变掺杂GaAs光电阴极特性及评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了更深入地研究和发展变掺杂GaAs光电阴极的相关理论与技术,探索我国高性能三代微光像增强器的发展途径,本文在变掺杂GaAs光电阴极的光电特性、制备实验和性能评估等方面进行了相关的研究。
     针对变掺杂GaAs光电阴极光电发射特性中的基础理论问题,采用理论推导、数字仿真和模拟计算的方法,研究了指数掺杂GaAs光电阴极电子扩散漂移长度的理论表达式,建立了电子扩散漂移长度LDE同指数掺杂系数A和均匀掺杂情况下材料的电子扩散长度LD之间的数值计算关系。研究了指数掺杂GaAs光电阴极量子效率的等效求解方法,简化了求解过程。研究了变掺杂结构对阴极电子发射性能的影响机理,发现变掺杂阴极内建电场的存在,不仅能够提高光电子到达阴极表面的数量,同时还使表面电子的能量分布向高能端偏移,从而使电子的逸出几率得到提高。
     根据变掺杂GaAs光电阴极的理论研究结果,针对变掺杂技术实用性的问题,采用实验验证的方法,研究了变掺杂GaAs光电阴极电子扩散漂移长度理论表达式的正确性,发现计算结果同实验结果具有很好的一致性。研究了变掺杂技术应用于透射式GaAs光电阴极的可行性,发现阴极组件制备过程不会破坏阴极的变掺杂结构,而且变掺杂的透射式GaAs光电阴极具有较高的光谱积分灵敏度。研究了激活时系统真空度对MBE变掺杂GaAs光电阴极低温激活效果的影响,发现当系统真空度达到1×10-8Pa以上时,能够使低温激活灵敏度比高温提高30%以上
     在实验基础上,针对变掺杂GaAs光电阴极评估技术不完备的问题,采用理论分析和数学建模的方法,研究了激活过程中Cs在阴极表面的吸附效率,实现了对不同表面掺杂浓度的GaAs阴极材料在不同系统真空度条件下激活时,Cs在阴极表面吸附效率的理论评估。研究了Cs-O激活后NEA GaAs光电阴极表面势垒的评估技术,提出了利用激活中不同阶段阴极光电流的峰值比求解NEA表面势垒参数的方法。对阴极高、低温激活后的NEA表面势垒参数进行了评估,揭示了“高—低温两步激活”过程中阴极表面势垒的变化特点。研究了变掺杂GaAs光电阴极结构性能的评价方法,建立了变掺杂GaAs光电阴极量子效率理论模型,并实现了对阴极结构性能的客观评价。对两种不同变掺杂GaAs光电阴极的结构性能进行了评估,发现了阴极发射层结构设计中存在的缺陷,为指导阴极结构的优化设计提供了有效的分析手段。
In order to study and develope the theory and technology of varied doping GaAs photocathodes in depth, and explore a development route of national high porformance third generation LLL image intensifier, the photoelectric characteristic, preparation experiment, and performance evaluation of varied doping GaAs photocathodes were investigated in this paper.
     Aiming at the foundational theoretical questions about the photoemissive property of varied doping GaAs photocathode, and introducing theoretical derivation, digital simulation, and simulating calculation, the mathematical expression of the electron diffusion and drift length of exponential doping photocathode was deduced, which ascertains the calculation relationship between the electron diffusion and drift length LDE, the exponential doping coefficient A, and the electron diffusion length Lo of uniform doping material. An equivalent methode of solving quantum efficiency of exponential doping GaAs photocathode was presented, which simplify the solving process. The influence mechanism of varied doping structure on the electron emission capability of cathode was discovered, which indicates that the built-in electric field in varied doping cathode can not only increase the number of photoelectrons reaching the surface, but also cause an offset of the electrons energy distribution to high energy, accordingly increase the electron escape probability.
     According to the theoretical results of varied doping GaAs photocathode, and Aiming at the practicality of varied doping technology, through experiment validation, the accuracy of the theoretical expression of the electron diffusion and drift length of exponential doping photocathode was investigated, and the calculation result is in agreement with the experimental result. The feasibility of varied doping technology applied to transmission-mode GaAs photocathode was researched, and it was found that the preparation of transmission-mode cathode component will not destroy the varied doping structure, and the varied dopped transmission-mode GaAs photocathodes have high integral sensitivity. The influence of system vacuum pressure on the activation results of MBE varied doping GaAs photocathodes was investigated, the result indicates that the low-temperature activation sensitivity can be over 30%than high-temperature when the system vacuum level is above 1×10-8 Pa.
     Based on experiments, aiming at the question of lacking evaluation technology for varied doping GaAs photocathode, and introducing theoretical analysis and mathematics modeling, the adsorption efficiency of cesium on the cathode surface during activation process was investigated, and realizing the theoretical evaluation of adsorption efficiency of cesium on GaAs cathode materials with varied surface doping concentration and under different system vacuum level. The evaluation technique for the surface potential barrier parameters of activated NEA GaAs photocathodes was investigated, and by ultlizing the ratio of maximum values of the cathode photocurrents arising during two activation phase, a method for evaluating the parameters of NEA surface potential barrier was presented. The parameters of NEA surface potential barrier after high-low temperature two-step activation were evaluated, respectively, and the change regularity of the surface potential barriers was discovered. The valuation technique for the structure performance of varied doping GaAs photocathodes was studied, and the theory model of quantum efficiency of the varied doping GaAs photocathode was proposed, which realizes the objective evaluation of the structure performance of the varied doping cathode materials. The structure performances of two different varied doping GaAs photocathodes were evaluated, and the design defect of varied doping structure was found, which provides an effective analysis tool for guiding the optimization design of cathode structure.
引文
1.江剑平,翁甲辉,杨泮棠等.阴极电子学与气体放电原理.北京:国防工业出版社,1980
    2. A.Einstein. (U)ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Physik,1905,17(1):132-148
    3. L.R.Koller. Photoelectric Emission from Thin Films of Caesium. Physical review, 1930,36:1639-1647
    4.A.H.萨摩.光电发射材料制备、特性与应用.北京:科学出版社,1979
    5. 刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    6. A.H.Sommer. Brief history of photoemissive materials. Proc. SPIE,1993,2022: 2-17
    7. D.C.Catling. High-sensitivity silicon capacitive sensor for measuring medium vacuum gas pressures. Sensors and Actuators,1998,64:157-164
    8. P.Fouquet and G.Witte. Metallization of clean and oxygen-covered ultrathin alkali metal films on GaAs(001). Applied Surface Science,2001,180:286-291
    9. V.N.Lukyanov, M.R.Ainbund, A.F.Beylin, E.A.Levina and GA.Mamerva.Design and development of high semsitive vacuum photodetecors in the National Research Institute "Electron". Nuclear Instruments and Methods in Physics Research A,1997, 387:38-42
    10. W.E.Spicer. Photoemissive, photoconductive, and absorption studies of alkali antimony compounds. Physical review,1958,112(1):114-122
    11. W.E.Spicer and A.Herrera-Gomez. Modern theory and application of photocathodes. Proc. SPIE,1993,2022:18-33
    12. J.J.Scheer and J.Vanlar. GaAs-Cs:new type of photoemitter. Solid State Communications,1965,3:189-193
    13. A.Turnbull and GEvans. Photoemission from GaAs-Cs-O. Applied Physics,1968, 1:155-160
    14. G.H.Olsen, D.J.Szostak, T.J.Zamerowski, and M.Etenberg. High-performance GaAs photocathodes. Journal of Applied Physics,1976,48:1007-1008
    15. P.Pianetta, I.Lindau, and W.E.Spicer. Oxidation Properties of Ga As(001) Surface. Physical Review Letters,1976,37:1166-1169
    16. C.M.Garner, C.Y.Su, Y.D.Shen, C.S.Lee, and G.L.Pearson. Interface studies of GaAlAs-GaAs heterojunctions. Journal of Applied Physics,1979,50:3383-3389
    17. C.Laubschat, M.Prietsch, M.Domke, E.Weschke, T. Mandel, and J.E.Ortega. Switching of Band Bending at the Nonreactive CsOx/GaAs(110) Interface. Physical Review Letters,1989,62:1306-1309
    18. Y.Q.Cai, R.C.G.Leckey, J.D.Riley, and A.P.Stamplf. Surface States and Surface Umklapp Transitions in Angle-resolved Photoemission from a GaAs(111) surface. Journal of Electron Spectroscopy and Related Phenomena,1996,80:202-205
    19. J.P.Estrera and M.R.Saldana. High-Speed Photocathode Gating for Generation III Image Intensifier Applications. Proc.SPIE,2003,5079:212-221
    20.杨德仁.太阳电池材料.北京:化学工业出版社,2007
    21. Y.Beauvais, J.Chautemps and P.DE Groot. LLL TV Imaging with GaAs Photocathode/CCD Detector. Advances in electronics and electron physics,1995, Vol.64A:267
    22. H.K.Pollehn. Performance and Reliability of Third-Generation Image Intensiflers. Advances in Elaectronics and Electron Physics,1995, Vol.64A:61
    23. W.Enloe, R.Scheldon, L.Reed and A.Amith. An electron-bombarded CCD image intensifier with a GaAs photocathodes.1992, Proc. SPIE, Vol.1655:41
    24. T.W.Sinor, J.P.Estrera, D.L.Philips and M.K.Rector. Extended blue GaAs image intensiflers. Proc. SPIE,1995, Vol.2551:130
    25. Joseph P.Estrera, E.J.Bender et al. Long Lifetime Generation IV Image Intensiflers with Unfilmed Microchannel Plate.2000, Proc. SPIE, Vol.4128:46
    26.薛增泉,吴全德,电子发射与电子能谱,北京:北京大学出版社,1992
    27.杜晓晴.高性能GaAs光电阴极[博士学位论文].南京:南京理工大学,2005
    28. A.Smith, K.Passmore, R.Sillmon et al. Transmission mode photocathodes covering the spectral range. New Developments in Photodetection 3rd Beaune Conference. 2002.
    29. W.A.Gutierrez, H.D.Pommerrenig. High-sensitivity transmission-mode GaAs photocathode. Applied Physics Letters,1973, Vol.22:292
    30. D.GFisher, GH.Olsen. Properties of high sensitivity GaP/InxGal-xP/GaAs:(Cs-O) transmission photocathodes. Journal of Applied Physics,1979, Vol.50:2930
    31. GH.Olsen, D.J.Szostak, T.J.Zamerowski et al. High-performance GaAs photocathodes. Journal of Applied Physics,1977, Vol.48:1007
    32. M.Ettenberg, GH.Olsen and C.J.Nuese. Effect of gas-phase stoichiometry on the minority-carrier diffusion length in vapor-grown GaAs. Applied Physics Letters, 1976, Vol.29:141
    33. Y.Z.Liu, C.D.Hollish and W.W.Stein. LPE GaAs/(Ga,Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield. Journal of Applied Physics,1973, Vol.44:5619
    34. GA.Antypas, J.S.Escher, J.Edgecumbe et al. Broadband GaAs transmission photocathode. Journal of Applied Physics,1978, Vol.49:4301
    35. N.Hayfuji, K.Mizuguchi, S.Ochi and T.Murotani. Highly uniform growth of GaAs and GaAlAs by large-capacity MOCVD reactor. Journal of Crystal Growth,1986, Vol.77:281
    36. P.D.Dipkus, H.M.Manaserit, K.L.Hess et al. High purity GaAs prepared from trimethylgallium and arsine. Journal of Crystal Growth,1981, Vol.55:10
    37. J.P.AndreP.Giittard, J.Hallais and C.Piaget. GaAs photocathodes for low light level imaging. Journal of Crystal Growth,1981, Vol.55:235
    38. K.A.Aniol, D.A.Armstrong, T.Averett, E.Burtin, and J.Calarcio. New measurement of parity violation in elastic electron-proton scattering and implications for strange form factors. Physics Letters B,2001,509:211-216
    39. A.Valentini, E.Nappi, and M.A.Nitti. Influence of the substrate reflectance on the quantum efficiency of thin Csl photocathode. Nuclear Instruments and Methods in Physics Research A,2002,480:238-240
    40. U.Pennino, and R.Compano. Alkali metal/GaAs(110) interfaces:correlation effects and sub-gap electron energy loss spectra. Surface Science,1998,409:258-264
    41. T.Maiyama, A.Brachmane, J.E.Clendenin, T.Desikan, and E.L.Garwin. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nuclear Instruments and Methods in Physics Research A,2002,492:199-211
    42. P.Pianetta, I.Lindau, CM.Garner, and W.E.Spicer. Oxidation Properties of GaAs(001) surfaces. Physical Review Letters,1976,37:1166-1169
    43. J.J.Uebbing and R.L.Bell. Cesium-GaAs Schottky barrier height. Applied Physics Letters,1967,11:353-355
    44. L.W.James and J.J.Uebbing. Long-wavelenth threshold of Cs20 Coated photoemittiers. Applied Physics Letters,1970,16:370-372
    45. J.J.Uebbing and N.Taylar. Auger Electron Spectroscopy of Clean GaAs. Journal of Applied Physics,1970,41:804-810
    46. W.A.Guitieraz, H.Wilison, and E.M.Yee. GaAs transmission photocatode grown by hybrid epitaxy. Applied Physics Letters,1974,25:430-432
    47. D.Lioubtchenko, I.A.Makov, and T.A.Briantseva. GaAs surface modifications under light irradiation in vacuum. Applied Surface Science,2002,195:42-47
    48. L.I.Antonova and V.P.Denessov. High-efficiency photocathode on the NEA-GaAs basis. Applied Surface Science,1997,111:237-240
    49. Chip Hambra, Jim Harris像增强器技术的最新发展.云光技术.2000,32(1):32-36
    50. http://www.itt.com
    51. Long Lifetime Generation IV Image Intensifiers with Unfilmed Microchannel Plate. Proc.SPIE,2000,4218:46-50
    52. O.H.W.Siegmund, A.S.Tremsin, and J.V.Valleiga. Advanced MCP sensors for UV/visible astronomy and biology. Nuclear Instruments and Methods in Physics Research A,2003,510:185-189
    53. C.Hogan, D.Paget, and Y.Garreau. Early stages of cesium adsorption on the As_rich reconstruction of GaAs(001). Physical Review B,2003,68:205313
    54. M.Kamaratos and E.Bauer. Interaction of Cs with the GaAs(100) surface. Journal of Applied Physics,1991,70:7564-7572
    55. R.Compano, U.del Pennino, and Carlo Mariani. Vibrational and collective excitation of the Cs:GaAs(110) interface. Physial Review B,1992,46:6955-6960
    56. L.I.Antonova, V.P.Denissov. High-efficiency photocathodes on the NEA-GaAs basis. Applie Surface Science,1997,111:237-240
    57.李晓峰.第三代像增强器研究:[博士学位论文].西安:西安光机所,2001
    58. L.H.Guo, J.M.Li and X.Hou. Calculation of temporal response of field-assisted transmission-mode GaAs NEA photocathodes. Solid-State Electronics,1990, Vol.33: 435
    59. J.M.Li, L.H.Guo and X.Hou. Dark-current of field-assisted GaAs semiconductor photocathodes. Proc. SPIE,1990, Vol.1230:43
    60. Lihui Guo, Jinmin Li and Hou xun. The quantum efficiency of field-assisted transmission-mode GaAs photocathodes. Semiconductors Science and Technology, 1989, Vol.4:498
    61. Lihui Guo and Hou Xun. Analysis of photoelectron emission of transmission-mode NEA GaAs photocathodes. Journal of Physics D:Applied Physics,1989, Vol.22:348
    62.王力鸣,张小秋,李晋闽,侯洵.超高真空条件下NEA Ⅲ-Ⅴ族半导体光电阴极的工艺与性能研究.真空科学与技术学报,1992,Vol.12:390
    63. Huai-rong Gao. Investigation of the mechanism of the activation of GaAs negative electron affinity phototocathodes. Journal of Vacuum Science Technology A,1987, Vol.5:1295
    64. Huairong Gao and Qing-Bin Lu. Investigation of electron emission stability of negative electron affinity cathodes,.Vacuum,1990, Vol.41:1753
    65. Qing-bin Lu, Yong-Xi Pan and Huairong Gao. Optimum (Cs,O)/GaAs interface of negative-electron-affinity GaAs photocathodes. Journal of Applied Physics,1990, Vol.68:634
    66. Tailiang Guo and Huairong Gao. Photoemission stability of negative electron affinity GaAs photocathodes. Proc. SPIE,1993, Vol.1982:127
    67.徐江涛.透射式GaAs光电阴极激活技术研究.应用光学,2000,Vol.21:5
    68.郭晖.积分光荧光测试在三代微光像增强器光阴极制作中的应用.应用光学,2000,Vol.21:10
    69.徐江涛.质谱分析与检漏技术在成像器件研究中的应用.真空科学与技术,2002,Vol.22(sup):64
    70.徐江涛.三代微光像增强器制管工艺对阴极光电发射性能的影响.应用光学,2004,Vol.5:30
    71.闫金良,朱长纯,向世明.透射式GaAs(Cs,O)光电阴极稳定性的研究.红外与毫米波学报,2001,Vol.20:157
    72.钱芸生,宗志园,常本康.负电子亲和势光电阴极评估技术研究.真空科学与技术,2001,Vol.21:445
    73. Chang Benkang, Du Xiaoqing, Liu Lei, and et al. The automatic recording system of dynamic spectral response and its applications.2003, Proc. SPIE, Vol.5209:209
    74. Qian Yunsheng, Zong Zhiyuan, Chang Benkang. Measurement of Spectral Response of Photocathodes and its Application. Proc. SPIE,2001,Vol.4580:486
    75. Zong Zhiyuan, Qian Yunsheng, Chang Benkang. Analysis of on-line measured spectral responses of NEA photocathodes. Proc. SPIE,2001, Vol.4580:623
    76.李晋闽.场助半导体光电阴极理论与实验.科学出版社,1993
    77. L.H.Guo, J.M.Li and X.Hou. Calculation of temporal response of field-assisted transmission-mode GaAs NEA photocathodes. Solid-State Electronics,1990,33:435
    78.常本康,房红兵,刘元震.光电材料动态自动光谱测试仪的研究与应用.真空科学与技术学报.1996,16(5):364-366
    79.杜晓晴,常本康,邹继军,李敏.利用梯度掺杂获得高量子效率的GaAs光电阴极.光学学报,2005,Vol.25:1411
    80. Jijun Zou and Benkang Chang. Gradient doping negative electron affinity GaAs photocathodes. Optical Engineering,2006, Vol.45(5):054001-5
    81.邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.物理学报,2007,Vol.56(5):2992-2997
    82. Zhi Yang, Benkang Chang, Jijun Zou, Jianliang Qiao, Pin Gao, Yiping Zeng, and Hui Li. Comparison between gradient-doping GaAs photocathode and uniform-doping photocathode. Applied Optics,2007, Vol.46(28):7035-7039
    83.邹继军,常本康,杜晓晴.MBE外延梯度掺杂GaAs光电阴极实验研究.真空科学与技术学报,2005,Vol.25:401
    84.陈怀林,牛军,常本康.变掺杂GaAs光电阴极研究进展.材料导报,2009,23(19):99-103
    85.邹继军GaAs光电阴极理论及其表征技术研究[博士学位论文].南京:南京理工大学,2007
    86. D.A.Allwood, N.J.Mason, and P.J.Walker. In situ characterization of Ⅲ-Ⅴ substrate oxide desorption by surface photo-absorption in MOCVD. Materials Science and Engineering B.1999,66:83-87
    87. M.Miyao, K.Chinen, M.Niigaki, and M.Hagino. MBE growth of transmission photocathode and'in situ'NEA activation.2nd International Symposium on Molecular Beam Epitaxy and Related Clean Surface Techniques,1982.
    88. A.Narayanan, G.Fisher, L.Erickson, and GO'Clock. Negative electron affnity gallium arsenide photocathode grown by molecular beam epitaxy. Journal of Applied Physics,1984,56(6):1886-1887
    89. GVergara, L.J.Gomez, J.Capmany and M.T.Montojo. Electron diffusion length and escape probability measurements for p-type GaAs(100) epitaxies. Journal of Vacuum Science and Technology A,1990,8(5):3676-3681
    90. GVergara, L.J.Gomez, J.Capmany and M.T.Montojo. Influence of the dopant concentration on the photoemission in NEA GaAs photocathodes. Vacuum,1997, 48(2):155-160
    91. Loig E. Bourreea, David R. Chasseb, P.L. Stephan Thambana and R. Glossera. Comparison of the Optical Characteristics of GaAs Photocathodes Grown Using MBE and MOCVD. Proc.SPIE,2003,4796:11-22
    92.杨树人,丁墨元.外延生长技术.北京:国防工业出版社,1992
    93.刘恩科,朱秉升.半导体物理学.北京:国防工业出版社,1979
    94. J.S.Escher and H.Schade. Calculated energy distribution of electrons emitted from negative electron affinity GaAs:Cs-O surfaces. Journal of Applied Physics.1973, 44(12):5309-5313
    95.杨智GaAs光电阴极智能激活与结构设计研究[博士学位论文].南京:南京理工大学,2010
    96. Zhi Liu, Yun Sun, F.Machuca, P.Pianetta, W.E.Spicer, and R.F.W.Pease. Optimization and characterization of III-V surface cleaning. Journal of Vacuum Science and Technology B,2003,21(4):1953-1958
    97. Zhi Liu, Yun Sun, F.Machuca, P.Pianetta, W.E.Spicer, and R.F.W.Pease. Preparation of clean GaAs(100) studied by synchrotron radiation photoemission. Journal of Vacuum Science and Technology A,2003,21(1):212-218
    98. L.W.James, GA.Antypas, and J.Edgecumbe. Dependence on Crystalline Face of the Band Bending in Cs2O-Activated GaAs. Journal of Applied Physics,1971,42: 4976-4980
    99. W.E.Spicer, I.Lindau, C.Y.Su, and P.W.Chye. Core-level photoemission of the Cs-O adlayers of NEA GaAs cathodes. Applied Physics Letters.1978,33:934-935
    100.R.Compano, U.Pennino, and C. Marioni. Vibrational and collective excitation of the Cs/GaAs(001) interface. Physical Review B,1992,40:6955-6960
    101.J.J. Uebbing and L.W.James. Behavior of Cesium Oxide as a Low Work-Function Coating. Journal of Applied Physics,1970,41:4505-4516
    102.C.R.Bayliss, D.L.Kirk. The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum. Journal of Physics D:Applied Physics,1976,9:233-244
    103.K.A.Elamrawi, H.E.Elsayed-Ali. Preparation and operation of hydrogen cleaned GaAs(100) negative electron affinity photocathodes. Journal of Vacuum Science and Technology A,1999,17(3):823-831
    104.K.A.Elamrawi, H.E.Elsayed-Ali. GaAs photocahode cleaning by atomic hydrogen from a plasma source. Journal of Physics D:Applied Physics,1999,32:251-256
    105J.Gubeli, R.Evans, A.Greppo, K.Jordan, and M.Shinn. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner. Nuclear Instruments and Methods in Physics Research A,2001,475:554-558
    106.V.L.Alperovich and D.Paget. Diffusion and ordering of Cs adatom on GaAs(100) studied by reflectance anisotropy spectroscopy. Physical Review B,1997,36:11560
    107.P.Fouquet, GWitte. Metallization and demetallization of clean and oxygen covered ultrathin alkali metal films on GaAs(100). Applied Surface Science,2001,180: 288-290
    108.K.A.Elamrawi, M.A.Hafez and H.E.Elsayed-Ali. Atomic hydrogen cleaning of InP(100) for preparation of negative electron affinity photocathode. Journal of Applied Physics,1998,84(8):4568-4572
    109.Masamichi Yamada and Yuichi Ide. Anomalous behaviors observed in the isothermal desorption of GaAs surface oxides. Surface Science,1995,339:L914-L918
    110.D.A.Allwood, N.J.Mason and P.J.Walker. In situ characterization of Ⅲ-Ⅴ substrate oxide desorption by surface photoabsorption in MOVPE. Materials Science and Engineering B,1999,66:83
    111.GVergara, L.J.Gomez, J.Capmany and M.Montojo. Influence of the dopant concentration on the photoemission in the NEA GaAs photocathodes. Vacuum,1996, 45:155-160
    112.J.M.C. Thornton, P.Weightman, D.A.Woolf, and C.J.Dunscombe. A photoemission study of the (2×2) reconstruction of GaAs(111) surface. Journal of Electron Spectroscopy and Related Phenomena,1995,72:65-69
    113.M.Shimoda, S.Tsukamoto, and N.Koguchi. Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×2) surface. Surface Science, 1998,395:75-81
    114.T.Strasser,C.Solterbeck, W.Schattke, I.Barto, and M.Cukr. A theoretical investigation of photoemission spectra from (GaAs)2(AlAs) superlattices. Journal of Elecron Spectroscopy and Related Phenomena,2001,116:1127-1132
    115.P.Jiricek, M.Cukr, and I.Bartos. Electron mean free path for GaAs(100) at very low energies. Surface Science,2004,566:1196-1199
    116J.Szuber. New procedure for determination of the interface Fermi level position for atomic hydrogen cleaned GaAs(100) surface using photoemission. Vacuum,2000, 57:210-218
    117.K.N.Ow and X.W.Wang. First-principles pseudopotential calculations of alkali over-layers on GaAs(001). Surface Science,1995,337:109-117
    118.D.Shoji, T.Miura, and M.Niwano. Photoemission study of metal deposition on sulfur treated GaAs(100). Applied Surface Science,1998,130:442-445
    119.K.A.Khan, N.Camillone, J.Yarmoff, and R.M.Osgoof. Modification of the surface termination of GaAs(100) using photo-activated electron-transfer reactions. Surface Science,2000,458:51-61
    120.A.A.Turnbull, GB.Evans. Photoemission from GaAs-Cs-O. Journal of Physics D: Applied Physics,1968,1:155-160
    121.C.W.Bates, M.Atekum, GK.Wertheim, D.Buchanank, and K.Clements. X-ray photoemission studies of surperficially oxidized cesium antimonode photoemitter. Applied Physics Letters,1981,38:387-390
    122.T.L.Guo. Novel GaAs photocathodes with alkali antimonide intermediate layers and caesium-oxygen adlayers. Thin Solid Films,1996,281:370-381
    123.S.Pastuszka, A.S.Terekhov, and A.Wolf. Stable to unstable transition in the (Cs,O) activation layer on GaAs(100) surfaces with negative electron affinity in extremely high vacuum. Applied Surface Science,1996,99:361-365
    124.L.Geelhar, J.Marqez, K.Jacobi. Experimental evidence for a stable GaAs surface near(110). Physical Review B,2000,62:6908-6911
    125.J.M.C.Thornton, P.Weightman, D.A.Wool, and C.J.Dunscombe. A photoemission study of the (2X2) reconstructions of GaAs(001) surface. Journal of Electron Spectroscopy and Related Phenomena,1995,72:66-68
    126.S.E.Kulkova, D.Khanin, and A.V. Subashiev. Simulation of Na, K, Cs and (Cs,O) adsorption on GaAs(110) and (100) surface:towards predictable electronic structure of activation layer. Nuclear Instruments and Methods in Physics Research A,2005, 536:295-301
    127.T.W.Sinor, J.P.Estrera, D.L.Phillips, and M.K.Rector. Extended blue GaAs image intensifiers.1998, Proc. SPIE,2551:130-134
    128.D.G.Fisher. The effect of Cs-0 activation temperature on the surface escape probability of NEA (In,Ga)As photocathodes. IEEE Transactions on Electron Devices.1974,ED-21:541-542
    129.L.W.James and J.L.Moll. Transport Properties of GaAs Obtained from Photoemission Measurements. Physical review,1969,183:740-753
    130.J.W.Freeland, I.Coulthard and W.J.Antel. Interface bonding for Fe thin films on GaAs surfaces of differing morphology. Physical Review B,2001,63:193301
    131.H.Kim and J.Chelikowsky. Electronic and structural properties of the As vacancy on the (110) surface of GaAs. Surface Science,1998,409:435-444
    132.M.H.Hecht. Role of photocurrent in low-temperature photoemission studies of Schottky-barrier formation. Physcal Review B,1990,41:7918-7920
    133.D.F.Fisher, R.E.Enstrom, J.Escher and B.F.William. Photoelectron surface escape probability of (Ga,In)As:Cs-0 in the 0.9-1.6 μA range. Journal of Applied Physics, 1972,43:3816-3818
    134.C.Y.Su, I.Lidau, and W.E.Spicer. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surfaces. Journal of Applied Physics,1983, 54:1413-1422
    135.C.Y.Su, P.W.Chye, P.Pianetta, I.Lindau and W.E.Spicer. Oxygen adsorption on Cs covered GaAs(110) surfaces. Surface Science,1979,86:894-899
    136.C.Y.Su, I.Lindau and W.E.Spicer. Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species. Chemical Physics Letters, 1982,87(6):523-527
    137.S.More, S.Tanaka, Y.Fujii, and M.Kamada. Interaction of Cs and O with GaAs(100) at the overlayer-substrate interface during negative electron affinity type activations. Surface Science,2003,527:41-50
    138J.Szuber. New procedure for determination of the interface Fermi level position for atomic hydrogen cleaned GaAs(100) surface using photoemission. Vacuum,2000, 57:210-218
    139.F.Arneodo, F.Cavanna, I.D.Mitri, D.Mazza, and V.Nassisi. Electron beam generation from semiconductor photocathode. Review of Scientific Instruments,2001,72: 63-66
    140.H.R.Gao. Investigation of the mechanism of activation of GaAs negative electron affinity photocathodes. Journal of Vacuum Science,1987,5:1295-1298
    Hl.Q.B.Lu, Y.X.Pan and H.R.Gao. Optimum (Cs,O)/GaAs interface of negative electron affinity GaAs photocathodes. Journal of Applied Physics,1990,68:634-637
    142.G.Faraci, GMargatondo, and A.R.Pennisi. Catalytic oxidation of the GaAs(110) surface promoted by a Cs overlayer. Physical Review B,1996,53:13851
    143.Y.R.Ryu, S.Zhu, D.C.Look, J.M.Wrobel, and H.M.Jeong. Synthesis of p-type ZnO films. Journal of Crystal Growth,2000,216:330-334.
    144.G.W.Smith, A.J.Pidduck, C.R.Whitehouse, and J.L.Glasper. Surface topography changes during the growth of GaAs by MBE. Applied Physics Letters,1991,59: 3282-3284
    145.L.K.Verheij, M.K.Freitag, Frank Wiegershaus. Oxygen adsorption on Ga-rich GaAs(100). Surface Science,1995,341:55-66
    146.S.K.Mate, T.Marek and C.Schur. Theoretical and experiment energy barriers associated with the incorporation of excess As into GaAs(001). Surface Science, 2002,515:219-226
    147J.G.Mclean, P.Kruse, and A.C.Kummel. Atomic structure determination for GaAs(001)-(6×6) by STM. Surface Science,1999,424:206-218
    148.M.Kamaratos. Adsorption kinetics of the Cs-O activation layer on GaAs(100). Applied Surface Science,2001,185:66-71
    149.M.S.Abrahams, C.J.Buiocchi, and B.F.Willliams. Microstructural effects on the minority carrier diffusion length in epitaxial GaAs. Applied Physics Letters,1971, 18:220-223
    150.A.Martinez, E.Rosendo, M.A.Vidal, and H.Contreras. Processing of porous GaAs at low frequency sparking. Journal of Vacuum Science Tehnology,1999,17:624-630
    151.P.A. Rue and J.P.Edgecumbe. High quantum efficiency photomultiplier with fast time response. Proc. SPIE,1993,2022:66-71
    152.L.E.Bourree, D.R.Chasse, P.L.Stephan, and R.Glosser. MBE Grown InGaAs Photocathode. Proc. SPIE,2003,4796:1-10
    153.J.J.Zou, B.K.Chang, Z.Yang, Y. J. Zhang and J. J. Qiao. Evolution of surface potential barrier for negative-electron-affinity GaAsPhotocathodes. J. Appl. Phys., 2009,105:013714
    154.Zou Jijun, Yang Zhi, Qiao Jianliang, Chang Benkang, and Zeng Yiping. Effect of Surface Potential Barrier on the Electron Energy Distribution of NEA Photocathode. Journal of Semiconductors,2008,29(8):1479-1483
    155.宗志园,常本康.S25系列光电阴极的光谱响应计算机拟合研究.南京理工大学学报.1998,22(3):228-231
    156.常本康.多碱光电阴极机理、特性与应用.北京:机械工业出版社,1995
    157.H.C.Casey, D.D.Sell and K.W.Wecht. Concentration dependence of the adsorption coefficient for n-and p-type GaAs between 1.3 and 1.6eV. Journal of Applied Physics.1975,46(1):250-257
    158.沈学础.半导体光谱和光学性质.北京:科学出版社,1992
    159.1. Kudman and T. Seidel. Absorption edge in degenerate p-type GaAs. J. Appl. Phys. 1962,33,771-773
    160.Niu Jun, Zhang Yijun, Chang Benkang, Yang Zhi, Xiong Yajuan. Influence of exponential doping structure on the performance of GaAs photocathodes. Applied Optics,2009,48(29):5445-5450
    161.Niu Jun, Yang Zhi, Chang Ben-Kang. Equivalent methode of solving quantum efficiency of reflection-mode exponential doping GaAs photocathodes. Chinese Physics Letters,2009,26(10):10420
    162.D.G.Fisher, R.E.Enstrom, J.S.Escher and B.F.Williams. Photoelectron surface escape probability of (Ga,In)As:Cs-0 in the 0.9 to 1.6 μ.m. Journal of Applied Physics, 1972,43(9):3815-3823
    163.G.Vergara, A.Herrera-Gomez, and W.E.Spicer. Calculated electron energy distribution of negative electron affinity cathodes. Surface Sciences,1999,436: 83-90
    164.D.J.Bartelink, J.L.Moll and N.L.Meyer. Hot-electron emission from shallow p-n junctions in silicon. Physical Review,1963,130(3):972-985
    165.B.F.Williams and R.E.Simon. Direct measurement of hot electron-photon interactions in GaP. Physical Review Letters,196718(13):485-487
    166.J.S.Escher, H.Schade. Calculated energy distributions of electrons emitted from negative electron affinity GaAs:Cs-O surfaces. Journal of Applied Physics,1973, 44(12):5309-5313
    167.Herrera-G6mez A, Spicer W E. Physics of high intensity nanosecond electron source. Proc. SPIE,1993 2022:51-63
    168.王洪梅,张亚非Airy传递矩阵法与偏压下多势垒结构的准束缚能级.物理学报,2005,54(5):2226-2232
    169.W.W.Lui and M.Fukuma. Exact solution of the Schrodinger equation across an arbitray one-dimension piecewise-linear potential barrier. Journal of Applied Physics, 1986,60(5):1555-1559
    170.A.W.Baum, W.E.Spicer, R.F.W.Pease, K.A.Costello and V.W.Aebi. Negative electron affinity photocathodes as high-performance electron sources-Part2:energy spectrum measurements, Proc. SPIE,1995,2550:189-196
    171.邹继军,高频,杨智,常本康.低温处理温度对GaAs光电阴极激活结果的影响.真空科学与技术,2007,27(3):222-225
    172.陈怀林,牛军,常本康.真空度对MBE GaAs光阴极激活结果的影响.功能材料,2009,40(12):1951-1954
    173.邹继军,常本康,杜晓晴,陈怀林,王惠,高频.铯氧比对砷化镓光电阴极激活结果的影响.光子学报,2006,35(10):1493-1496
    174.邹继军,钱芸生,常本康,王惠,王世允GaAs光电阴极制备过程中多信息量测试技术研究.真空科学与技术学报,2006,26(3):172-175
    175.A.Sander, O.Haneiser, S.Aichberger, and M.Kunst. The influence of the surface on charge carrier transport in GaAs films. Solar Energy Materials and Solar Cells,2001, 65:119-124
    176.方如章,刘玉凤.光电器件.北京:国防工业出版社,1988
    177.吴继宗,叶关荣.光辐射测量.北京:机械工业出版社,1992
    178.刘世才.光辐射测量技术.北京:国防工业出版社,1991
    179.Y.P.Zeng, X.Cao, L.J.Cui, M.Y.Kong, L.Pan, B.Q.Wang, and Z.P.Zhu. High quality metamophic HEMT grown on GaAs substrates by MBE. J. Cryst. Growth,2001,210: 227-228
    180.GA.Antypas, J.Edgecumbe. Glass-sealed GaAs-Al Ga As transmission photocathode. Applied Physics Letters,1975,26(7):371-372
    181.J.C.Richard, E.Roaux. Low light level imaging tube with GaAs photocathode. Vacuum,1980,30(11/12):549-550
    182.米侃.透射式NEA GaAs光电阴极和第三代像增强器研究[博士学位论文].西安:西安光机所,1998
    183.李晓峰.第三代像增强器研究[博士学位论文].西安:西安光机所,2001
    184.Mei Li, Baoshun Zhang, Hni Li, et al. High-power In-GaAs/AlGaAs/GaAs 45-degree folded cavity surface-ewitting lasers[A]. Proc. SPIE,2001,4580:610
    185.Du Xiaoqing, Chang Benkang. Angle-dependent X-ray photoelectron spectroscopy study of the mechanisms of "high-low temperature" activation of GaAs photocathode. Appl. Surf. ScL,2005,251:267
    186.V.L.Alperovich, O.E.Tereshchenko, A.N.Litvinov and A.S.Terekhov. Evolution of interface excitations under phase transition in two-dimensional layer of Cs on GaAs(100) and (111). Applied Surface Science,2001,175-176:175-180
    187.Tailiang Guo. The adsorption of Cs and 02 on a clean GaAs(110) surface under light illumination. Journal of Vacuum Science Technology A 7(3),1989:1563-1567
    188.王乃铸,王宁,顾香春.在p-GaAs体单晶材料上进行的NEA活化实验.电子科学学刊,1991,13(2):178-182
    189.B.J.Stocker. AES and LEED study of the activation of GaAs-Cs-O negative electron affinity surfaces. Surface Science,1975,47:501-513
    190.F.Proix, A.Akremi, and Z.T.Zhong. Effect of vacuum annealing on the electronic properties of cleaved GaAs. Solid State Physics,1983,16:5449-5463.
    191.A.S.Terekhov and D.A.Orlov. Photoelectron thermalization near the unpinned surface of GaAs photocathode. Proc. SPIE,1991,2550:157-164
    192邹继军,陈怀林,常本康,王世允GaAs光电阴极表面电子逸出几率与波长关系的研究.光学学报,2006,Vol.26(9):1400-1404
    193.牛军,杨智,常本康,乔建良,张益军.反射式变掺杂GaAs光电阴极量子效率模型研究.物理学报,2009,58(7):5002-5005
    194.牛军,乔建良,常本康,杨智,张益军.不同变掺杂结构GaAs光电阴极的光谱特性分析.光谱学与光谱分析,2009,29(11):3007-3010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700