阵列测向与阵列校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理是信号处理领域内的重要分支,在雷达、声纳、通信、地震、勘探、射电天文以及生物医学等领域有广泛应用。
     阵列测向,又称作波达方向(DOA)估计,是阵列信号处理的主要研究方向之一。已有的超分辨测向技术的高分辨力是在理想阵列流型的假设下得到的。在实际应用中,阵列不可避免地存在着多种误差。阵列误差使得超分辨测向技术的性能严重下降,甚至失效。因此,阵列误差的存在是超分辨测向技术走向实用化的一个瓶颈。另外,很多阵列测向技术虽然有较高的分辨力,但其能分辨的信号角度个数不能超过天线个数。实际中,由于系统成本以及体积的限制,天线数往往不能做得太多,因此有必要研究并改进已有的阵列测向技术,用有限个阵元分辨尽可能多的信号角度。
     本论文主要研究阵列幅相误差条件下的自校正技术,分布式小卫星阵列校正技术,以及所分辨角度数目超过阵元个数的阵列测向技术这三方面的内容。
     论文的主要工作如下
     1.传统的自校正算法需要在阵列误差估计和信号方向估计之间进行联合迭代,在相位误差太大时,算法会陷入局部最优,性能恶化,甚至失效。为克服此问题,利用阵列接收向量和其共轭向量的点乘所得的向量独立于相位误差这一特点,提出一种阵列自校正算法。理论证明可知所提算法独立于相位误差,相位误差的大小不影响所提算法的性能。但所提算法的分辨力不高,为了提高所提算法的分辨力并保持对相位误差的独立性,通过组合所提算法和传统算法,提出一种组合策略。所提算法和组合策略的优点是其性能独立于相位误差。若采用这两种算法,可省略天线工作过程中大相位误差的有源校正过程。另外,这两种算法避免了传统算法会陷入局部最优的难题。所提算法和组合策略的缺点是其计算复杂度较高,至少需要空间上间距较远的两个信号,而且对阵列结构有一定要求。
     2.传统的分布式小卫星校正算法中,位置误差的估计基于阵元位置误差泰勒级数展开的一阶近似。一阶泰勒级数展开会引入近似误差,导致传统算法估计不精确。为克服此问题,根据泰勒级数展开所引入的近似误差随位置误差的减少而降低这个规律,提出一种改进算法。在改进算法中,首先补偿掉在第k次迭代中所得到的位置误差估计值,从而减少了第k+1次迭代中的剩余位置误差。最后把每次迭代所得的位置误差估计值取和作为真实位置误差的估计值。这样,改进算法消除了由泰勒级数近似引入的近似误差,提高了估计精度。仿真结果验证了改进算法的估计精度高于传统算法,而且对位置误差更稳健。另外,改进算法的计算复杂度几乎没有增加。
     3.传统的分布式小卫星阵列校正算法需要在基线误差估计和幅相误差估计之间进行联合迭代,当基线误差太大时,算法会陷入局部最优,稳健性差。当合成孔径雷达工作于正侧视模式时,某个固定多普勒单元的杂波谱分量的导向矢量和其相反多普勒单元的杂波谱分量的导向矢量互为共轭。根据这个事实和投影矩阵的唯一性,提出一种阵列误差估计算法。所提算法可直接估计相位误差和位置误差,不需要联合迭代,克服了传统算法局部收敛、性能不稳健的缺点。数学分析表明所提算法降低了计算复杂度。所提算法的唯一代价是,它利用了两倍的多普勒单元。考虑到实际中,多普勒单元数目较多,这个代价是可以容忍的。
     4.经典的MUSIC测向算法所能估计的信号角度个数小于阵元数目。针对此问题,利用圆信号和非圆信号的圆特性差异,提出了一种阵列测向算法。该算法首先根据接收信号矢量的非共轭协方差矩阵得到非圆信号的DOA估计,然后根据传统的共轭协方差矩阵给出圆信号的DOA估计。所提算法能估计的角度个数为MUSIC算法的两倍;另外由于所提算法是利用信号的非圆特性差异来区分圆和非圆信号,而不是利用信号之间的角度差异,所以其性能与圆信号和非圆信号之间的角度差无关,即使圆和非圆信号在空间上相互重叠,所提算法仍能较好地分辨这两种信号。仿真结果验证了所提算法的有效性。所提算法的缺点是在圆信号和非圆信号之间的角度差较大时,其性能差于MUSIC算法。
Array signal processing is an important branch of signal processing, which iswidely applied to radar, sonar, communication, seismic exploration, radio astronomy,and biomedicine and so on.
     Direction finding with array, also named as the direction of arrival (DOA)estimation is one of the main reasearch areas of array signal processing.The existinghigh-resolution DOA estimation methods work well under the assumption of ideal arraymanifold. In practice, array errors are unavoidable. In the presence of array errors, mostof the existing high-resolution DOA estimation methods perform badly and even fail.Therefore, the existence of array errors is a bottleneck which impedes the practicabilityof the high-resolution DOA estimation methods. In addition, although most DOAresolution methods have high-resolution ability, the number of resolvable DOAs islimited to the number of antennas and cannot exceed the number of antennas. Inpractice, due to the limitation on the cost and volume of the system, the number ofantennas cannot be too many. Therefore, it is neccesarray to research and improve theexisting direction finding methods to identify as many sources as possible with limitedantennas.
     This dissertation mainly studies the self-calibrtion problem in the presence of arraygain-phase errors, array calibration applicable to the distributed small satellites, andDOA estimation wich can identify more sources than the number of antennas.
     The main contents of this dissertation are as follows.
     1. The conventional self-calibration method require the joint iteration betweenarray error estimation and DOA estimation, resulting in local convergence and degradedperformance in large phase errors. To overcome this problem, we propose aself-calibration method based on the fact that the dot product of the array output vectorand its conjugate is independent of phase errors. Theoretical analysis shows that theproposed method performs independently of phase errors and thus behaves wellregardless of phase errors. However, the resolution capability of the proposed method islower than the conventional method. In order to improve the resolution capability andmaintain phase error independence, a combined strategy is developed using theproposed and conventional methods. The advantage of the proposed methods is thatthey are independent of phase errors, leading to the cancellation of phase error calibration during the operation life of an array. Moreover, the proposed methods avoidthe problem of suboptimal solutions which occurs in the conventional method. Thedrawbacks of the proposed methods are their high computational complexity and theirrequirement for the condition that at least two signals are spatially far from each other,and they are not applicable to a linear array.
     2. In the conventional array estimation method for constellation SAR systems, theposition error estimation is based on the first-order Taylor series expansion of theposition-error exponential function. However, the first-order Taylor series expansioncauses an approximation error, resulting in the inaccuracy of the estimation by theconventional method. In this paper, an improved method is developed to overcome thisproblem, based on the fact that the aforementioned approximation error decreases withthe reduction of position errors. In the improved method, we first compensate theposition error estimates obtained at the kth iteration in order to reduce the remainingposition errors in the (k+1)th iteration. Then, the position error estimates obtained at alliterations are summed as the estimates of the true position errors. In this way, theimproved method removes the aforementioned approximation error, leading to estimateswith high accuracy. In addition, the improved method is more robust to position errorsthan the conventional method. Furthermore, the increase of the computational load ofthe improved method is negligible.
     3. The conventional array error estimation method requires joint iteration betweenposition error estimation and gain-phase error estimation, leading to suboptimalsolutions and weak robustness in large position errors. We observe that the steeringvectors of the spectrum components in one Doppler bin are conjugate with those of thespectrum components in its contrary Doppler bin on the condition that each SARoperates in the side-looking mode. We propose an array error estimation method basedon this observation and the uniqueness of the projection matrix. The proposed methoddirectly estimates phase and position errors without joint iteration between theestimations of phase and position errors, and overcomes the local convergence and theinstability of the conventional method. Furthermore, mathematical analysis indicatesthat the proposed method has less computation load. The only cost is that it employstwice as many Doppler bins as the conventional method does, which is endurablebecause there are numerous Doppler bins.
     4. The conventional MUSIC method cannot resolve more sources than the numberof antennas. To overcome this problem, a method is proposed by exploiting thedifference between the circularity of noncircular and circular signals. In the proposed method, we firstly estimate the DOAs of noncircular signals based on the nonconjugatecovariance matrix of the array output vector. Subsequently, we estimate the DOAs ofcircular signals based on the conventional covariance matrix. The maximum number ofdetectable directions by the proposed method is twice that by the MUSIC method.Furthermore, since the proposed method resolves noncircular and circular signals basedon the circularity difference rather than the DOA difference, the proposed methodperforms well regardless of the DOA separation between noncircular and circularsignals. Simulation results illustrate the effectiveness of the proposed method. Thedrawback of the proposed method is that in large DOA separation, its estimationaccuracy is lower than that of the MUSIC method.
引文
[1] Krim H, Viberg M. Two decades of array signal processing research[J]. IEEESignal Processing Magazine,1996,13(4):67-94.
    [2] Schmidt R. O. Multiple emitter location and signal parameter estimation[J]. IEEETransactions on Antennas and Propagation,1986,34(3):276-280.
    [3] Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation ofparameters of cissoids in noise[J]. IEEE Transactions on Acoustics, Speech andSignal processing,1986,34(10):1340-1342.
    [4] Rao B D, Hari K V S. Performance analysis of Root-MUSIC[J]. IEEE Transactionson Acoustics, Speech and Signal processing,1989,37(12):1939-1949.
    [5] Rao S S, Gnanaprakasam D C. A criterion for identifying dominant singular valuesin the SVD based method of harmonic retrieval[C].1988International Conferenceon Acoustics, Speech, and Signal Processing (ICASSP-88), New York,1988,4:2460-2463.
    [6] Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays usingweighten subspace fitting[J]. IEEE Transactions on Signal Processing,1991,39(11):2436-2449.
    [7] Ottersten B, Viberg M, Kailath T. Analysis of subspace fitting and ML techniquesfor parameter estimation from sensor array data[J]. IEEE Transactions on SignalProcessing,1992,40(3):590-600.
    [8] Stoica P, Ottersten B, Viberg M, et al. Maximum likelihood array processing forstochastic coherent sources[J]. IEEE Transactions on Signal Processing,1996,44(1):96-105.
    [9] Ziskind I., Wax M.. Maximum likelihood localization of multiple sources byalternating projection[J]. IEEE Transactions on Acoustics, Speech and Signalprocessing,1988,36(10):1553-1559.
    [10] L. C. Godara. Application of antenna arrays to mobile communications, Part II:Beam-forming and direction-of-arrival considerations[C]. Proc. IEEE,1997,85(8):1195-1245.
    [11]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [12] A. Das, R. Cobb, et. al. TechSat21: A revolutionary concept in distributed spacebased sensing[C]. Proc. AIAA Defense and Civil Space Programs Conf, Huntsville,AL, Oct.1998:5255-5263.
    [13] Kim Luu, et al. University Nanosatellite Distributed Satellite Capabilities toSupport TechSat21[C]. USA:13th AIAA/USU Conference on Small Satellites(SSC99-III-3),1999:1-9.
    [14] S Ramongasie, L Phalippou, et al. Preliminary design of the payload for theinterferometric cartwheel[C]. IEEE2000International Geoscience and RemoteSensing Symposium Proceedings (IGARSS2000),2000:23-28.
    [15] D Massonnet. The interferometric cartwheel: a constellation of passive satellites toproduce radar images to be coherently combined[C]. International Journal ofRemote Sensing.2001,22(12):2413-2430.
    [16] N. A. Goodman, S C Lin, Et al. Processing of multiple-receiver spaceborne arraysfor wide-area SAR[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(4):841-852.
    [17] See C. M. S. Method for array calibration in high-resolution sensor arrayprocessing[J]. IEE Proc. Radar, Sonar Navig,1995,142(3):90-96.
    [18] Ng. B. C., See C. M. S. Sensor-array calibration using a maximum-likelihoodapproach[J]. IEEE Trans. on AP,1996,44(6):827-835.
    [19] See C. M. S. Sensor array calibration in the presence of mutual coupling andunknown sensor gains and phases[J]. Electronics Letters,1994,30(5):373-374.
    [20] Zhang M., Zhu Z. D. DOA estimation with sensor gain, phase and positionperturbations[C]. Proc. of IEEE National Aerospace and Electronics Conference.NAECO,1993:67-69.
    [21] Fistas, A. Manikas. A new general global array calibration method[C]. Proc. IEEEICASSP,1994:73-76.
    [22] K.v. Stavropoulos and A. Manikas. Array calibration in the presence of unknownsensor characteristics and mutual coupling[C]. EUSIPCO Proceedings,2000:1417-1420.
    [23] A.J.Weiss and B.Friedlander. Eigenstructure methods for direction finding withsensor gain and phase uncertainties[J]. Circuits Systems Signal Process,1990,9(3):271-300.
    [24] C. Soon, L. Tong, Y. F. Huang, and R. Liu. A subspace method for estimatingsensor gains and phases[J]. IEEE Trans. Signal Process,1994,42(4):973-976.
    [25] Y. Rockah, P. M. Schultheiss. Array shape calibration using sources in unknownlocations-Part I: Far-field sources[J]. IEEE Transactions on Acoustics, Speech andSignal processing,1987,35(3):286-299.
    [26] Y. Rockah, P. M. Schultheiss. Array shape calibration using sources in unknownlocations-Part II: Near-field sources and estimator implementation[J]. IEEETransactions on Acoustics, Speech and Signal processing,1987,35(6):723-735.
    [27] Y. Rockah, P. M. Schultheiss. Localization performance of arrays subject to phaseerrors[J]. IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):402-409.
    [28] Weiss A. J., Friedlander B. Array shape calibration using eigenstructure methods[J].Signal Processing,1991,22(3):25l-258.
    [29] Friedlander B, Weiss A. J. Direction finding in the presence of mutual coupling[J].IEEE Transactions on Antennas and Propagation, l991,39(3):273-284.
    [30] Weiss A. J., Friedlander B. Effects of modeling errors on the resolution thresholdof the MUSIC algorithm[J]. IEEE Transactions on Signal Processing,1994,42(6):1519-1526.
    [31] Pierre J, Kaveh M. Experimental performance of calibration and direction findingalgorithms[C].1991IEEE International Conference on Acoustics, Speech, andSignal Processing (ICASSP-91),1991:1365-1368.
    [32] Eric K. L. Hurg. A critical study of a self-calibration direction-finding method forarrays[J]. IEEE Transactions on Signal Processing,1994,42(2):471-474.
    [33] See C. M. S., Poh B. K. Parametric sensor array calibration using measuredsteering vectors of uncertain locations[J]. IEEE Transactions on Signal Processing,1999,47(4):1133-1137.
    [34] Viberg M., Ottersten B, Kailath T. Detection and estimation in sensor arrays usingweighted subspace fitting[J]. IEEE Transactions on Signal Processing,1991,39(11):2436-2448.
    [35] Jansson M., Swindlehurst A. L., Ottersten B. Weighted subspace fitting for generalarray error models[J]. IEEE Transactions on Signal Processing,1998,46(9):2483-2497.
    [36] Viberg M., Swindlehurst A. L. A bayesian approach to auto-calibration forparametric array signal processing[J]. IEEE Transactions on Signal Processing,1994,42(12):3495-3507.
    [37] Stefan J. Wijnholds, Alle-Jan van der Veen. Multisource self-calibration for sensorarrays[J]. IEEE Transactions on Signal Processing,2009,57(9):3512-3522.
    [38]陈永倩,顾建峰,肖先赐.用禁忌搜索实现DOA估计[J].电波科学学报,2005,20(1):55-58.
    [39] Hong J. S. Genetic aproach to bearing estimation with sensor locationuncertainties[J]. ElectroIlics letters,1993,29(23):2013-2014.
    [40]李杰,高火涛,郑霞.相控阵天线的互耦和近场校准[J].电子学报,2005,33(1):119-122.
    [41] Li Minghui, Lu Yilong. Source bearing and steering-vector estimation usingpartially calibrated arrays[J]. IEEE Transactions on Aerospace and ElectronicSystems,2009,45(4):1361-1372.
    [42] Li Minghui, Lu Yilong. Maximum likelihood processing for arrays with partiallyunknown sensor gains and phases[C].7th International Conference on ITSTelecommunications (ITST '07),2007:1-6.
    [43] A. Paulraj and T. Kailath. Direction of arrival estimation by eigenstructure methodswith unknown sensor gain and phase[C]. In Proc. IEEE ICASSP’85,1985:640-643.
    [44] Youming Li and M. H. Er. Theoretical analyses of gain and phase error calibrationwith optimal implementation for linear equispaced array[J]. IEEE Trans. SignalProcess.,2006,54(2):712-723.
    [45] Xiang L, Ye Z, Xu X. Direction of arrival estimation for uniform circular arraybased on fourth-order cumulants in the presence of unknown mutual coupling[J].IET Microw. Antenna Propag.,2008,2(3):281-287.
    [46] Ye Zhongfu, Dai Jisheng, Xu Xu, et al. DOA estimation for uniform linear arraywith mutual coupling[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,45(1):280-288.
    [47]王布宏,王永良,陈辉.多径条件下基于加权空间平滑的阵元幅相误差校正[J].通信学报,2004,25(5).
    [48]陈德莉,卢焕章,张聪.多径条件下基于WSF的均匀圆阵幅相误差自校正[J].系统仿真学报,2008,20(17):4563-4567.
    [49]吴云韬.非平稳、色噪声环境下的参数估计算法研究[D].博士论文,西安电子科技大学.2003.
    [50] G. W. Hill. Researches in the Lunar Theory[J]. American Journal of Mathematics,1978,1(1):5-26.
    [51] W. H. Clohessy, R. H. Wiltshire. Terminal guidance system for satelliterendevous[J]. Journal of Aerospace Sciences,1960,27:653-658.
    [52] H Fiedler, G Krieger, F Jochim, et al. Analysis of bistatic configurations forspaceborne SAR interferometry[C]. EUSAR2002, Cologne, Germany,2002:29-33.
    [53] Moreira Alberto, Krieger Gerhard, Hajnsek Irena, et al. TanDEM-X: ATerraSAR-X add-on satellite for single-pass SAR interferometry[C]. InternationalGeoscience and Remote Sensing Symposium (IGARSS),2004:1000-1003.
    [54] Schwerdt Marco, Hounam David, Brautigam Benjamin, et al. TerraSAR-X:Calibration concept of a multiple mode high resolution SAR[c]. InternationalGeoscience and Remote Sensing Symposium (IGARSS),2005:4873-4877.
    [55]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计算法研究[J].中国科学E辑,2004,34(6):653-662.
    [56]黄卫东,张育林.分布式卫星轨道构形的大气摄动分析及修正算法[J].宇航学报,2005,26(5):649-652.
    [57]黄海风,邓泳,梁甸农.基于测高精度最优值的星载分布式InSAR编队构形设计算法[J].国防科技大学学报,2005,27(4):85-90.
    [58]张治国,李俊峰.卫星编队飞行轨道和姿态控制研究[J].应用数学和力学,2008,29(1):38-46.
    [59] Small D, Pasquali P, Fuglistaler S. A comparison of phase to height conversionmethods for SAR interferometery[C]. IEEE IGARSS’96. Lincoln,1996,342-344.
    [60] Xiao L Z, Shun J H, Jian G W. Approaches to estimating terrain height andbaseline for interferometric SAR[J]. IEE Electronics Letters,1998,34(25):2423-2429.
    [61] Singh K, Stussi N, Kwoh L K, et al. Baseline estimation in interferometric SAR[C].IEEE IGARSS’97, Singapore,1997:453-456.
    [62] Maurice Martin, Pete Klupar, Steve Kilberg, et al. Techsat21and revolutionizingspace missions using microsatellites[C]. In Proc.15th AIAA Conference on SmallSatellites, Utah, USA,2001, SSC01-1-3:1:10.
    [63] Liu Ying, Wang Hongyang, Liao Guishen. Study of calibration and remedy ofdistributed small satellite radar array[C].2006International Conference on Radar(CIE'06),2006:1-4.
    [64] Li Zhenfang, Bao Zheng, Wang Hongyang, et al. Performance improvement forconstellation SAR using signal processing techniques[J]. IEEE Transactions onAerospace and Electronic Systems,2006,42(2):436-452.
    [65] Weiss A. J., Friedlander B. Eigenstructure methods for direction finding withsensor gain and phase uncertainties[J]. Circuits, Syst. Signal Processing,1990,9(3):271-300.
    [66]刘颖,廖桂生,张涛麟.分布式卫星编队的误差校正算法及运动目标检测性能分析[J].电子与信息学报,2007,29(10):2333-2336.
    [67]余慧,闫鸿慧,王岩飞.分布式卫星ATI-SAR性能分析与基线估计[J].电子与信息学报,2009,31(6):1301-1304.
    [68]刘颖,廖桂生,马仑.基于子空间投影的干涉合成孔径雷达基线误差估计[J].西安电子科技大学学报(自然科学版),2006,33(5):678-681.
    [69] Lipsky, Stephen E. Microwave Passive Direction Finding[M]. Scitech Publishing,2004.
    [70] Haykin, S., Reilly, J.P., Kezys, V., and Vertatschitsch, E. Some aspects of arraysignal processing[J]. Radar and Signal Processing,1992,139(1):1-26.
    [71] Capon J. High-resolution frequency-wavenumber spectrum analysis[C]. Proc. ofthe IEEE,1969,57(8):1408-1418.
    [72] Ren Q S, Willis A J. Fast Root-MUSIC algorithm[J]. IEE Electronics Letters.1997,33(6):450-451.
    [73] Ma C W, Teng C C. Detection of coherent signals using weighted subspacesmoothing[J]. IEEE Trans. on AP,1996,44(2):179-187.
    [74]王布宏,王永良,陈辉.一种新的相干信源DOA估计算法:加权空间平滑协方差矩阵的Toeplitz矩阵拟合[J].电子学报,2003,31(9):1393-1397.
    [75] Linebarger D. A. Redundancy averaging with large arrays[J]. IEEE Trans. SignalProcess.,1993,41(4):1707-1710.
    [76] Chen Hui, Wang Yongliang. A modified method of frequency and2-D angleestimation[C]. IEEE antennas and propagation society international symposium,Columbus, OH, USA,22-27, Jun,2003:920-923.
    [77]刘志,汪晋宽,王福利.实值循环ESPRIT算法[J].通信学报,2006,27(5):47-51.
    [78] B. Porat and B. Friedlander. Direction finding methods based on higher orderstatistics[J]. IEEE Trans. Signal Process.,1991,39(9):2016-2024.
    [79] P. Chevalier and A. Ferréol. On the virtual array concept for the fourth-orderdirection finding problem[J]. IEEE Trans. Signal Process.,1999,47:2592-2595.
    [80] H. Abeida and J. P. Delmas. Music-like estimation of direction of arrival fornoncircular sources[J]. IEEE Trans. Signal Process.,2006,54(7):2678-2690.
    [81] A. Zoubir, P. Charg′e, and Y. Wang. Non circular sources localization withESPRIT[C]. In Proc. European Conference on Wireless Technology (ECWT2003),2003.
    [82] P Charge, Y Wang, J Saillard. A root-MUSIC method for noncircular sources[C].In Proc. IEEE ICASSP,2001:2985-2988.
    [83] M. Haardt, F Romer. Enhancements of unitary ESPRIT for non-circular sources[C].In Proc. IEEE ICASSP,2004:101-104,.
    [84] F.-F Gao, A. Nallanathan, Y. Wang. Improved MUSIC under coexistence of bothcircular and noncircular sources[J]. IEEE Trans. Signal Process.,2008,56(7):3033-3038.
    [85]汪仪林,殷勤业,金梁,姚敏立.利用信号的循环平稳特性进行相干源的波达方向估计[J].电子学报,1999,27(9):86-89.
    [86]陈辉,王永良,皮兴宇.基于信号共轭循环平稳特性的算法研究[J].电子信息学报,2004,26(2):213-219.
    [87] N.Y. Wang, E Agathoklios, and A. Antoniou. A new DOA estimation techniquesbased on subarray beamforming[J]. IEEE Trans. Signal Process.,2006,54(9):3279-3290.
    [88]石娟,邓科,殷勤业.一种适合任意阵列流型的相干信号波达方向估计算法[J].西安交通大学学报,2009,43(6):72-76.
    [89]余嘉.基于已知信号波形的DOA估计研究[D].电子科技大学硕士论文,2010.
    [1] L. C. Godara. Application of antenna arrays to mobile communications, Part II:Beam-forming and direction-of-arrival considerations[J]. Proc. IEEE,1997,85(8):1195-1245.
    [2] J. Capon. High-resolution frequency-wave number spectrum analysis[J]. Proc.IEEE,1969,57(8):1408-1418.
    [3] P. Stoica and K. C. Sharman. Maximum likelihood methods for direction of arrivalestimation[J]. IEEE Trans. Acoust., Speech, Signal Process.,1990,38(7):1132-1143.
    [4] I. Ziskind and M. Wax. Maximum likelihood localization of multiple sources byalternating projection[J]. IEEE Trans. Acoust., Speech, Signal Process.,1988,36(10):1553-1560.
    [5] R. O. Schmidt. Multiple emitter location and signal parameter estimation[J].IEEE Trans. Antennas Propag.,1986,34(3):276-280.
    [6] G. Birot, L. Albera, and P. Chevalier. Sequential high-resolution direction findingfrom higher order statistics[J]. IEEE Trans. Signal Process.,2010,58(8):4144-4155.
    [7] Shan T. J., Wax M., Kailath T. Adaptive beamforming for coherent signals andinterference[J]. IEEE Trans. on ASSP,1985,33(3):527-536.
    [8] Shan T. J., Wax M., Kailath T. On spatial smoothing for estimation of coherentsignals[J]. IEEE Trans. on ASSP,1985,33(4):806-811.
    [9] M. Wylie, S. Roy, and H. Messer. Joint DOA estimation and phase calibration oflinear equispaced (LES) arrays[J]. IEEE Trans. Signal Process.,1994,42(12):3449-3459.
    [10] A. Ferréol, P. Larzabal, and M. Viberg. Statistical analysis of the MUSICalgorithm in the presence of modeling errors, taking into account the resolutionprobability[J]. IEEE Trans. Signal Process.,2010,58(8):4156-4166.
    [11]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社.2004.
    [12]陈德莉.波达方向估计中阵列误差校正技术研究[D].博士论文,国防科学技术大学,2008.
    [13] N. Fistas and A. Manikas. A new general global array calibration method[C]. InProc. IEEE ICASSP,1994,(4):73-76.
    [14] K. V. Stavropoulos and A. Manikas. Array calibration in the presence of unknownsensor characteristics and mutual coupling[J]. EUSIPCO Proc.,2000,3:1417-1420.
    [15]贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正算法[M].电子学报,1996,24(3):47-52.
    [16] B. C. Ng and C. M. S. See. Sensor-array calibration using a maximum likelihoodapproach[J]. IEEE Trans. Antennas Propag.,1996,44(6):827-835.
    [17] C. M. S. See. Method for array calibration in high-resolution sensor arrayprocessing[J]. IET Radar, Sonar Navigat.,1995,142(3):90-96.
    [18] A. J. Weiss and B. Friedlander. Eigenstructure methods for direction finding withsensor gain and phase uncertainties[J]. Circuits Syst. Signal Process.,1990,9(3):271-300.
    [19] C. Soon, L. Tong, Y. F. Huang, and R. Liu. A subspace method for estimatingsensor gains and phases[J]. IEEE Trans. Signal Process.,1994,42(4):973-976.
    [20] Roy R., Kailath T. ESPRIT-estimation of signal parameters via rotationalinvariance techniques[J]. IEEE Trans. on ASSP,1989,37(7):983-995.
    [21] H. Abeida and J. P. Delmas. Music-like estimation of direction of arrival fornoncircular sources[J]. IEEE Trans. Signal Process.,2006,54(7):2678-2690.
    [22] Esa Ollila. On the circularity of a complex random variable[J]. IEEE SignalProcess. Lett.,2008,15:841-844.
    [23] F.-F Gao, A. Nallanathan, Y. Wang. Improved MUSIC under coexistence of bothcircular and noncircular sources[J]. IEEE Trans. Signal Process.,2008,56(7):3033-3038.
    [24] B. Picinbono. On circularity[J]. IEEE Trans. Signal Process.,1994,42(12):3473–3482.
    [25]刘剑.非圆信号波达方向估计算法研究[D].博士论文,国防科学技术大学,2007.
    [1] L. C. Godara.Application of antenna arrays to mobile communications, Part II:Beam-forming and direction-of-arrival considerations[J]. Proc. IEEE,85(8),1997:1195-1245.
    [2] J. Capon. High-resolution frequency-wavenumber spectrum analysis[J]. Proc. IEEE,57,1969,57(8):1408-1418.
    [3] P. Stoica and K. C. Sharman. Maximum likelihood methods for direction of arrivalestimation[J]. IEEE Trans. Acoust., Speech, Signal Process.,1990,38(7):1132-1143.
    [4] I. Ziskind and M. Wax. Maximum likelihood localization of multiple sources byalternating projection[J]. IEEE Trans. Acoust., Speech, Signal Process.,1988,36(10):1553-1560.
    [5] R.O.Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEETrans. Antennas Propag.,1986,34(3):276-280.
    [6] Gwéna l Birot, Laurent Albera, and Pascal Chevalier. Sequential High-ResolutionDirection Finding From Higher Order Statistics[J]. IEEE Trans. Signal Process.,2010,58(8):4143-4155.
    [7] M. Wylie, S. Roy and H. Messer. Joint DOA estimation and phase calibration oflinear equispaced (LES) arrays[J]. IEEE Trans. Signal Process.,1994,42(12):3449-3459.
    [8] Anne Ferréol, Pascal Larzabal, and Mats Viberg. Statistical Analysis of the MUSICAlgorithm in the Presence of Modeling Errors, Taking Into Account the ResolutionProbability[J]. IEEE Trans. Signal Process.,2010,58(8):4156-4166.
    [9] P. Stoica, Z. Wang and J. Li. Extended derivation of MUSIC in presence ofsteering vector errors[J]. IEEE Trans. Signal Process.,2005,53(3):1209-1211.
    [10] P. Stoica, Z. Wang and J. Li. Robust Capon beamforming[J]. IEEE SignalProcess. Lett.,2003,10(6):172-175.
    [11] J. Li, P. Stoica, and Z.Wang. On robust Capon beamforming and diagonalloading[J]. IEEE Trans. Signal Process.,2003,51(7):1702-1715.
    [12] B. Wahlberg, B. Ottersten, and M. Viberg. Robust signal parameter estimation inthe presence of array perturbations[C]. Proc. IEEE Int. Conf. Acoustics, Speechand Signal Processing (ICASSP’91),1991:3277-3280.
    [13] M. Viberg and A. L. Swindlehurst. Analysis of the combined effects of finitesamples and model errors on array processing performance[J]. IEEE Trans. SignalProcess.,1994,42(11):3073-3083.
    [14] S.D. Blunt, Chan Tszping, K. Gerlach. Robust DOA Estimation: The ReiterativeSuperresolution (RISR) Algorithm[J]. IEEE Trans. Aerosp. Electron. Syst.,2011,47(1):332-346.
    [15] B.C.NG and C.M.S. See. Sensor-Array calibration using a maximum-likelihoodapproach[J]. IEEE Trans. Antennas Propag.,1996,44(6):827-835.
    [16] C.M.S. See. Method for array calibration in high-resolution sensor arrayprocessing[J]. IET Radar, Sonar&Navigation,1995,142(3):90-96.
    [17] Fistas, A. Manikas. A new general global array calibration method[C]. In Proc.IEEE ICASSP,1994,(4):73-76.
    [18] K.v. Stavropoulos and A. Manikas. Array calibration in the presence of unknownsensor characteristics and mutual coupling[J]. EUSIPCO Proceedings,2000,(3):1417-1420.
    [19] M. Zang and Z. D. Zhu. DOA estimation with sensor gain, phase and positionperturbations[C]. in Proc. IEEE Conf. Aerosp. Electron., Dayton, OH,1993:67-69.
    [20] A.J.Weiss and B.Friedlander. Eigenstructure methods for direction finding withsensor gain and phase uncertainties[J]. Circuits Systems Signal Process.,1990,9(3):271-300.
    [21] C. Soon, L. Tong, Y. F. Huang, and R. Liu. A subspace method for estimatingsensor gains and phases[J]. IEEE Trans. Signal Process.,1994,42(4):973-976.
    [22] A. Paulraj and T. Kailath. Direction of arrival estimation by eigenstructure methodswith unknown sensor gain and phase[C]. In Proc. IEEE ICASSP’85,1985:640-643.
    [23] Youming Li and M. H. Er. Theoretical analyses of gain and phase error calibrationwith optimal implementation for linear equispaced array[J]. IEEE Trans. SignalProcess.,2006,54(2):712-723.
    [24] Hung E. A critical study of a self-calibration direction-finding method for arrays[J].IEEE Trans. Signal Process.,1994,42(2):471-474.
    [25]徐青,陶海红,廖桂生.基于GA的阵列幅相误差校正新算法[J].系统工程与电子技术,2006,28(5):653-657.
    [26] Hong J. S. Genetic approach to bearing estimation with sensor locationuncertainties[J]. Electronics letters,1993,29(23):2013-2014.
    [27] Wang B., Wang Y., Chen H. Array calibration of angularly dependent gain andphase uncertainties with instrumental sensors[J]. IEEE international symposium onphased array systems and technology, Boston, Massachusetts, USA,22-27, Oct,2003:182-186.
    [28]王布宏,王永良,陈辉.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学E辑,2004,34(8):906-918.
    [29] M. P. Wylie, S. Roy, and R. F. Schmitt. Self-calibration of linear equi-spaced (LES)arrays. In Proc. ICASSP’94, Minneapolis, MN,1993,(1):281–284.
    [30] M. C. Jeruchim. Simulation of Communication Systems: Modeling, Methodologyand Techniques[M]. Seconded. New York: Springer,2000.
    [31] T. David and V. Pramod, Fundamental of Wireless Communication. Cambridge,U.K.: Cambridge Univ. Press,2005.
    [32] K.-C. Tan, S. S. Goh, and E.-C. Tan. A study of the rank-ambiguity issues indirection-of-arrival estimation IEEE Trans. Signal Process.,1996,44(4):880–887.
    [33] A. Liu, G. Liao, L. Ma, and Q. Xu.An array error estimation method forconstellation SAR systems[J]. IEEE Geosci. Remote Sens. Lett.,2010,7(4):731–735.
    [1] J. P. Aguttes. The SAR train concept: Required antenna area distributed over Nsmaller satellites, Increase of performance by N[C]. In Proc. IGRSS, Toulouse,France,2003:542-544.
    [2] N. A. Goodman, S. C. Lin, D. Rajakrishna, and J. M. Stiles. Processing ofmultiple-receiver spaceborne arrays for wide-area SAR[J]. IEEE Trans. Geosci.Remote Sens.,2002,40(4):841-852.
    [3] G. Krieger, H. Fiedler, D. Houman, and A. Moreira. Analysis of system conceptsfor bi-and multi-static SAR missions[C]. In Proc. IGRSS, Toulouse, France,2003:770-772.
    [4]李真芳,王彤,保铮,廖桂生.同时地形高程测量和地面运动目标检测的分布式InSAR最优编队构形[J].宇航报,2005,25(6):643-648[Li Zhenfang, WangTong, Bao Zheng, LIAO Guisheng. The optimal formation configurations for bothGMTI and DEM using distributed satellites InSAR. Journal of Astronautics,2005,25(6):643-648.
    [5] Maurice Martin, et al. TECHSAT21AND REVOLUTIONIZING SPACEMISSIONS USING MICROSATELLITES[C]. USA: AIAA/USA Conference onSmall Satellites (SSC01-1-3),2001:pp1-10.
    [6]曹斌.分布式卫星系统中InSAR成像精度及测速精度研究[D].成都:成都电子科技大学硕士学位论文,2002.
    [7] Hung E. Matrix-Construction calibration method for antenna arrays [J]. IEEETrans. AES,2000,36(3):819-828.
    [8] A.Paulraj and T.Kallath. Direction of arrival estimation by eigenstructure methodswith unknown sensor gain and phase[C]. IEEE ICASSP,1985:640-643.
    [9] C. M. S. See. Method for array calibration in high-resolution sensor arrayprocessing [J]. IET Radar, Sonar&Navigation,1995,142(90):90-96.
    [10] N. Fistas and A. Manikas. A new general global array calibration method[C]. InProc. ICASSP, Adelaide, Australia,1994:73-76.
    [11] M.Zang and Z.D. Zhu. DOA estimation with sensor gain, phase and positionperturbations[C]. In Proc. IEEE Conf. Aerospace and Electronics, Dayton, OH,USA,1993:67-69.
    [12] K.V.Stavropoulos and A. Manikas. Array calibration in the presence of unknownsensor characteristics and mutual coupling[C]. In Proc. EUSIPCO, Toulouse,France,2000:1417-1420.
    [13] B.C.NG and C.M.S. See. Sensor-Array calibration using a maximum-likelihoodapproach [J]. IEEE Trans. Antennas Propag.,44(6),1996:827-835.
    [14] Qi Cheng, Y.B. Hua, and P. Stoica. Asymptotic performance of optimalgain-and-phase estimators of sensor arrays [J]. IEEE Trans. Signal Process.,2000,48(12):3587-3590.
    [15] Ying Liu, Hongyang Wang, Guishen Liao. Study of calibration and remedy ofdistributed small satellite radar array[C]. International Conference on Radar2006.Shanghai China,2006:1-4.
    [16] Z. F. Li, Z. Bao, H. Y. Wang, and G. S. Liao. Performance improvement forconstellation SAR using signal processing techniques[J]. IEEE Trans. Aerosp.Electron. Syst.,2006,42(2):436-451.
    [17]刘颖,廖桂生,张涛麟.分布式卫星编队的误差校正算法及运动目标检测性能分析[J].电子与信息学报,2007,29(10):2334-2335.
    [18] M. P. Wylie, S. Roy, and R. F. Schmitt. Self-calibration of linear equi-spaced (LES)arrays. In Proc. ICASSP’94, Minneapolis, MN,1993,(1):281–284.
    [1] R.O.Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEETrans. Antennas Propag.,1986,34(3):276-280.
    [2] R. Roy, A. paulraj, and T. Kailath. Estimation of signal parameters via rotationalinvariance techniques-ESPRIT[C]. In Proc. IEEE ICASSP,1986,4:2495-2498.
    [3] B. Porat and B. Friedlander. Direction finding methods based on higher orderstatistics[J]. IEEE Trans. Signal Process.,1991,39(9):2016-2024.
    [4] P. Chevalier and A. Ferréol. On the virtual array concept for the fourth-orderdirection finding problem[J]. IEEE Trans. Signal Process.,1999,47:2592-2595.
    [5] Y.-H.Chen and Y.-S. Fourth-order cumulant matrices for DOA estimation[J]. IEEProc. Radar, Sonar Navig,1994,141(3):144-148.
    [6] H. Abeida and J. P. Delmas. Music-like estimation of direction of arrival fornoncircular sources[J]. IEEE Trans. Signal Process.,2006,54(7):2678-2690.
    [7] A. Zoubir, P. Charg′e, and Y. Wang. Non circular sources localization withESPRIT[C]. In Proc. European Conference on Wireless Technology (ECWT2003),2003.
    [8] P Charge, Y Wang, J Saillard. A root-MUSIC method for noncircular sources[C].In Proc. IEEE ICASSP,2001:2985-2988.
    [9] M. Haardt, F Romer. Enhancements of unitary ESPRIT for non-circularsources[C]. In Proc. IEEE ICASSP,2004:101-104.
    [10] F.-F Gao, A. Nallanathan, Y. Wang. Improved MUSIC under coexistence of bothcircular and noncircular sources[J]. IEEE Trans. Signal Process.,2008,56(7):3033-3038.
    [11] Shayle R. Searle. Matrix algebra useful for statistics[M]. New York:Wiley-Interscience,2006.
    [12] P. Stoica and A. Nehorai. Music, maximum likelihood and Cramer-Rao bound:further results and comparisons[J]. IEEE Trans. Acoust., Speech, Signal Processing,1990,38(12):2140-2150.
    [A1] Peter D. Lax. Linear Algebra and Its Applications[M]. Second edition, Wiley,2007.
    [A2] Horn R A, Johnson C R.Matrix Analysis[M]. Cambridge University Press,1990.
    [A3] P. Janssen and P. Stoica. on the expectation of the product of four matrix-valuedGaussian random variables[J]. IEEE Trans. Autom. Control,1988,33(9):867-870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700