图像压缩感知重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知理论是一种新颖的采样理论,具有在信号采样率非常低的情况下精确重建信号的特点,近年来吸引了相关领域学者的广泛关注和研究热情。压缩感知重建算法作为压缩感知理论的核心内容之一,直接关系着压缩感知理论在实际应用中的成败。自压缩感知理论提出以来,如何设计出算法复杂度低、重建信号质量高的压缩感知重建算法以精确重建出信号特别是大尺度图像信号,一直是研究的重点课题。本文正是在这一背景下,以图像信号的压缩感知重建算法为研究对象,对其进行了深入广泛的研究,致力于寻找高效、鲁棒的压缩感知重建算法。本文工作的主要贡献和创新总结如下:
     1.在深入研究匹配追踪类算法及其原子选择准则的基础上,针对正交匹配追踪算法在每次迭代中不能选取出最优原子的问题,提出了基于优化正交匹配追踪的压缩感知重建算法,从理论上分析了该算法原子选择的最优性。通过在不同测量矩阵下得到的仿真实验结果,证明了该算法的有效性。
     2.针对现有方向追踪算法重建精度和算法效率上的不足,提出了基于谱投影梯度追踪的压缩感知重建算法。该算法采用方向追踪法框架,运用谱投影梯度方法计算更新方向和步长,引入非单调线性搜索策略使算法避免收敛至局部最优解,并且通过设定合适的阈值参数可以取得重建精度和算法效率之间的平衡。仿真实验结果证明了该算法具有较高的重建精度,并且算法效率明显提高。
     3.针对多数现有算法基于单观测向量模型,在处理图像信号时将其转换为维信号,造成算法效率低和重建精度不理想的问题,提出了基于多观测向量模型和稀疏贝叶斯学习的压缩感知重建算法。该算法采用压缩感知理论框架下与图像信号相适应的多观测向量模型,通过同时处理观测矩阵的每一列直接求得加权系数矩阵,从而快速重建图像。稀疏贝叶斯学习算法的应用,使得加权系数矩阵具有很好的稀疏性,保证了重建图像的质量。通过仿真实验,证明了该算法完成图像重建所需时间明显缩短,并且重建图像精度更高。
     4.现有的用于图像信号的多尺度压缩感知方案,只对图像信号被采样的小波系数进行重建,不用于采样的小波系数则直接置零,造成图像边缘粗糙,影响了图像重建质量。针对该问题,提出了一种改进的多尺度压缩感知方案。新方案在原方案得到的重建图像基础上,通过轮廓波变换进行图像插值,估计出原来被置零的小波系数,从而改善了图像的重建质量。仿真实验结果表明,该方案重建出的图像克服了原方案存在的马赛克效应,重建图像质量更高。
Compressed sensing is a novel sampling theory. This theory shows that a small number of random projections of a compressible signal contain enough information for exact reconstruction. It has gained much attention in the past few years due to its promising practical potentials. As one of the crucial issues, the reconstruction algorithm plays a key role in the application of compressed sensing and affects its practical usage. Since the compressed sensing theory was presented, how to design a reconstruction algorithm with low complexity and high reconstruction accuracy to reconstruct signal, especially the large scale image signal, has been a hot study. Under this background, the dissertation has deeply studied the compressed sensing reconstruction algorithms for image in order to find robust and effective reconstruction algorithms. The main contributions and innovations of the dissertation are as follows.
     1. The traditional class of matching pursuit algorithm is deeply studied and its atom selection strategy is analyzed. As the orthogonal matching pursuit algorithm can not select the best atom in each iteration, an optimized orthogonal matching pursuit algorithm for compressed sensing reconstruction is proposed. The theory analysis of its atom selection strategy is presented. The validity of the proposed algorithm is proved by the experiments under different measurement matrixes.
     2. In order to improve the reconstruction accuracy and efficiency of the directional pursuit algorithm, a compressed sensing reconstruction algorithm based on spectral projected gradient pursuit is proposed. Directional pursuit frame is adopted by this algorithm. The update direction and step length are computed by spectral projected gradient method. Local optimum point is avoided by adopting the nonmonotone line search strategy. The balance between reconstruction accuracy and efficiency of the algorithm can be achieved by setting an appropriate threshold parameter. The experimental results show that this algorithm has better reconstruction accuracy and efficiency.
     3. Most existing compressed sensing reconstruction algorithms are based on single measurement vector. When processing image signal, the efficiency of these algorithms is low and the quality of the reconstructed image is not good enough, because the image is treated as one dimension signal. A reconstruction algorithm based on multiple measurement vectors and sparse Bayesian learning is proposed. By using the multiple measurement vectors model that suits image processing in compressed sensing, the image can be reconstructed quickly because the weighting coefficient matrix can be got directly by processing each column of the measurement matrix simultaneously. The sparse Bayesian learning algorithm guarantees the sparsity of the weighting coefficient matrix. The experimental results show that the proposed algorithm has better reconstruction accuracy and the efficiency is improved obviously.
     4. According to the existing multiscale compressed sensing scheme, only a few of wavelet coefficients are sampled and the others are set to zero, which results in the coarse edges of the reconstruction images and low reconstruction accuracy. In order to overcome this conundrum, an improved multiscale compressed sensing scheme which interpolates the image reconstructed by multiscale compressed sensing scheme with contourlet transform is proposed. The reconstruction accuracy of the new scheme is improved by estimating the unsampled wavelet coefficients and keeping the sampled unchanged. The experimental results show that the proposed scheme overcomes the mosaic effect and has better reconstruction accuracy than the existing scheme.
引文
[1]Candes E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory.2006,52(2). 489-509
    [2]Donoho D L. Compressed sensing. IEEE Transactions on Information Theory.2006,52(4). 1289-1306
    [3]Candes E J. Compressive sensing. Proceedings of International Congress of Mathematicians. 2006.1433-1452
    [4]Candes E J, Tao T. Near-optimal signal recovery from random projections:universal encoding strategies? IEEE Transactions on Information Theory.2006,52(12).5406-5425
    [5]Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Processing.2006,86(3). 549-571
    [6]Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine.2007,24(4).118-121
    [7]Wakin M, Laska J, Duarte M, et al. An architecture for compressive imaging. Proceedings of International Conference on Image Processing.2006.1273-1276
    [8]Takhar D, Laska J, Wakin M, et al. A new compressive imaging camera architecture using optical-domain compression. Proceedings of Computational Imaging IV at SPIE Electronic Imaging. 2006.43-52
    [9]Duarte M, Davenport M, Takhar D, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine.2008,25(2).83-91
    [10]Duarte M F, Sarvotham S, Baron D, et al. Distributed compressed sensing of jointly sparse signals. Proceedings of the 39th Asilomar Conference on Signals, Systems and Computation.2005. 1537-1541
    [11]Baron D, Duarte M F, Wakin M B, et al. Distributed compressive sensing. http://arxiv.org/abs/0901.3403.2005. (preprint)
    [12]Boufounos P, Baraniuk R G.1-bit compressive sensing. Proceedings of Information Sciences and Systems.2008.16-21
    [13]Laska J N, Wen Z, Yin W, et al. Trust, but verify:fast and accurate signal recovery from 1-bit compressive measurements. IEEE Transactions on Signal Processing.2011,59(11).5289-5301
    [14]Ji S, Xue Y, Carin L. Bayesian Compressive sensing. IEEE Transactions on Signal Processing. 2008,56(6).2346-2356
    [15]Baron D, Sarvotham S, Baraniuk R G. Bayesian compressive sensing via belief propagation. IEEE Transactions on Signal Processing.2010,58(1).269-280
    [16]Duarte M F, Cevher V, Baraniuk R G. Model-based compressive sensing for signal ensembles. Proceedings of the 47th Allerton Conference on Communication, Control, and Computing.2009. 244-250
    [17]Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing. IEEE Transactions on Information Theory.2010,56(4).1982-2001
    [18]Duarte M F, Baraniuk R G. Spectral compressive sensing. http://www.ecs.umass.edu/~mduarte/images/SCS-ACHA.pdf.2011. (preprint)
    [19]Mishali M, Eldar Y C. From theory to practice:sub-nyquist sampling of sparse wideband analog signals. IEEE Journal of Selected Topics on Signal Processing.2010,4(2).375-391
    [20]Tropp J A, Laska J N, Duarte M F, et al. Beyond nyquist:efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory.2010,56(1).520-544
    [21]Duarte M, Davenport M, Takhar D, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine.2008,25(2).83-91
    [22]Haupt J, Nowak R. Compressive sampling vs conventional imaging. Proceedings of International Conference on Image Processing.2006.1269-1272
    [23]Lustig M, Donoho D L, Pauly J M. Sparse MRI:the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine.2007,58(6).1182-1195
    [24]Trzasko J, Manduca A, Borisch E. Highly undersampled magnetic resonance image reconstruction via homotopic lo-minimization. IEEE Transactions on Medical Imaging.2009,28(1). 106-121
    [25]Taubock G, Hlawatsch F, Eiwen D, et al. Compressive estimation of doubly selective channels in multicarrier systems:Leakage effects and sparsity-enhancing processing. IEEE Journal of Selected Topics in Signal Processing.2010,4(2).255-271
    [26]Berger C R, Zhou S, Chen W, et al. Sparse channel estimation for OFDM:over-complete dictionaries and super-resolution methods. Proceedings of IEEE Workshop on Signal Processing Advances in Wireless Communications.2009.196-200
    [27]Ma J, Dimet F L. Deblurring from highly incomplete measurements for remote sensing. IEEE Transactions on Geoscience and Remote Sensing.2009,47 (3).792-802
    [28]Ma J. Single-pixel remote sensing. IEEE Geoscience and Remote Sensing Letters.2009,6(2). 199-203
    [29]Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory. 2005,51(12).4203-4251
    [30]Candes E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique.2008,346(9-10).589-592
    [31]石光明,刘丹华,高大化等.压缩感知理论及其研究进展.电子学报.2009,37(5).1070-1081
    [32]李树涛,魏丹.压缩传感综述.自动化学报.2009,35(11).1369-1377
    [33]焦李成,杨淑媛,刘芳等.压缩感知回顾与展望.电子学报.2011,39(7).1651-1662
    [34]方红,杨海蓉.贪婪算法与压缩感知理论.自动化学报.2011,37(12).1413-1421
    [35]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing.1998,20(1).33-61
    [36]Forsgren A, Gill P E, Wright M H. Interior methods for nonlinear optimization. SIAM Review. 2002,44(4).525-597
    [37]Kim S, Koh K, Lustig M, et al. An efficient method for compressed sensing. Proceedings of IEEE International Conference on Image Processing.2007.117-120
    [38]Candes E J, Romberg J. Practical signal recovery from random projections. Proceedings of SPIE Computational Imaging Ⅲ.2005.76-86
    [39]Figueiredo M, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing.2007,1(4).586-598
    [40]Tibshirani R. Regression shrinkage and selection via the lasso. Journal Royal Statistical Society B.1996,58.267-288
    [41]Efron B, Hastie T, Johnstone I, et al. Least angle regression. Annals of Statistics.2004,32. 407-499
    [42]Malioutov D, Cetin M, Willsky A. Homotopy continuation for sparse signal representation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 2005.733-736
    [43]Osborne M, Presnell B, Turlach B. A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis.2000,20.389-403
    [44]Turlach B. On algorithms for solving least squares problems under an L1 penalty or an L1 constraint. Proceedings of the American Statistical Association.2005.2572-2577
    [45]Hale E T, Yin W T, Zhang Y. A Fixed-point continuation method for L1-regularization with application to compressed sensing. Rice University CAAM Technical Report.2007
    [46]Candes E J, Braun N, Wakin M B. Sparse signal and image recovery from compressive samples. Proceedings of the 4th IEEE International Symposium on Biomedical Imaging:From Nano to Macro. 2007.976-979
    [47]Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics.2006,59(8).1207-1223
    [48]Nowak R, Figueiredo M. Fast wavelet-based image deconvolution using the EM algorithm. Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers.2001.371-375
    [49]Figueiredo M, Nowak R. An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing.2003,12.906-916
    [50]Combettes P, Wajs V. Signal recovery by proximal forward-backward splitting. SIAM Journal on Multiscale Modeling & Simulation.2005,4.1168-1200
    [51]Daubechies I, Friese M D, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications in Pure and Applied Mathematics.2004,57. 1413-1457
    [52]Bioucas-dias J M, Figueiredo M. Two-step algorithms for linear inverse problems with non-quadratic regularization. Proceedings of IEEE International Conference on Image Processing. 2007.1-105-I-108
    [53]Bioucas-dias J M, Figueiredo M. A new TwIST:two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Transaction on Image Processing.2007,16(12).2992-3004
    [54]Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM Journal of Image Science.2008,1(1).143-168
    [55]Osher S, Mao Y, Dong B, et al. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Communications in Mathematical Sciences.2010,8(1).93-111
    [56]Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences.2009,2(2).323-343
    [57]Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing.1993,41(12).3397-3415
    [58]Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.1993.40-44
    [59]Davis G, Mallat S, Avellaneda M. Greedy adaptive approximation. Constructive Approximation. 1997,13(1).57-98
    [60]Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory.2007,53(12).4655-4666
    [61]Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Technical Report.2006
    [62]Needell D, Vershynin R. Greedy signal recovery and uncertainty principles. Proceedings of the Conference on Computational Imaging.2008.1-12
    [63]Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics.2009,9(3).317-334
    [64]Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing.2010, 4(2).310-316
    [65]Needell D, Tropp J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis.2009,26(3).301-321
    [66]Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory.2009,55(5).2230-2249
    [67]Varadarajan B, Khudanpur S, Tran T D. Stepwise optimal subspace pursuit for improving sparse recovery. IEEE Signal Processing Letters.2011,18(1).27-30
    [68]Blumensath T, Davies M E. Gradient pursuits. IEEE Transactions on Signal Processing.2008, 56(6).2370-2382
    [69]Blumensath T, Davies M E. Stagewise weak gradient pursuits. IEEE Transactions on Signal Processing.2009,57(11).4333-4346
    [70]Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. Proceedings of Asilomar Conference on Signals, Systems, and Computers. 2008.581-587
    [71]Trzasko J, Manduca A. Relaxed conditions for sparse signal recovery with general concave priors. IEEE Transactions on Signal Processing.2009,57(11).4347-4354
    [72]Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters.2007,14(10).707-710
    [73]Davies M E, Gribonval R. Restricted isometry constants where Lp sparse recovery can fail for 0    [74]Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. Proceedings of 33rd International Conference on Acoustics, Speech, and Signal Processing.2008.3869-3872
    [75]Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics.2010,63(1).1-38
    [76]Liu Z, Zhen X. Variable-p iteratively weighted algorithm for image reconstruction. Artificial Intelligence and Computational Intelligence.2011,7003.344-351
    [77]Xu Z B, Wang H Y, Chang X Y. L1/2 regularizer. Science in China Series F-Information Science.2009,52(1).1-9
    [78]张海,王尧,常象宇等.L1/2正则化.中国科学:信息科学.2010,40(3).412-422
    [79]Gilbert A C, Guha S, Indyk P, et al. Near-optimal sparse Fourier representations via sampling. Proceedings of the 34th Annual ACM Symposium on Theory of Computing.2002.152-161
    [80]Gilber A C, Muthukrishnan S, Strauss M J. Improved time bounds for near-optimal sparse Fourier representation. Proceedings of SPIE.2005,5914.1-15
    [81]Gilber A C, Strauss M J, Tropp J A, et al. Algorithmic linear dimension reduction in the L1 norm for sparse vectors. Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing.2006.1-9
    [82]Gormode G, Muthukrishan S. Combinatorial algorithms for compressed sensing. Proceedings of the 40th Annual Conference on Information Sciences and Systems.2006.280-294
    [83]Gilber A C, Strauss M J, Tropp J A, et al. One sketch for all:fast algorithms for compressed sensing. Proceedings of the 39th Annual ACM Symposium on Theory of Computing.2007.237-246
    [84]Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine.2008,25(2).21-30
    [85]Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology.1962,160(1).106-154
    [86]Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature.1996,381(6583).607-609
    [87]Donoho D L, Flesia A G. Can recent innovations in harmonic analysis 'explain' key findings in natural image statistics. Network:Computation in Neural System.2001,12(3).371-393
    [88]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Patter Analysis and Machine Intelligence.1989,11(7).674-693
    [89]Daubechies I. Ten lectures on wavelets. Philadelphia:Society for Industrial Mathematics.1992
    [90]Meyer Y, Salinger D. Wavelets and operators. Cambridge University Press.1995
    [91]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报.2003,31(12A).1975-1981
    [92]Do M N, Vetterli M. The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing.2005,14(12).2091-2106
    [93]Donoho D L. Orthonormal ridgelets and linear singularities. SIAM Journal on Mathematical Analysis.1998,31.1062-1099
    [94]Candes E J. Ridgelets:theory and applications[Dissertation]. USA:Department of Statistics, Stanford University.1998
    [95]Candes E J. Harmonic analysis of neural networks. Applied and Computational Harmonic Analysis.1999,6.197-218
    [96]Donoho D L. Ridge functions and orthonomal ridgelets. Journal of Approximation Theory.2001, 111(2).143-179
    [97]Candes E J. Monoscale ridgelets for the representation of images with edges. Technical Report, Department of Statistics, Stanford University.1999
    [98]Candes E J. Ridgelets and the representation of mutilated Sobolev functions. SIAM Journal on Mathematical Analysis.2001,33(2).347-368
    [99]Candes E J, Donoho D L. Curvelets:A surprisingly effective nonadaptive representation for objects with edges. Curves and Surfaces, L. L. Schumaker et al. (eds), Vanderbilt University Press, Nashville, TN..1999
    []00] Candes E J, Donoho D L. Curvelets and curvilinear integrals. Journal of Approximation Theory.2001,113(1).59-90
    [101]Starck J, Candes E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing.2002,11(6).670-684
    [102]Starck J, Murtagh F, Candes E J, et al. Gray and color image contrast enhancement by the curvelet transform. IEEE Transactions on Image Processing.2003,12(6).706-717
    [103]Le Pennec E, Mallat S. Image compression with geometrical wavelets. Proceedings of International Conference on Image Processing.2000.661-664
    [104]Le Pennec E, Mallat S. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing.2005,14(4).423-438
    [105]Do M N, Vetterli M. Contourlets:a directional multiresolution image representation. Proceedings of International Conference on Image Processing.2002.1-357-I-360
    [106]Do M N. Contourlets and sparse image expansions. SPIE Conference on Wavelet Applications in Signal and Image Processing X.2003.560-570
    [107]Do M N, Vetterli M. Contourlets. Studies in Computational Mathematics.2003,10.83-105
    [108]Do M N, Vetterli M. The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions Image on Processing.2005,14(12).2091-2106
    [109]Po D D, Do M N. Directional multiscale modeling of images using the contourlet transform. IEEE Transactions on Image Processing.2006,15(6).1610-1620
    [110]Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform:Theory, design, and applications. IEEE Transactions on Image Processing.2006,15(10).3089-3101
    [111]Do M N. Directional multiresolution image representations[Dissertation]. Switzerland. Swiss Federal Institute of Technology.2001
    [112]Ma J. Compressed sensing by inverse scale space and curvelet thresholding. Applied Mathematics and Computation.2008,206.980-988
    [113]Plonka G, Ma J. Curvelet-wavelet regularized split Bregman iteration for compressed sensing. International Journal of Wavelets, Multiresolution and Information Processing.2011,9(1).79-110
    [114]Ma J. Improved iterative curvelet thresholding for compressed sensing and measurement. IEEE Transactions on Instrumentation and Measurement.2011,60(1).126-136
    [115]Tang W, Ma J, Herrmann F J. Optimized compressed sensing for curvelet-based seismic data reconstruction.2009. Preprint
    [116]李林,孔令富,练秋生.基于轮廓波维纳滤波的图像压缩传感重构.仪器仪表学报.2009,30(10).2051-2056
    [117]练秋生,陈书贞.基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用.电子学报.2010,38(6).1293-1298
    [118]Qu X, Zhang W, Guo D, et al. Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Problems in Science and Engineering.2010,18(6).737-758
    [119]Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory.2008,54(5).2210-2219
    [120]Engan K, Aase S O, Husoy H J. Method of optimal directions for frame design. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing.1999.2443-2446
    [121]Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing.2006,54(11). 4311-4322
    [122]Elad M, Aharon M. Image denoising via sparse and redundant representation over learned dictionaries. IEEE Transactions on Image Processing.2006,15(12).3736-3745
    [123]Engan K, Skretting K, Husoy J H. Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation. Digital Signal Processing.2007,17(1).32-49
    [124]Skretting K, Engan K. Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing.2010,58(4).2121-2130
    [125]Ophir B, Lustig M, Elad M. Multi-scale dictionary learning using wavelets. IEEE Journal of Selected Topics in Signal Processing.2011,5(5).1014-1024
    [126]Zhou M, Chen H, Paisley J, et al. Non-parametric Bayesian dictionary learning for sparse image representations. Proceedings of Neural and Information Processing Systems.2009
    [127]Zhou M, Chen H, Paisley J, et al. Non-parametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Transactions on Image Processing.2012,21(1).130-144
    [128]Cai T, Wang L, Xu G. New bounds for restricted isometry constants. IEEE Transactions on Information Theory.2010,56(9).4388-4394
    [129]Cai T, Wang L, Xu G. Shifting inequality and recovery of sparse signals. IEEE Transactions on Signal Processing.2010,58(3).1300-1308
    [130]Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems. 2007,23.969-985
    [131]Coifman R, Geshwind F, Meyer Y. Noiselets. Applied and Computational Harmonic Analysis. 2001,10(1).27-44
    [132]Bajwa W U, Haupt J D, Raz G M, et al. Toeplitz-structured compressed sensing matrices. Proceedings of the IEEE Workshop on Statistical Signal Processing.2007.294-298
    [133]Sebert F, Zou Y M, Ying L. Toeplitz block matrices in compressed sensing and their applications in imaging. Proceedings of International Conference on Technology and Applications in Biomedicine.2008.47-50
    [134]Do T T, Tran T D, Gan L. Fast compressive sampling with structurally random matrices. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.2008. 3369-3372
    [135]Do T T, Gan L, Chen Y, et al. Fast and efficient dimensionality reduction using Structurally Random Matrices. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.2009.1821-1824
    [136]Duarte-Carvajalino J M, Sapiro G. Learning to sense sparse signals:simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing.2009,18(7). 1395-1408
    [137]Rebollo-Neira L, Lowe D. Optimized orthogonal matching pursuit approach. IEEE Signal Processing Letters.2002,9(4).137-140
    [138]Hestenes M R, Stiefel E L. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards.1952,5(49).409-436
    [139]Fletcher R, Reeves C. Function minimization by conjugate gradients. Computer Journal.1964, 7(1).149-154
    [140]Polak E, Ribiere G. Note surla convergence des methods de directions conjugutes. Rev Francaise Imformmat Reeherhce Opertionelle.1969,16(1).35-43
    [141]Polyak B T. The conjugate gradient method in extreme problems. USSR Computational Mathematics and Mathematical Physics.1969,9(1).94-112
    [142]Fletcher R. Practical methods of optimization vol.1:unconstrained optimization. New York: John Wiley & Sons.1987
    [143]Dai Y H, Yuan Y X. A nonlinear conjugate gradient methods with a strong global convergence property. SIAM Journal of Optimization.1999,10.177-182
    [144]甘伟,许录平,苏哲.一种压缩感知重构算法.电子与信息学报.2010,32(9).2151-2155
    [145]Birgin E, Martinez J, Raydan M. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization.2000,10(4).1196-1211
    [146]Barzilai J, Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis.1988,8(1).141-148
    [147]Dai Y H, Fletcher R. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numerische Mathematik.2005,100(1).21-47
    [148]Van Den Berg E, Friedlander M. Probing the pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing.2008,31(2).890-912
    [149]Goldstein A A. On steepest descent. Journal of the Society for Industrial and Applied Mathematics Control, Series A.1965,3(1).147-151
    [150]Armijo L. Minimization of functions having Lipchitz continuous first partial derivatives. Pacific Journal of Mathematics.1966,16(1).1-3
    [151]Wolfe P. Convergence conditions for ascent methods. SIAM Review.1969,11(2).226-235
    [152]Wolfe P. Convergence conditions for ascent methods. Ⅱ:some corrections. SIAM Review. 1971,13(2).185-188
    [153]Grippo L, Lampariello F, Lucidi S. Anon-monotone line search technique for Newton method. SIAM Journal on Numerical Analysis.1986,12(23).707-716
    [154]Zhang H, Hager W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization.2004,14(4).1043-1056
    [155]Shi Z, Shen J. Convergence of nonmonotone line search method. Journal of Computational and Applied Mathematics.2006,193(2).397-412
    [156]Wang C Y, Liu Q, Yang X M. Convergence properties of nonmonotone spectral projected gradient methods. Journal of Computational and Applied Mathematics.2005,182(1).51-66
    [157]Needell D. Topics in compressed sensing[Dissertation]. USA:University of California,2009
    [158]Tipping M E. The relevance vector machine. Advances in Neural Information Processing Systems 12. Combridge MA, USA:MIT press.2000.652-658
    [159]Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research.2001,1.211-244
    [160]Wipf D P, Rao B D. Sparse Bayesian Leaning for basis selection. IEEE Transactions on Signal Processing.2004,52(8).2153-2164
    [161]Wipf D P, Rao B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing.2007,55(7).3704-3716
    [162]Cotter S F, Rao B D, Engan K, et al. Sparese solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing.2005,53(7).2477-2488.
    [163]Tropp J, Gilbert A C, Strauss M J. Algorithms for simultaneous sparse approximation, part I: greedy pursuit. Signal Processing.2006,86(3).572-588
    [164]Chen J, Huo X M. Theoretical results on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing.2006,54(12).4634-4643
    [165]Babacan S D, Molina R, Katsaggelos A K. Bayesian compressive sensing using Laplace priors. IEEE Transactions on Image Processing.2010,19(1).53-63
    [166]孙林慧,杨震,叶蕾.基于自适应多尺度压缩感知的语音压缩与重构.电子学报.2011,39(1).40-45
    [167]Carey W K, Chang D B, Hermami S S. Regularity-preserving image interpolation. IEEE Transactions on Image Processing.1999,8(9).1293-1297
    [168]Nickolaus M, Lu Y, Do M N. Image interpolation using multiscale geometric representations. Proceedings of the Society of Photo-Optical Instrumentation Engineers.2007,6498. 64980A.1-64980A.11
    [169]Lu Y and Do M N. A new contourlet transform with sharp frequency localization. IEEE International Conference on Image Processing.2006,10.1629-1632
    [170]Guleryuz O G. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising:Part Ⅰ-theory. IEEE Transactions on Image Processing.2006, 15(3).539-554

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700