发动机及变速器测控实验教学系统的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题在原汽车测控实验教学系统的基础上,通过软、硬件的设计与开发,研制了发动机及变速器测控实验教学系统。该系统以90款日产Maxima VG30E电控发动机及RE4F02型自动变速器为基础,在不影响电控发动机及自动变速器各种性能的前提下,对电控系统进行改造,最终设计了一套可进行实验、教学、科研及实际故障检测的平台。
     通过系统的信号显示及检测板、信号模拟台、故障设置台及基于虚拟仪器技术的软件平台,可实现电控发动机及自动变速器电控系统各信号的动态显示及检测,主控信号的模拟,常见故障的设置,信号波形及参数的显示、存储、再现及与标准波形的对比,数据流分析等功能,从而也具有故障检测功能。本课题的主要内容为:
     1)发动机及变速器台架的设计。使发动机、变速器、变速杆、加速踏板、制动踏板、燃油箱、蓄电池及各种仪表协调有序且可靠地布置在一可移动的台架内,并在熟悉系统电路的基础上对系统进行重新布线。设计后的台架具有布局合理,美观大方,灵活性、可靠性高、可操作性强,实验、教学效果好的优点;同时台架还能脱离系统其它部分单独运行,独立性强;
     2)测控台架的设计。设计了可进行电压变换、信号隔离、信号整形、信号放大、限压稳压、电路切换等功能的信号调理电路;通过优化发动机及变速器线路,设计出了信号显示及检测电路,实现了信号动态显示及检测功能;利用单刀双掷开关的切换、电位计的调节,可对4个主控信号进行模拟;设计了故障设置模块电路,利用AT89C51单片机及74LS154、74LS249等芯片扫描故障设置按键的状态,进而对操作终端的继电器进行控制,实现对常见36个故障进行设置;
     3)基于虚拟仪器技术的测控软件的设计。根据测试要求选择合适的计算机和数据采集卡,根据软件开发平台的特点选择LabVIEW软件作为系统的开发平台,设计了主控模块、参数设置、虚拟仪表、起动测试、波形测试、变速器测试、数据处理等10个软件模块,实现了系统的登陆、参数设置、虚拟仪表、测试各种工况下发动机及变速器各信号波形或变化趋势、测试波形与标准波形对比、数据流分析、波形打印、波形存储、数据事后处理、系统帮助等功能;
     4)系统软、硬件的调试及试验分析。对软硬件各模块进行现场调试,系统运行正常可靠、达到系统设计的要求;分别在起动、怠速、加速工况下进行原机试验、信号模拟试验、故障设置试验,使用Fluke98汽车万用示波器、万用表和软件平台的相关模块对信号的数据及波形进行测试,对比现实仪表与虚拟仪表的实验结果。通过试验结果的分析,表明系统能真实反映发动机及变速器的工作参数及信号波形,充分实现信号的动态显示及检测、信号模拟、故障设置等功能,使用软件平台能准确可靠地进行信号的采集、参数及波形的测试、数据及波形的保存、处理,系统达到了设计的目标。
     经实验室试用,结果表明,该系统具有人机界面友好、操作方便、可靠性高的优点,可同时服务于实验、教学、科研及故障诊断,具有较高的实用价值及应用前景。
Based on the previous automotive testing-control experimental and teaching system, this thesis, has introduced the engine-transmission testing-control experimental and teaching system through the design and development of software and hardware. The system is based on the Nissan Maxima VG30E electronic controlled engine and the RE4F02 automatic transmission. It aims to complete rebuilding its electronic control system, at last designed a set of the experimental, teaching, researching and fault detecting bench without affecting all the electronic controlled engine and automatic transmission performances.
     Through the signal display and measuring board, signal simulating bench, faults setting bench, and the software platform which is based on the virtual instrumental technology, this system can realize the display and check of the signals from the electronic controlled engine and automatic transmission, the simulation of master signals, the settlement of some usual faults, the display, store, analysis, and reappearance of the waveform and parameter of the signals, the comparison with the standard waveform and the analytical functions of the data stream. And hence, it offers a diagnosing function on the faults. The thesis includes 4 parts, which are as follows:
     1) Design of the engine and transmission bench. Carefully place the engine, transmission, gear shift lever, accelerator pedal, brake pedal, fuel tank, battery and other instruments into a movable bench in a sequential manner. Be familiar with the system circuit and rewires it.. The designed bench owns great advantages: suitable layout, beautiful sight, flexibility, good dependability, easy ways to operate, effective in experiment and teaching; moreover, it has good independence for it can run alone when disengaging other parts of the system.
     2) Design of testing-control bench. Design a signal process circuit which can transform the voltage, isolate the signals, shape the form of the signals, magnify the transmitted signals, limit and stabilize the voltage, and switch the circuit; by optimizing the circuitry of the engine and the transmission, it designs a circuit of signal display and check, which realizes the dynamic display and check of the signals; making use of the switch of single-pole double throw switch and the regulation of the potentiometer, it can simulate 4 master signals; designing the modular circuit of the settlement of faults and using AT89C51 SCM, 74LS154 and 74LS249 chip to scan the state of the keystroke of the settlement of faults, it can control the relay of terminal operation, so realizes the settlement of 36 usual faults;
     3) Design of software which is based on the virtual instrumental technology. Selecting appropriate computer and data acquisition card according to the testing requirement and choosing LabVIEW in reference to the features of the platform of software development, it designs main control module, parameter setting, virtual instruments, start testing, waveform testing, transmission testing, and data processing etc, and realizes the functions of the log-in of the system, the setting of the parameter, virtual instruments, test of the waveforms and the changing trends of the signals from the engine and the transmission in different kinds of working conditions, the comparison between the testing waveform and the standard waveform, the analyses of the data stream, the print of the waveform, the store of the waveform, the process of data after testing and assistance from the system;
     4) Debugging of the system and the analysis of the tests. Debug each module of software and hardware of the system on the spot which indicates that it has fulfilled the demand of the designed system. Carry on the test of the normal test, the test of simulating signals, the test of settling the faults in the working condition of start, idle speed and acceleration respectively, using the Fluke98 car oscilloscope, the multimeter and related module of the software platform to test data and the waveforms and compare the results of the real instrument and the virtual instrument. The analysis of the result indicates that the system truly reflects the working parameter and the signal waveforms. It fully realizes the dynamic display and check of the signals, the simulation of the signals, the settlement of the faults. The use of the software platform can help a lot in gathering the signals, testing the parameter and the waveforms, and storing and processing of data and the waveforms. Thus, the system fulfills its designed objectives.
     The result of the trial in the laboratory proves that the system owns great advantages: friendly man-machine interface, easy ways to operate and good dependability, etc. Being able to be applied on different occasions, like experiment, teaching, researching and diagnosing, it turns out to have wide practical value and prospects.
引文
[1] 万文彬.电控发动机故障诊断平台设计及其试验分析[D].江苏大学,2005.
    [2] 王奎洋.汽车发动机检测与诊断系统的开发和研究[D].南京理工大学,2005.
    [3] 宋福昌.自动变速器的结构与检修图解[M].北京:中国电力出版社,2005:75-115.
    [4] 王国富,吕纯洁.汽车自动变速器教学演示装置单片机控制系统设计[J].拖拉机与农用运输车 2006;5(33):61-62.
    [5] 张健.基于LabVIEW虚拟仪器实验教学系统的设计与实现[D].河北工业大学,2002.
    [6] 张建俊.汽车检测技术[M].北京:高等教育出版社,2003:2-3.
    [7] 肖永清.国内外汽车检测技术发展状况[J].中国机电工业 2003(18):37-38.
    [8] 吴克刚,曹建明.发动机测试技术[M].北京:人民交通出版社,2002:3-204.
    [9] 郭应时,袁伟.汽车试验学[M].北京:人民交通出版社,2006:94-257.
    [10] 李波.发动机台架CAT系统的研究[D].中国农业大学,2005.
    [11] 杨素行,刘慧银,唐光荣.微型计算机系统原理及应用[M].2版.北京:清华大学出版社,2004:362-406.
    [12] BISHOP RH.LabVIEW 7实用教程[M].乔瑞萍,林欣译.北京:电子工业出版社,2005:28-298.
    [13] 侯国屏,王珅,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005:1-222.
    [14] 杨乐平,李海涛,赵勇等.LabVIEW高级程序设计[M].北京:清华大学出版社,2003:9-12.
    [15] 安相璧.汽车试验工程[M].北京:国防工业出版社,2006:63-94.
    [16] 德国BOSCH公司.汽车电气与电子[M].魏春源译.北京:北京理工大学出版社,2004:70-85.
    [17] 冯崇毅,鲁植雄,何丹娅.汽车电子控制技术[M].南京:江苏科学技术出版社,2005:5-220.
    [18] 张德,徐义华.日产轿车发动机维修手册[M].沈阳:辽宁科学技术出版社,2002:189-279.
    [19] 周云山,钟勇.汽车电子控制技术[M].北京:机械工业出版社,2004:4-39.
    [20] 《汽车维修速查手册丛书》编委会.汽车传感器标准值速查手册[M].北京:电子工业出版社,2002:21-22.
    [21] 贺建波,贺展开.汽车传感器的检测[M].北京:机械工业出版社,2006:170-205.
    [22] 宋福昌.汽车传感器识别与检测图解[M].北京:电子工业出版社,2003:14-232.
    [23] 孙余凯,项绮明.新型汽车电子电器元器件的检测与修理[M].北京:人民邮电出版社,2003:6-114.
    [24] 王沫然.MATLAB与科学计算[M].2版.北京:电子工业出版社,2004:227-229.
    [25] 李盛成.车用发动机电控单元的开发[D].吉林大学,2005.
    [26] 鲁植雄,刘奕贯.汽车电喷发动机波形分析图解[M].2版.南京:江苏科学技术出版社,2006:4-185.
    [27] 黄晓敏,徐昭,徐义华.日产轿车底盘维修手册[M].沈阳:辽宁科学技术出版社,2002:24-216.
    [28] 刘奕贯,鲁植雄,包新建等.电控发动机教学系统的设计及实验研究[J].机械与电子2006;11(1):23-25.
    [29] 戴伏生.基础电子电路设计与实践[M].北京:国防工业出版社,2002:34-244.
    [30] 高光天.传感器与信号调理器件应用技术[M].北京:科学出版社,2002:15-95.
    [31] 何希才.传感器及其应用电路[M].北京:电子工业出版社,2002:92-115.
    [32] 黄长艺,严普强.机械工程测试技术基础[M].2版.北京:机械工业出版社,2002:5-247.
    [33] 李建秋,赵六奇,韩晓东.汽车电子学教程[M].北京:清华大学出版社,2006:7-81.
    [34] 谷树忠,闫胜利.Protel DXP实用教程:原理图与印刷板设计[M].北京:电子工业出版社,2003:13-256.
    [35] 齐闻.国产汽车电路全集[M].沈阳:辽宁科学技术出版社,2005:173-188.
    [36] 孙莉,蒋从根.单片机原理及应用[M].北京:机械工业出版社,2003:1-211.
    [37] 赵晓安.MCS-51单片机原理及应用[M].天津:天津大学出版社,2001:1-316.
    [38] 张毅刚,彭喜元,姜守达等.新编MCS-51单片机应用设计[M].哈尔滨:哈尔滨工业大学出版社,2003:8-256.
    [39] 刘庆华.基于虚拟仪器的汽油发动机数据采集系统与怠速的模糊控制研究[D].南京农业大学,2001.
    [40] 邓建交.汽车测试系统的虚拟仪器研究[D].河北工业大学,2005.
    [41] 郝允志.基于虚拟仪器技术的柴油机测试系统设计研究[D].哈尔滨工程大学,2006.
    [42] 胡军.虚拟仪器在发动机试验中的运用研究[D].天津大学,2004.
    [43] 王国权.虚拟试验技术[M].北京:电子工业出版社,2004:53-90.
    [44] JIMENEZ FJ, FRUTOS JD. Virtual instrument for measurement, processing data, and visualization of vibration patterns of piezoelectric devices[J]. Computer Standards & Interfaces 2005(27):653-663.
    [45] 雷振山.LabVIEW7 Express实用技术教程[M].北京:中国铁道出版社,2004:1-369.
    [46] 李增芳.基于人工智能和虚拟仪器技术的发动机故障诊断专家系统研究[D].浙江大学,2004.
    [47] 卢玉州.基于虚拟仪器的数据采集系统[D].山东科技大学,2004.
    [48] SHI D, GINDY NN. Development of an online machining process monitoring system:Application in hard turning[J]. Sensors and Actuators A 2007(135):405-414.
    [49] 彭富明,郭健,张卫丰.多媒体技术在电控汽车教学中的应用[J].吉首大学学报 2006;27(1):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700