基于GMM驱动位移自感知微进给装置设计及测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lab VIEW (Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本创建应用程序的图形化编程语言,可以完成一套完整测试仪器的数据采集、分析、显示和存储功能,是目前国际上应用最广的数据采集和控制软件之一。GMM (Giant Magnetostrictive Material)是超磁致伸缩材料的简称,用其制作的进给驱动装置,具有微位移进给、高精度响应、驱动能力强以及响应速度快等优点,在超精密加工以及精密微进给领域中应用广泛。基于GMM的微进给装置是目前研究的热点,由于磁场、预压力等因素对GMM材料的磁致伸缩性是直接影响的,使得GMM微进给装置的设计与测试具有一定的难度。
     本文以智能材料和超精密加工技术为背景,总结了GMM微进给装置在超精密加工领域应用的优势和实际意义,论述了磁致伸缩效应及其机理、超磁致伸缩材料性能特点及其在微驱动器件上的应用,为超磁致伸缩微进给装置的研究和应用提供了必要的基础。GMM微进给装置结构设计的关键在于磁场结构设计、温控结构设计、预压力设计和传感器设计四个方面。本文研究了GMM棒设计参数、电磁线圈设计方案,设计并制作出位移自感知传感器。并将GMM微进给装置应用到刀架上,设计出GMM微进给刀架,并研究出微进给刀架中的测量切削力的八角环传感器。
     GMM微进给装置的工作特性与其主要工作条件预应力、驱动磁场密切相关,论文通过实验分析了GMM微进给装置中预压力与电流的特性、装置的加卸载回线和磁滞回线特性,分析了各因素对GMM准静态工作条件下特性曲线的应变值、线性度、重合度、磁滞的影响。
     论文针对GMM装置测试系统采用事件驱动的程序设计方法,实现了对GMM微进给装置的信号采集、分析、显示的实时操作。论文使用国家仪器公司(National Instrument)提供的软件平台(LabVIEW)和国产USB式的数据采集模块搭建了基于虚拟仪器的位移测量系统,并通过LabVIEW编程实现了多通道数据的采集和监测,并且实现了采集数据的分析和数据库存储。对微进给位移信号的测量证明了以虚拟仪器为基础的测量系统是可靠精确而且实用的。最后,论文通过实验对位移传感器和八角环测力仪装置进行了标定,获得了标定曲线和标定系数。
LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a kind of graphical programming language which use an icon instead of text to create applications, it can accomplish a complete set of test instrument data acquisition, analysis and display functions, which is one of the most widely used international data acquisition and control software.GMM (Giant Magnetostrictive Material) is the short of super-magnetostrictive material, with its production of micro-feed drive tool carrier,it has the advantage of micro-displacement feed, high-precision response, drive ability and fast response, which is widely used in the field of ultra-precision machining and precision micro-feed. GMM-based micro-feed device is a hot spots in current research. But as the direct impact of magnetic field, the pre-stress and other factors on magnetostrictive of GMM materials, it makes the design and test of GMM feed device has a certain degree of difficulty.
     In the background of intelligent materials and ultra-precision machining technology, this paper gave a summary of the advantages and practical significance of GMM micro-feed device in the field of ultra-precision machining applications. And it discussed magnetostrictive effect and its mechanism, super-magnetostrictive material performance characteristics and applications in micro-actuator device, which provided foundation for the necessary research and application of super-magnetostrictive actuator. The key of device of the GMM structural design of micro-feeding was the design of magnetic field structure, temperature-controlled structural, pre-stress and sensor. It studied the material design parameters of GMM and the electromagnetic coil design. On the control of temperature stability, it proposed a cooling structure with dual water-cooled chamber, through the insulation material which can inhibit heat transfer, it achieved an effective temperature control, ensured the stability of the output of the GMM.
     Operating characteristics of GMM feeding device is closely related to its main features of the working conditions of pre-stressed, driving the magnetic field. By Experiment, the paper analysised the pre-pressure of the device, current characteristics, loading and unloading loop, hysteresis loop, and analysised effects of various factors on the strain hysteresis curve, hysteresis and linearity in the GMM quasi-static working conditions. This paper also carried out calibration for equipment through experiments, which fitting the loaded curve and unloaded curve to obtain calibration curves and calibration coefficients.
     For the test system of GMM device, the paper established a comprehensive test platform based on a virtual instrument, which used multi-threaded program design method, it realized the real-time operation for signal acquisition, analysis and display of GMM Micro-displacement devices. The paper used a software platform (LabVIEW) that National Instruments (National Instrument) provided and domestic type of USB module for data acquisition, built up a displacement measurement system which based on the virtual instrument, and studied on the measurement system of this structure, achieved multi-channel collection and monitoring. And it realized database storage, data playback analysis of the data collection. Through measurement and research of signals of the power, it also proved that measurement system based on the virtual instrument is convenient, low-cost, practical, and reliable.
引文
[1]卢全国.基于GMM的微致动研究与应用:[博士学位论文].武汉:武汉理工大学,计算机科学与技术学院,2008
    [2]陶孟仑.超磁致伸缩致动器结构设计与器件特性研究:[硕士学位论文].武汉:武汉理工大学,物流工程学院,2008
    [3]叶湘滨,熊飞丽,张文娜等.传感器和测试技术.北京:国防工业出版社,2007.154-176
    [4]陈国强.半导体应变片式传感器应用研究.山东矿业学院学报,2005,13(3):264-267
    [5]Ning Xi,Yantao Shen.Active sensor for micro force measurement (B2).US 7367242
    [6]Deuan,atrick S.Surgical device s and methods of use thereof for enhanced tactile perception.US 6969384
    [7]Caminada,Carlo,Lasalandra,Ernesto,Prandi.Micro-electro-mechanical sensor with force feedback loop.US 7275433
    [8]姜德生,Richard O.Claus.智能材料器件结构与应用.武汉:武汉工业大学出版社,2000.1-4
    [9]陶宝祺.智能材料结构.北京:国防工业出版社,1997.1-5
    [10]贺大兴,盛伯浩.超精密加工技术的发展现状与趋势.新技术新工艺,2006.5:2-3
    [11]GyuhaePark, Matthew T. Bement, Daniel A. Hartman. The use of active materials for machining processes:A review. International Journal of Machine Tools&Manufacture,47 (2007):2189-2206
    [12]P.Schellekens, N.Rosielle, H.Vermeulen, M.Vermeulen, S.Wetzels, W.Pril. Design for precision:current status and trends, Annals of the CIRP,47(2) (1997):557-586.
    [13]贾宇辉.超磁致伸缩微驱动技术的研究[J]:[博士学位论文].哈尔滨:哈尔滨工业大学,1999
    [14]Goran Engdahl.Handbook of Giant Magnetostrictive Materials.Academic Press,2000
    [15]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003.140-142
    [16]L.Kiesewetter.Terfenol in linear motors, in Proc.2nd.Inter.Conf.Giant Magnetostrictive Alloys,1988
    [17]邬义杰,刘楚辉.超磁致伸缩驱动器设计方法的研究.浙江大学学报(工学版),2004,38(6):744-749
    [18]贾振元,杨兴,郭东明,等.超磁致伸缩材料微位移执行器的设计理论及方法.机械工程学报,2001,37(11):46-47
    [19]S.Y.Liang, R.L.Hecker, R.G.Landers, Machining process monitoring and control:the state of the art, ASME Journal of Manufacturing Science and Engineering,126(5)(2004): 237-299
    [20]S.Srinivasan, M.McFarland, Smart Structures:Analysis and Design, Cambridge University Press, Cambridge,2001
    [21]I.Chopra, Review of state of art of smart structures and integrated systems, AIAA Journal, 40(11) (2002):2146-2192
    [22]D.J.Inman,Smart materials in damage detection and prognosis, Proceedings of the Fifth International Conference on Damage Assessment of Structures, Southampton, UK,2003: 3-11
    [23]赵明,李国康,李永刚等.超磁致伸缩微位移刀架磁滞回线实验研究.沈阳理工大学学报,2008,27(1):59-67
    [24]马志新,周志平.基于超磁致伸缩材料微位移驱动器的原理及实验研究.现代机械,2009(2):20-23
    [25]康文利,伊淑梅.基于Lab VIEW的虚拟仪器实现切削力测量.水利电力机械,2004,26(6):49-52
    [26]贾宇辉,潭久彬.超磁致伸缩微驱动器在纳米测量中应用的研究.压电与声光,2000,22(2):125-131
    [27]赵晨光,雷振山.基于虚拟仪器的应变测量技术.唐山高等专科学校学报,2001,14(4):54-49
    [28]王德杰.电阻应变传感器测量系统在数控车床切削力测量中的应用.重型机械技术,2006,4:25-31
    [29]王时英,吕明,轧刚.基于LabVIEW的车床动态刚度测量系统研究.太原理工大学学报,2007,38(4):311-329
    [30]康文利,伊淑梅,卢永霞.基于Lab VIEW的切削力监控系统.组合机床与自动化加工技术,2004,8:90-94
    [31]Potersenke.Silicon as amechanicalC.ProcIEEE,1982,70
    [32]Smitics.Piezo resistance effect ingermaniumand siliconJ.PhysicalRev,1954,94
    [33]Ivtsenkov,Gennadii.Fiber optic strain sensor and associated data acquisition system. US 7359586
    [34]刘兆妍,雷振山.应用光纤光栅和虚拟仪器的切削力测量技术.工具技术,2005,39(10):53-56
    [35]Dzung Viet Dao,Toshiyuki Toriyama. Development of Six-Degree of Freedom Micro Force Sensor for Application in Geophysics.IEEE Internation Conference on Robotics and Biomimetics.0-7803-7454-1/02/$17.00(C)2002IEEE
    [36]E. Peiner, A. Tibrewala, R. BandorfL.Micro force sensor with piezoresistive amorphous carbon strain gauge.0-7803-8952-2/05/$20.00 (C)2005IEEE
    [37]Mitsutaka Tanimoto,Fumihito Arai,Toshio Fukuda. Micro Force Sensor for Intravascular Neurosurgery.0-7803-3612-7-4/97$5.0001997 IEEE
    [38]Katsutoshi,Norisada. Micro Force Sensor Using Strain Gauge for Articulated Robot Hand. 0-7803-0891-3/93$03.OO01993IEEE
    [39]康文利,伊淑梅,卢永霞.基于Lab VIEW的切削力数据采集及存储的实现.仪表技术,2004,2:12-14
    [40]马魏,高锋,闵惠芬.基于超磁致伸缩致动器的振动切削研究.研究探讨,2007,11:41-43
    [41]Khan Mughees M,Lagoudas Dimitris C,Rediniotis Othon K.Thermoelectric SMA actuator: Preliminary prototype testing. Proceedings of SPIE-The International Society for Optical Engineering,2003(5054):150-154
    [42]钟文定.铁磁学(中册).第1版.北京:科学出版社,1987
    [43]Eda.Hiroshi.Application of Giant Magnetostrictive Materials to Positioning Actuators. Proceedings of the 1999 IEEUASME International Conference on Advanced Intelligent Mechatronics,September 19-23,1999 Atlanta,USA
    [44]C.H.Joshi. Compact Magnetostrictive Actuators and Linear Motor. Proceedings of 7th International Conference on New Actuator,2000:121-124
    [45]Wakiwaka.H.Maximum output of a Low Frequency Sound Source Using Giant Mangetostrictive Material. Alloys Comp,1997,258(8):89-91
    [46]陈敏.基于FEA的超磁致伸缩微致动器的热分析及其温控研究:[硕士学位论文].武汉:武汉理工大学,物流工程学院,2008
    [47]Rick Allen Kellogg.The Delta-E effect in Terfenol-D and its application in a tunable mechanical resonator[M].Department of Engineering Mechanics,Iowa State University,2000
    [48]唐志峰.超磁致伸缩执行器的基础理论与实验研究:[博士学位论文].杭州:浙江大学机械系,2005
    [49]William T.Thomson,Marie Dillon Dahleh.Theory of Vibration with Applications (Fifth Edition).北京:清华大学出版社,2005.209-219
    [50]董永贵,李庆祥.精密测控与系统.北京:清华大学,2005:219-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700