仿壁虎机器人脚掌粘性材料的仿生学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学研究已经证明:壁虎的悬梁挂壁源于其脚底刚毛与接触面之间的“范德华力”。仿壁虎人工脚掌粘性材料的研制对仿生机器人的三维无障碍运动具有十分重要的意义。课题组深入研究了“大壁虎”(中国广西)脚掌的精细结构及其运动力学,借鉴了国内外同行专家的研究成果,制定了仿壁虎机器人脚掌仿生粘性材料的研制工作。论文以仿生粘性材料的研制及应用为目标,主要进行了以下4个方面的工作:壁虎刚毛阵列的力学分析、人造刚毛阵列的设计及制备、聚氨酯/硅橡胶共聚体粘性材料的研究以及人工脚掌的仿生设计。具体内容如下:
     (1)基于JKR理论,理论分析了壁虎刚毛阵列与粗糙面脱附过程中的力学特性和刚毛倾斜角对刚毛阵列拉开力的影响。以MATLAB为工具,进行数值仿真计算,得出了刚毛阵列脱附过程中的脱附力、粘附力等的变化及刚毛倾斜角对刚毛阵列拉开力的影响。
     (2)以JKR理论为基础,分析得出了人造刚毛阵列克服缠结现象需满足的几何条件(长径比、刚毛间距)。设计了四种尺寸的微米级刚毛阵列,并利用等离子深硅刻蚀工艺制作了刚毛阵列的硅片孔阵列模具。采用真空浇铸法进行了微米级硅橡胶刚毛阵列的浇铸实验,并利用化学腐蚀法实现刚毛阵列的脱模。
     (3)实验优化了以聚四氢呋喃(分子量3000)为主原料的聚氨酯预聚体的合成配方,并制作了一系列聚氨酯/硅橡胶共聚体粘性材料试样。对聚氨酯/硅橡胶共聚体粘性材料试样进行了弹性模量和粘着力的测试,测试结果表明聚氨酯含量在30%左右时材料具有最大的粘着力,并对该试样进行了粘附状态下切向力的测试。
     (4)分析壁虎脚趾的内部结构及驱动机理,进行结构的简化,初步设计了能够实现类似壁虎脚掌外翻动作的仿壁虎机器人脚掌。利用三维工程软件UG完成了脚掌弹性体及其注塑模具的设计。
Current study demonstrates that gecko’s special adhesion ability comes from the Van der Walls interaction between setae on the gecko foot and the contacted surface. Designing and manufacturing of biomimetic synthetic adhesives are extraordinarily important for wall-climbing robot. By now, our research institute has performed an in-depth study of gecko foot’s micro-structure and dynamics, and research work of biomimetic adhesive material has been planned. Four aspects have been done in this thesis which focuses on research of biomimetic adhesive material.
     (1) Based on the JKR theory, mechanical ability of gecko’s gradient setal array and relation between setal angle and pull off force in detachment step have been studied in theory. Mechanical ability of gradient setal array has been simulated by MATLAB. Curves of pull force and adhesion force in detachment step have been gotten. The relation between setal angle and pull off force of setal array also has been gotten.
     (2) Based on the JKR theory, the relation between setal matting and setae geometry has been studied. Four different synthetic adhesives were designed. Holl arrays on surface of silicon slice, which are molds of synthetic adhesives, were made by ICP technics. PDMS synthetic adhesives were manufactured by molding under vacuum and peeled off from molds by special corrosive liquid.
     (3) The directions for producing polyurethane/ silicon-rubber polymer which is made of PTMEG (3000) has been optimized. A series of polyurethane/ silicon-rubber samples have been manufactured. Elastic modulus and adhesion force of these polyurethane/ silicon-rubber samples have been tested. Test result shows that the sample which contains 30% polyurethane has largest adhesion force, and friction force of the sample also has been tested.
     (4) Structure and motion of gecko toes have been studied. Biomimetic foot of climbing-robot, which can curve outward like gecko foot, has been designed. The elastomer of biomimetic foot and molds of the elastomer have been designed by UG.
引文
[1]岑海堂,陈五一.仿生学概念及其演变.机械设计, 2007, 24(7): 64-66.
    [2]路甬祥.仿生学的意义与发展.科学中国人, 2004, 04: 22-24.
    [3]杜家纬.二十一世纪仿生学研究对我国高新技术产业的影响.世界科学, 2004, 02: 12-16.
    [4]张越.国内外壁面移动式机器人发展状况.唐山工程技术学院学报, 1994, 16: 27-31.
    [5]何雪明,丁毅,朱明波.真空吸附式爬壁机器人设计.西北轻工业学院学报, 1997, 04: 14-19.
    [6]门广亮,赵言正,王炎.磁吸附爬壁机器人控制系统的研究.基础自动化, 1995, 05: 40-43.
    [7] Autumn K, Chang W P, Hsieh T, et al. Adhesion force of a single gecko foot-hair. Nature, 2000, 405(8): 681-684.
    [8] Autumn K, Sitti M, Liang Y A, et al. Evidence for Van der Waals adhesion in gecko setae. PNAS, 2002, (99): 12252-12256.
    [9] Morariu M D, Voicu N E, Sch?ffer E. Hierarchical structure formation and pattern replication induced by an electric field. Nature Materials, 2003, 2(1): 48-52.
    [10] Sitti M, Fearing R S. Synthetic Gecko Foot-Hair Micro/Nano-Structures for Future Wall-Climbing Robots. IEEE Robotics and AutomationConference, Taiwan, Sept, 2003: 137-140.
    [11] Grigorieva I V, Geim A K, Dubonos S V. Long-range nonlocal flow of vortices in narrow superconducting channels. Physical Review Letters, 2004, 92(23): 237-241.
    [12] Peng J, Schwartz D, Elias J E. A proteomics approach to understanding protein ubiquitination. Nature Biotechnology, 2003, 21(8): 921-926.
    [13]潘力佳,何平笙.软刻蚀——图形转移和微制造新工艺.细微加工技术, 2000, (2): 1-7.
    [14]潘力佳,何平笙.微接触印刷法控制硫化物晶体生长.化学通报, 2000, (12): 12-17.
    [15] Geim A K, Dubonos S V, Grigorieva I V, et al. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2(7): 461-463.
    [16] Sitti M, Fearing R S. Nanomolding based fabrication of synthetic gecko foot-hairs. IEEE Nanotechnology Conference, DC, USA, 2002: 137-140.
    [17] Carlo Menon, Michael Murphy, Metin Sitti. Gecko Inspired Surface Climbing Robots. The 2004 IEEE International Conference on Robotics and Biomimetics, 2004: 431-436.
    [18] Autumn K, Hsieh S T, Dudek D M, et al. Dynamics of geckos running vertically. Journal of Experimental Biology, 2006, 209: 260-272.
    [19] Johnson K L, Kendall K, Roberts A D. Surface energy and contact of elastic solids. Proc.R.Soc.Lond, 1971, 324: 301-313.
    [20] Landman U. Atomistic mechanisms and dynamics of adhesions nanoindentation and fracture.Science, 1990, 248: 454-461.
    [21] Derjaguin B V, Muller V M, Toprov Y P. Effect of contact deformation on the adhesion of particles. J Colloid Interface Science 1975, 53(2): 314-326.
    [22] Greenwood J A. Adhesion of elastic spheres. Proc.R.Soc.Land.A, 1997, 453: 1227-1297.
    [23]赵亚薄,王立森,孙克豪. Tabor数、粘着数与微尺度粘着弹性接触理论.力学进展, 2000, 04(30): 529-537.
    [24]刘洪文.材料力学.北京,高等教育出版社, 1992.
    [25]孙久荣,郭策,程红,等.蜣螂与壁虎刚毛的比较及改形对其功能的影响.动物学报, 2005, 51(4): 761-767.
    [26] Tian Y, Pesika N, Hongbo Z, et al. Adhesion and friction in gecko toe attachment and detachment. PNAS, 2006: 7631-7637.
    [27] Israelachvili J. Intermolecular and surface forces. London: Academic Press, 1992: 245-231.
    [28] Huajian G, Haimin Y. Shape insensititive optical adhension of nanoscale fibrillar Structures. PANS, 2004: 7851-7856.
    [29] Huajian G, xiang W, haimin Y, et al. Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 2005, 37: 275-285.
    [30] Takahashia K, Berengueresa J O L, Obataa K J, Saito S. Geckos’foot hair structure and their ability to hang from rough surfaces and move quickly. International Journal of Adhesion & Adhesives, 2006, 26: 639-643.
    [31] Filippov A.E, Popov V. To optimal elasticity of adhesives mimicking gecko foot-hairs. Physics Letters, 2006, 358: 309-312.
    [32]赵林林.仿壁虎脚掌刚毛阵列接触力学分析及试验研究, [硕士学位论文].南京,南京航空航天大学, 2007.
    [33] Autumn K, Dittmore A, Santos D, et al. Frictional adhesion: a new angle on gecko attachment. Journal of Experimental Biology, 2006, 209: 3569-3579.
    [34] Gaurav J. Shah, Metin Sitti. Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs. The 2004 IEEE International Conference on Robotics and Biomimetics, 2004: 541-548.
    [35]华南理工大学无机化学教研室.无机化学.化工工业出版社, 2001: 57-58.
    [36] Sridhar I, Johnson K L, and Fleck N A. Adhesion mechanics of the surface force apparatus. J.Phys.D: Appl. Phys, 1997, 30: 1710-1719.
    [37]李爱军.高密度等离子体刻蚀轮廓的数值研究.西安:电子科技大学, 2001: 122-125.
    [38]冯明,张鉴,黄庆安. ICP刻蚀中等离子体分布的模拟.电子器件, 2005, 28(3): 529-531.
    [39]张鉴,黄庆安. ICP刻蚀技术与模型.纤维、测量、微细加工技术与设备, 2005, 6: 288-296.
    [40]王晨飞.半导体工艺中的新型刻蚀技术——ICP.《红外》月刊, 2005, 1: 17-22.
    [41]倪杰.壁虎机器人脚掌仿生材料的设计和制备研究, [硕士学位论文].南京,南京航空航天大学机电学院, 2006.
    [42]傅明源,孙酣经.聚氨酯弹性体及其应用.化工工业出版社,材料科学与工程出版中心,第三版.
    [43]贾有权.材料力学实验.高等教育出版社, 1984: 86-91.
    [44]戴振东,惠春, Stanislav Gorb.粗糙度对四种聚氨酯弹性体粘着性能的影响.摩擦学学报, 2003, 03(23): 245-248.
    [45]戴振东, Stanislav Gor.聚氨酯粘着性能的实验研究.南京理工大学学报, 2004, 01(28): 48-51.
    [46]王洪业.传感器及其应用技术考察团赴美国考察报告.传感器技术,湖南科学技术出版社, 1985: 87-92.
    [47]邓勃.分析测试数据的统计处理方法.清华大学出版社, 1994: 156-168.
    [48]戴雄杰.摩擦学基础.上海科学技术出版社, 1984: 35-38.
    [49]李明孜,戴振东,张杰.聚氨酯材料在负法向力下的摩擦性能研究.聚氨酯工业, 2003, 18(2): 21-24.
    [50]戴振东,于敏,吉爱红,郭策,张昊.动物驱动足摩擦学特性研究及仿生设计.中国机械工程, 2005, 16(16): 1454-1457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700