistry B. 2000, 104(47):7254~7258
    30 C. D. Robitaille, D. Fauteux. Phase Diagrams and Conductivity Characterization of Some PEO-LiX Electrolytes. Journal of .Electrochemistry Society. 1986, 133(2):315~325
    31 K. Mary, E. G. Mary, E. T. Patrick, et al. Single-ion Conducting Polymer–silicate Nanocomposite Electrolytes for Lithium Battery Applications. Electrochimica Acta. 2005, 50:2125~2134
    32 D. Bamford, G. Dlubek, A. Reiche, et al. The Local Free Volume, Glass Transition, and Ionic Conductivity in a Polymer Electrolyte: A Position Lifetime Study. Journal of Chemical Physics. 2001, 115:7260~7270
    33 F. Aliotta, M. E. Fontanella, M. Sacchi, et al. A New Model for Size Distribution Function in Living Polymers. Electrochimica Acta. 1998, 247:3477~3479
    34 M. Siekierski, W. Wieczorek, J. Prayluski. AC Conductivity Studies of Composite Polymeric Electrolytes. Electrochimica Acta. 1998, 43:1339~1342
    35潘春跃,张倩,戴潇燕等.有效介质理论离子导电模型的修正.中南大学学报(自然科学版). 2007, 38(2):297~302
    36 X. H. Xu, C. Y. Pan, Q. FENG, et al. Studies of (PEO)8LiClO4/TiO2 Polymer Composite Electrolyte Prepared via In-situ Compositing. Journal of Function Polymers. 2004, 17(4): 607~609
    37 Y. Liu, J. Y. Lee, G. L. Hong. In Situ Preparation of Poly (ethylene oxide)-SiO2 Composite Polymer Electrolytes. Journal of Power Source. 2004, 129:303~311
    38 M. Nookala, B. Kumar, S. Rodrigues. Ionic Conductivity and Ambient Temperature Li Electrode Reaction in Composite Polymer Electrolytes Containing Nanosize Alumina. Journal of Power Sources. 2002, 111:165~172
    39 L. Z. Fan, Z. M. Dang, G. D. Wei, et al. Effect of Nanosized ZnO on the Electrical Properties of (PEO)16LiClO4 Electrolytes. Materials Science andEngineering, 2003, B99:340~343
    40 P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson, et al. Effect of Nano-porous Al2O3 on Thermal, Dielectric and Transport Properties of the (PEO)9 LiTFSI Polymer Electrolyte system. Electrochimica Acta. 2002,47:3257~3268
    41 F. Croce, L. Persi, B. Scrosati, et al. Role of the Ceramic Fillers in Enhancing the Transport Properties of Composite Polymer Electrolytes. Electrochimica Acta. 2001, 46:2457~2461
    42 M. Marcinek, A. Bac, P. Lipka, et al. Effect of Filler Surface Group on Ionic Interactions in PEG-LiClO4-Al2O3 Composite Polyether Electrolytes. Journal of Physical Chemistry B. 2000, 104(47):11088~11093
    43 E. Hackett, E. Manias, E. P. Giannelis. Computer Simulation Studies of PEO/Layer Silicate Nanocomposites. Chemistry of Materials. 2000, 12:2161~2167
    44 J. Bujda′k, E. Hackett, E. P. Giannelis. Effect of Layer Charge on the Intercalation of Poly(ethylene oxide) in Layered Silicates: Implications on Nanocomposite Polymer Electrolytes. Chemistry of Materials. 2000, 12, 2168~2174
    45 N. Mammar, M. Rosanne, F. B. Prunet, et al. Transport Properties of Compact Clays. Journal of Colloid and Interface Science. 2001, 240: 498~508
    46漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社, 2002:57~59
    47 H. G. Jeon, H. T. Jung, S. D. Lee, et al. Morphology of Polymer/silicate Nanocomposites: High Density Polyethylene and a Nitrile Copolymer. Polymer Bulletin. 1998, 41(1): 107~113
    48 Y. Kazuhisa, U. Arimitsu, O. Akane, et al. Synthesis and Properties of Polyimide -Clay Hybrid. Journal of Polymer Science Part A. 1993, 31:2493~2498
    49 M. Kawasumi, N. Hasegawa, A. Usuki, et al. Liquid Crystal/clay Mineral Composites. Applied Clay Science.1999, 15: 93~108
    50王胜杰,李强,王新宇等.聚苯乙烯/蒙脱土熔融插层复合的研究.高分子学报.1998, 2:129~134
    51杜洪彦,程琥,杨勇. PEO基纳米复合聚合物电解质电化学性质的研究.电化学. 2004, 10(2):215~220
    52席靖宇,邱新平,朱文涛等. PEO-LiClO4-ZSM5复合聚合物电解质.中国科学B辑:化学. 2005, 35 (6): 478~483
    53 K. Seok, P. S. Jin. Preparation and Ion-conducting Behaviors of Poly(ethylene oxide)-composite Electrolytes Containing Lithium Montmorillonite. Solid State Ionics. 2007,178:973~979
    54 M. L. Williams, R. F. lander, J. D. ferry. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers & other Glass Forming Liquid. Journal of the American Chemical Society. 1955, 77:3701~3707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700