PEO基镍钴酸锂离子导电膜的制备及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶液浇铸法,首次选用LiNi_(0.8)Co_(0.2)O_2为无机添加剂制备了聚环氧乙烷(poly ethylene oxide, PEO)基全固态复合聚合物电解质(Solid Polymer Electrolyte,SPE)膜,并与皂石、改性蒙托土(MMT)为无机添加剂制备的SPE膜等进行了比较,考察了无机添加剂的种类、含量、环境温度、锂盐含量、水分含量、体系成膜热处理时间、搅拌温度、搅拌时间等因素对体系化学及物理性能的影响,优化了制备工艺,计算了体系的活化能。利用XRD、SEM、FTIR、DSC、机械拉伸、线性扫描伏安法、计时电流法等手段对电解质膜的晶体结构、微观形貌、结构组成、机械性能、离子迁移数,电化学稳定窗口等进行了表征。
     XRD测试结果表明,LiNi_(0.8)Co_(0.2)O_2等无机添加剂的加入降低了PEO的结晶度,有利于SPE膜离子电导率的提高;SEM测试表明,各无机添加剂使SPE膜更加致密和平整;FTIR测试表明,各无机添加剂的加入没有改变PEO主链的拓扑结构;DSC测试表明,LiNi_(0.8)Co_(0.2)O_2降低了PEO的结晶相的百分含量,这与XRD的测试结果是相吻合的;机械拉伸实验表明,无机添加剂的加入提高了SPE膜的机械强度,改善了膜材料的可加工性能,同时保持了良好的塑性特征;线性扫描伏安测试表明,所制备的SPE膜电化学稳定窗口在3.5V左右,需要进一步提高;计时电流测试表明,无机添加剂提高了SPE膜的离子迁移数,其中PEO-LiClO_4-LiNi_(0.8)Co_(0.2)O_2膜材料的离子迁移数达到0.83,其离子电导率达到5×10~(-4)S/cm(25℃)。
A new kind of PEO-based solid composite polymer electrolyte (SPE) film was prepared using a solution casting method when LiNi_(0.8)Co_(0.2)O_2 was first time used as inorganic additive, and it was compared with other kind of SPE films using saponite and MMT as inorganic additive respectively. Factors of the kind and the content of inorganic additive, temperature, concentration of lithium salts, concentration of water, time for heat treatment on a film, temperature and time for the insert of the polymer and so on were checked to confirm their effect on the conductivity of SPE to obtain optimal techniques and calculate the activation energy and the concentration of crystalline phase of this system. The SPE films were also characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Fourier transform infrared spectrometer (FTIR), differential scanning calorimetry (DSC), mechanical tension, linear scanning voltammetry to obtain their structure of crystalline phase, microcosmic pattern, composition, mechanical behaviour, Li-ion transport number and the electrochemical stability window.
     The XRD results showed that the inorganic additives such as LiNi_(0.8)Co_(0.2)O_2 depress the crystallinity of PEO and increase the ionic conductivity of the SCPE films; The SEM results showed that the inorganic additives make the SCPE films more compact and smooth; The FTIR results showed that the inorganic additives did not change the topology structure of the PEO chain segment; The DSC results showed that LiNi_(0.8)Co_(0.2)O_2 depress the concentration of crystalline phase, which matched up to the results of the XRD; The mechanical tension results showed that the inorganic additives increase the mechanical strength of the SCPE films, and improve the processing properties of it; The linear voltammetry results showed that the electrochemical stability window of SPE film is about 3.5V;The inorganic additives especially LiNi_(0.8)Co_(0.2)O_2 improved the transmission of Li~+ markedly; Moreover, the ionic conductivity of the SPE film reached 5×10~(-4)S/cm(25℃)。
引文
1 N. Penazzi, M. Arrabito, M. Piana, et al. Mixed Lithium Phosphates as Cathode Materials for Li-Ion Cells. J. Power Sources. 2004, (24):1381~1384
    2 A. Magistris, E. Quartarone, P. Mustarelli, et al. PVDF-based Porpous Polymer Electrolytes for Lithium Batteries. Solid State Ionics. 2002, 152~153: 347~354
    3 J. H. Cao, B. K. Zhu, G.. L. Ji, et al. Preparation and Characterization of PVDF–HFP Microporous Flat Membranes by Supercritical CO2 Induced Phase Separation. Journal of Membrane Science. 2005, (266): 102~109
    4 H. Matsuyama, H. Yano, T. Maki, et al. Formation of Porous Fleet Membrane by Phase Separation with Supercritical CO2, J. Membr. Sci. 2001, (194) : 157
    5 B. Krause, J. P. Sijbesma, P. Munuklu, et al. Bicontinuous Nanoporous Polymers by Carbon Dioxide Foaming. Macromolecules.2001, (34) : 8792
    6 C. L. Cheng, C. C. Wan., Y. Y. Wang., et al. Preparation of Porous, Chemically Cross-linked, PVDF-based Gel Polymer Electrolytes for Rechargeable Lithium Batteries. Journal of Power Sources. 2004, (34) : 202~210
    7陈作锋,姜艳霞,庄全超等.一种新型微孔聚合物电解质的制备与表征.科学通报. 2005, 50(7): 638~642
    8刘玉文,张勇,李小龙等.增塑聚合物电解质电化学性能.电化学. 2005, 11(1): 96~100
    9 C. L. Cheng, C. C. Wan., Y. Y. Wang., et al. Preparation of Porous, Chemically Cross-linked, PVdF-based Gel Polymer Electrolytes for Rechargeable Lithium Batteries. Journal of Power Sources. 2004, (34) : 202~210
    10唐定国,刘建红,其鲁等.无纺布支撑聚合物凝胶电解质锂离子电池.科学通报. 2004, 49(22): 290~293
    11 D. G. Tang, J. H. Liu, L. Qi, et al. Composite Polymer Electrolyte Membranes Supported by Non-woven Fabrics for Lithium-ion Polymer Batteries. Chinese Science Bulletin. 2005, 50(6): 501~504
    12 T. Michot, A. Nishimoto, M. Watanabe. Plastic PVDF-HFP Electrolyte Laminates Prepared by a Phase Inversion Process. Electrochimica Acta. 2000, (45): 1347~1360
    13 S. S. Sekhon, Harinder Pal Singh. Proton Conduction in Polymer Gel Electrolytes Containing Chloroacetic Acids. Solid State Ionics. 2004, (175) :545–548
    14万春荣.锂离子二次电池.北京:化学工业出版社, 2002:171~172
    15郭炳,徐徽,王先友等.锂离子电池.湖南:中南大学出版社, 2002:312~314
    16 C. Walker, M. Salomon. Improvement of Ionic Conductivity in Plasticized PEO-based Solid Polymer electrolytes. Electrochem Soc. 1993,(140):3409~3412
    17 S. Chintapalli, R. Frech. Effect of Plasticizers on High Molecular Weight PEO-LiCF3SO3 Complexes. Solid State Ionics. 1996,(86):341~346
    18 B. K. Choi, Y. W. Kim, H. K. Shin. Ionic Conduction in PEO-PAN Blend Polymer Electrolytes. Electrochimica Acta. 1999,(45):1371~1374
    19 S. Panero, D. Satolli, B. Scrosati, et al. High Voltage Lithium Polymer Cells using a PAN-based Composite Electrolyte. J Ectrochem Soc. 2002,149(4): 414~417
    20 J. Bohnkeo, C. Rousselot, P. A. Giliet. Truche. Gel Electrolyte for Solid-slate Electrochromic Cell. J. Electrochem. Soc. 1992,(139):1862~1865
    21 G. B. Appetecchi, F. Croce, B. S. Kinetics. An Stability of the Lithium Electrode in Poly(methylmethacrylate)-based Gel Electrolytes.Electrochim Acta. 1995, 40(8):991~997
    22 M. K. Song, J. Y. Cho. Characterization of UV-cured Gel Polymer Electrolytes for Rechargeable Lithium Batteries. J Power Sources. 2002,(110):209~215
    23 D. Saikia, A. Kumar. Ionic Conduction Studies in P(VDF-HFP)-LiAsF6-(PC+DEC)-fumed Si02 Composite Gel Polymer Electrolyte System. Polymer. 2005,202(2):309~315
    24 D. E. Fenton, J. M. Parker, P. V. Wright. Complexes of alkali metal ions with poly(ethylene oxide). Polymer. 1973, 14(11):589~594
    25 P. V. Wright. Electrical conductivity in ionic complexes of poly(Ethylene oxide). Br Polym J, 1975,7(5):327~341
    26 M. B. Armand, J. M. Chabagno, M. Duclot. Fast Ion Transport in Solids. New York; Elsevier Press Inc,1979,131~135
    27 C. Berthier, W. Gorecki, M. Minier, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics. 1983, 11 (1):91~95
    28 B. Kumar, S. J. Rodrigues, S. J. Koka. The crystalline to amorphous transition in PEO-based composite electrolytes: role of lithium salts. Electrochimica Acta.2002, 47(25):4125~4131.
    29 A. Killis, J. F. Le, A. Nest, et al. Correlation among Transport Properties in Ionically Conducting Cross-linked Networks. Solid State Ionics. 1984,14(13): 231~237
    30 J. Nishimoto, N. Furuya, M. Watanabe. Thermal, Electrical and Mechanical Properties of Plasticized Polymer Electrolytes based on PEO. Electrochimica Acta. 2002, 48(2): 205~209
    31 J. H. Shin, Y. T. Lim, K. W. Kim et al. Effect of ball milling on structural and electrochemical properties of (PEO)nLiX (LiX = LiCF3SO3 and LiBF4) polymer electrolytes. Journal of Power Sources. 2002,107(1):103~109
    32 G. S. Mac Glashan, Y. G. Andreev, P. G.. Bruce. Structure of the polymer electrolyte poly (Ethylene oxide) 6: LiAsF6. Nature, 1999, 398 (6730): 792~793
    33 J. Grondin, L. Ducasse, J. L. Bruneel, et al. Vibrational and theoretical study of the complexation of LiPF6 and LiClO4 by di(ethylene glycol) dimethyl ether. Solid State Ionics. 2004,166(3-4):441~452
    34 F. L. Auger, J. Prud'homme . Ion–ion, short-range interactions in PEO-LiX rubbery electrolytes containing LiSCN, LiN(CF3 SO2 ) 2 or Li[CF3 SO2 N(CH2 ) 3- OCH3 ] as deduced from studies performed on PEO-LiX-KX ternary systems. Electrochimica Acta.2001,46(9):1359~1367
    35 G. B.Appetecchi, W.Henderson, P.Villano, et al. PEO-LiN(SO2CF2CF3)2 polymer electrolytes(I). XRD, DSC, and ionic conductivity characterization . Journal of the Electrochemical Society, 2001, 148(10): A1171~A1178
    36 Z. Wojciech, J. B. Gabrys, O. Sch?rpf, et al. Structure of poly(ethylene oxide) (PEO and PEO·LiSO3 CF3) studied with spin polarised neutrons. Solid State Ionics. 2002, 147(3-4):213~223
    37 C. C. Tambelli, A. C. Bloise, A. V. Rosário, et al. Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochimica Acta, 2002, 47(11): 1677~1682
    38 Y. Liu, J. Y. Lee, L. Hong. Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. Journal of Power Sources. 2002, 109(2): 671~675
    39 M. Forsyth, D.R. Macfarlane, A. Best, et al. The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 2002, 147(3-4): 203~211
    40席靖宇,马晓梅,崔孟忠等. PEO-LiClO4-ZSM5复合聚合物电解质I.电化学研究.化学学报. 2005, 63(5): 401~406
    41 M. J. Reddy, P. P. Chu, J. S. Kumar, et al. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte. Journal of Power Sources.2006,161(1):535~540.
    42 G. B. Appetecchi, S. Passerini. PEO-carbon Composite Lithium Polymer Electrolyte. Electrochimica Acta. 2000, 45(13): 2139~2195
    43 G. B. Appetecchi, F. Croce, L. Persi, etal. Transport and Interfacial properties of Composite Polymer Electrolytes. Electrochimica Acta. 2000, 45 (8~9): 1481~1490
    44王严杰,庞明杰,杨光义等.复合聚合物电解质电导率.复合材料学报. 2005, 22(1):85~91.
    45 W. Wieczorek, K. Such, H. Wycislik, et al. Modification of crystalline structure of PEO polymer electrolytes with ceramic additives. J. Solid State Ionics, 1989,36(3~4):255~257
    46 F. Croce, G. B.Appetecchi, G..Persi, et al. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394(6992): 456~458
    47 P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson, et al. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochimica Acta, 2002, 47(20):3257~3268
    48 Z. X. Wang, X. J. Huang, L. Q. Chen. Understanding of Effects of Nano-Al2O3 Particles on Ionic Conductivity of Composite Polymer Electrolytes. Electrochemical and Solid State Letters, 2003, 6(11): E40~E44
    49 H. Y. Sun, H. J. Sohn, O. Yamamoto, et al. Enhanced Lithium-Ion Transport in PEO-based with Composite Polyethylene Oxide-Based Electrolytes. Journal of The Electrochemical Society. 2000, 147(7):2462~2467
    50李冰,王继库,林海云.聚氧化乙烯-蒙脱土复合聚合物电解质室温电导率的研究.辽宁化工. 2006 35(7):379~381
    51 H. W. Chen, C. Y.Chiu, F. C. Chang. Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems. Journal of Polymer Science, Part B: Polymer Physics. 2002, 40(13): 1342~1353
    52顾大明,史鹏飞,宋振业,张鼎. LiCoO2梯度包覆LiNi0.96Co0.04 O2电极材料的电化学性能.无机化学学报. 2005, 21(5): 725~728
    53向礼琴,赵晓鹏.蒙脱土/二氧化钛复合颗粒电流变液材料的制备及其性能.化学学报. 2003, 61(11): 1867~1871
    54周春晖,杜泽学,李小年等,卢春山,葛忠华.水热体系合成锂皂石结构的演化和影响规律研究.无机化学学报. 2005, 21(9):1327~1332
    55漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践,北京:化学工业出版社, 2002, 128~129
    56陈允魁.红外吸收光谱法及其应用.上海:上海交通大学出版社, 1993, 126
    57常建华,董绮功.波谱原理及分析,北京:科学出版社, 2001, 97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700