填埋场渗滤液产生、运移及水位雍高机理和控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国多数填埋场存在渗滤液产量大,堆体水位高的问题,高渗滤液水位可能引发堆体失稳、环境污染加剧和填埋气爆炸等次生灾害。本研究以垃圾基本水力特性测试和总结为基础,围绕渗滤液产生机理和产量预测、渗滤液在垃圾堆体中运移和水位壅高以及堆体渗滤液控制措施运行效果模拟等问题开展。现场取样测试了不同龄期填埋垃圾的含水率、田间持水量和持水曲线;利用现场抽水试验和室内渗透试验,测试了填埋垃圾的饱和渗透系数;基于填埋垃圾产液机理的和水量平衡分析,提出了渗滤液产量理论计算公式和简化计算公式;利用饱和-非饱和数值模拟手段,分析了渗滤液在填埋场中的运移规律和水位壅高机理;提出了渗滤液“立体”导排的概念,并利用数值模拟分析了两种常用“立体”导排设施的运行效果;研究成果应用于两座大型填埋场,效果良好。主要研究内容和研究成果包括:
     (1)总结国内外填埋垃圾初始含水率测试资料,西方国家平均27%,中国平均52%;中国垃圾初始含水率高的主要原因为有机质含量高;垃圾填埋后,随着有机质受压缩和降解作用逐步减少,垃圾中的水分逐步析出产生渗滤液。
     (2)现场取得不同填埋龄期的垃圾,采用自制大尺寸“田间持水量室内测试仪”,测试了不同龄期的田间持水量。结果表明:田间持水量与填埋垃圾龄期和应力条件有关;应力越高,田间持水量越小;相同应力条件下,龄期越大,田间持水量越低。总结汇总了国内外持水曲线测试资料。
     (3)在苏州七子山填埋场开展现场抽水试验,测试不同埋深垃圾的饱和渗透系数,结果表明饱和渗透系数取值范围2.62×104cm/s-5.76×10-4cm/s,且随填埋深度增加,饱和渗透系数呈减小的趋势。现场试验结果可以使用深度的幂函数进行拟合。汇总国外现场测试数据可见,由于组分复杂、降解和压实情况各异,现场测试出的垃圾饱和渗透系数分布较广,从1×10-5cm/s至1×10-1cm/s,但同一组试验中垃圾饱和渗透系数均表现出随埋深增加而减小的规律。苏州七子山现场测试数据处于国内外测试数据的中间区域。
     (4)从苏州七子山填埋场、成都长安填埋场取样,进行了室内渗透测试,结果表明:垃圾饱和渗透系数随有效应力增加而减小,随着试验应力由从20kPa增加到250kPa,饱和渗透系数由接近10-4cm/s量级减小到10-6cm/s量级;与国外数据相比,苏州和成都室内测试数据相对较低。
     (5)基于对填埋垃圾降解压缩过程中持水和产水机理的认识,利用水量平衡原理,提出了填埋场渗滤液产量的理论计算式;以典型山谷型填埋场为原型,建立了水量平衡模型,研究了填埋垃圾初始含水率变化对渗滤液总产量和来源组成的影响;结果表明:填埋垃圾初始含水率越高,则计算得到的日均渗滤液产量越大,垃圾自身渗滤液产量所占渗滤液总产量的比例越高;我国大部分地区填埋垃圾的初始含水率达到50%-60%,填埋后垃圾自身产生的水量,是渗滤液产量的主要部分;如果在进行渗滤液产量计算时,不考虑这部分渗滤液量,将明显低估实际运行时填埋场渗滤液产量。
     (6)我国现行渗滤液处理规范中规定的渗滤液产量计算方法,也是目前设计中普遍采用的“浸出系数法”,仅考虑了因降雨入渗产生的水量,忽略了垃圾自身产生(或吸收)的水量,计算误差较大。在本文提出的渗滤液产量理论计算公式基础上简化,得到渗滤液产量修正计算公式,利用广州兴丰、上海老港实测数据进行验证,可取得较为保守的计算结果,符合设计偏安全、偏保守的原则,可在实际工程中采用。
     (7)利用实测和总结参数,参考典型山谷型填埋场建立Seep/W数值模型,分析了填埋垃圾初始含水率、降雨量、填埋场雨污分流效果、垃圾渗透系数随填埋深度和龄期变化、垃圾饱和渗透系数的各向异性以及导排层淤堵对填埋场水位壅高的影响,结果表明:填埋垃圾初始含水率越高,雨污分流效果越差,渗滤液导排层淤堵和垃圾渗透系数越低,堆体水位壅高越明显。当填埋垃圾饱和渗透系数降低,或考虑垃圾渗透系数取值各向异性、竖向垃圾饱和渗透系数取值降低时,堆体内易形成滞水,此时水位壅高形式变得更加复杂。
     (8)基于Seep/W数值模拟和现场监测结果,揭示出填埋堆体典型的渗滤液存在形式。若场底渗滤液导排层通畅,而底层填埋垃圾饱和渗透系数较低,渗滤液导排层水和垃圾堆体主水层有可能脱开,填埋场内存在渗滤液导排层水、垃圾堆体主水层和垃圾堆体滞水层三种存在形式,此时导排层内渗滤液水头往往较低。当渗滤液导排层淤堵时,导排层中水壅高,与堆体主水层连通,从场底渗滤液导排层至一定高度堆体完全饱和,填埋场内仅存在垃圾堆体主水层和垃圾堆体滞水层两种存在形式,此时导排层内渗滤液水头往往较高。
     (9)针对中国填埋场渗滤液产量大,堆体水位高的问题,为实现水位有效控制,提出了由库底渗滤液导排层、堆体内渗滤液抽排竖井和水平导排盲沟组成的填埋场渗滤液“立体”导排系统;利用Seep/W数值模拟分析了渗滤液抽排竖井的运行性状,结果表明:抽排竖井深度越深,排水效果越好;长期运行的抽排竖井,井管和井周边垃圾的淤堵将显著减小抽排竖井排水流量;分层填埋垃圾渗透各向异性不会对抽排竖井排水效果造成显著影响;应用于渗滤液产量大的场地时,可密布较浅的抽排竖井;应用于渗滤液产量小的区域时,可采用间距较大,深度较深的布设方法。
     (10)分析了水平导排盲沟的运行效果,结果表明:水平导排盲沟可有效降低模拟单元内的渗滤液水位和压力水头;分层填埋垃圾渗透各向异性不会对水平导排盲沟运行效果造成显著影响;不建议在水平导排盲沟下设置中间覆盖层。
Large leachate production and high leachate mounds are common in municipal solid waste (MSW) landfills of China, which can cause severe problems including instability of waste body, pollutant transport and landfill gas explosion. Based on systematic tests of hydraulic properties of landfilled wastes, the research works in this paper focused on the study and simulation of leachate generation, transport and mounds in municipal solid waste landfill as well as their control measures. The main research works and conclusions are as follows:
     (1) Based on available testing results, the average initial moisture content of landfilled wastes in western countries was found to be about 27%. However, large amount of organic matters in fresh wastes contributes to the much higher initial moisture content in Chinese MSWs with an average value of about 52%. After landfilling, leachate is gradually generated during the compression and biodegradation processes of wastes.
     (2) Field capacity tests were carried out on drilled MSW samples with different ages. It showed that field capacity is related to the age and stress level of landfilled wastes. Field capacity decreases with the increase of stress level and waste age. Soil waste characteristic curve (SWCC) of the drilled MSW samples was summarized.
     (3) On-site pumping test in Suzhou Qizishan Landfill were carried out to study the saturated permeabilities of MSWs in different depths. It was found that saturated permeabilities of MSWs ranges from 2.62×10-4cm/s to 5.76×10-4cm/s. The value tends to decrease with an increase of depth which can be simulated by the power function. Due to the complexity of waste composition, biodegradation and compression, saturated permeabilities from on-site tests reported by foreign studies have a very large range from 1×10-5cm/s to 1×10-1cm/s. Saturated permeabilities of wastes in Suzhou Qizishan Landfill are at the middle level of that large range.
     (4) Laboratory hydraulic tests were taken on the drilled MSW samples from Suzhou Qizishan Landfill and Chendu Chang'an Landfill. The results showed that saturated permeabilities decreases with an increase of effective stress. The value decreased from the order of 10-4cm/s under 20kPa to 10-6cm/s under 250kPa. Compared to laboratory testing results reported by foreign studies, Chinese MSWs showed a relatively lower value.
     (5) Based on the study of field capacity and leachate generation mechanism during biodegradation and compression processes, a leachate generation calculation model was proposed. The effect of initial moisture content on the leachate production of a valley landfill was studied by this model. With an increase of initial moisture content, it was found that leachate production increases. At the same time, leachate generated from the initial moisture content make up a larger part of the total leachate production. As initial moisture content of landfilled MSWs in most Chinese landfills can even reach 60%, the predicted leachate production will be much underestimated if the contribution from the initial moisture content is neglected.
     (6) Based on the above study of leachate generation process, a modified model was proposed for the leachate generation rate calculation based on the model in the standard of leachate treatment. The monitored leachate production data were simulated through the modified model. A secure tendency of the simulated results indicated that the model is fit for the design of leachate treatment in Chinese landfills.
     (7) Based on the tested values of hydraulic parameters and numerical model for the valley landfill, the influence of initial moisture content, precipitation, separating system of rainwater and sewage, waste permeability and clogging of leachate drainage system on leachate mounds processes were studied. It showed that the separating function tends to be worse with an increase of initial moisture content, after which leachate mound has more possibility to be formed due to the decrease of waste body permeability and the clogging of leachate drainage system.
     (8) Based on numerical study and on-site monitoring results, existence forms of the water in landfilled waste were studied. It was found that, if leachate drainage system is in good function and permeability of wastes at the bottom of the landfill is relatively low, leachate in leachate drainage system might be separated from the main leachate layer in the above waste body. Under this condition, three main forms of saturated water exist in a landfill including leachate in drainage layer, main leachate layer in waste body and partially blocked leachate mound, and the leachate head in the drainage layer may be low. If the leachate drainage system is clogged, leachate in the drainage system can be elevated until connecting the water in waste body. In this case, there are only two forms of saturated water region in a landfill which is main leachate layer and partially blocked leachate mound, and the leachate head in the drainage layer may be high.
     (9) Stereospecific drainage system composed of bottom leachate drainage layer, vertical drainage well and horizontal drainage trench in waste body was proposed to for the leachate control of Chinese landfills with very large leachate production. The effect of vertical drainage well in practical use was numerically studied. It showed that drainage effect is better with deeper vertical drainage wells. Wastes around the vertical drainage wells become less permeable during long-term leachate drainage process. However, the anisotropic property of permeability in layered wastes showed little influence on the drainage results of vertical drainage wells. For the practical application in a landfill, shallowly but densely (i.e. small spacing) installed vertical drainage wells can be applied in the part with large leachate production. Conversely, sparse (i.e. large spacing) but deeply installed vertical drainage wells can be used for the part with relatively lower leachate production.
     (10) The effect of horizontal drainage trench on leachate control was numerically studied. The simulating results showed that horizontal drainage trenches can decrease the main leachate level and reduce hydraulic head in waste body effectively. The anisotropic property of permeability in layered wastes showed little influence on the drainage results of horizontal drainage trenches. Intermediate liner system should not be installed beneath the horizontal drainage trenches.
引文
[1]A.A. Tatsi, A.I. Zouboulis. A field investigation of the quantity and of leachate from a municipal solid waste landfill in a Mediterranean climate. Advances in Environmental Research,2002,6:207-219
    [2]Alonso E E, Gens A and Josa A. A constitutive model for partially saturated soils [J]. Geotechnique.1990,4 (3):405-430.
    [3]Al-Thani A A, Beaven R P, White J K. Modelling Flow to Leachate Wells in Landfills [J]. Waste Management.2004,24(3),271-276.
    [4]Al-Yousfi, A B. Modeling of leachate and gas production and composition at sanitary landfills [D]. Dissertation for PHD, University of Pittsburgh,1992.
    [5]Armstrong M D. Laboratory program to study clogging in a leachate collection system [D]. M.E.Sc, thesis, the University of Western Ontario, London, Ontario,1998.
    [6]Blight, G. Slope failures in municipal solid waste dumps and landfills:a review. Waste Management & Research,2008,26(5):448-463.
    [7]Beaven R P, Cox S E, Powrie W. Operation and performance of horizontal wells for leachate control in a waste landfill [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(8):1040-1047.
    [8]BLEIKER D E, FARQUHAR G, MCBEAN E. Landfill settlement and the impact on site capacity and refuse hydraulic conductivity [J]. Waste management & research,1995,13(6):533-554.
    [9]Blight G. Slope failures in municipal solid waste dumps and landfills:a review [J]. Waste Management & Research,2008,26(5):448-463.
    [10]Blight G E, Ball J M, Blight J J. Moisture and suction in sanitary landfills in semiarid areas [J]. Journal of Environmental Engineering,1992,118(6):865-877.
    [11]Bouchez T, Munoz M L, Vessigaud S, et al. Clogging of MSW landfill leachate collection systems:prediction methods and in situ diagnosis [CD].9th International Waste Management and Landfill Symposium, Cagliari, Italy,2003.
    [12]Baetz B W and Byer P H. Moisture Control During Landfill Operation. Waste management and research [J].1989, Vol.7:259-275.
    [13]Barone F S, Costa J M A, Ciardullo L. Temperatures at the base of a municipal solid waste landfill [A]. Proceeding of the CSCE 2000 conference [C], London, Ontario,2000. pp.41-48.
    [14]Bear J. Dynamics of fluids in porous media [M]. Anerican Elsevier Publishing Company, INC.1972.
    [15]Bear J. Hydraulics of groundwater [M]. New York:McGraw-Hill Book Company, 1979.
    [16]Bishop A W, Blight G E. Some aspects of effective stress in saturated and partly saturated soils [J]. Geotechnique.1963,13(3):177-197
    [17]Blight G E, Ball J M, Blight J J. Moisture and suction in sanitary landfills in semiarid areas [J]. Journal of Environmental Engineering.1992,118(6):865-877.
    [18]Bodhinayake W, Si B C, Noborio K. Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers. Vadose Zone Journal,2004(3):964-970.
    [19]Boutrup E, Lovell C W. Search technique in slope stability analysis [J]. Engineering Geology,1980,16(1):51-61.
    [20]Bou-Zeid E, El-Fadel M. Parametric sensitivity analysis of leachate transport simulations at landfills [J]. Waste Management.2004,24(3):681-689.
    [21]Brooks R H, Corey A H. Hydraulic properties of porous media[M]. Hydrology Paper No.3,1964,Colorado State University, Fort Collins, CO.27 pp.
    [22]Brune M R, Ramke H G, Collins H, Hanert H H. Incrustations process in drainage systems of sanitary landfills [A]. Proceeding of 3rd International Landfill Symposium [C]. Cagliari, Italy,1991:999-1035.
    [23]Coduto D P, Huitric R. Monitoring landfill movements using precise instruments. Geotechnics of waste fill-Theory and practice, ASTM STP 1070, Philadelphia, 1990:358-370.
    [24]Cortazar A L G, Monzon I T. Application of simulation models to the diagnosis of MSW landfills:An example. Waste Management,2007,27(5):691-703.
    [25]Chen Y M, Zhan T L T. Geoenvironmental issues associated with landfills of municipal solid wastes. Keynote lecture,13rd Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata,2007,2:169-192.
    [26]Chen Y M, Zhan T L T, Wei H Y, Ke H. Aging and compressibility of municipal solid wastes. Waste Management,2009,29(1):86-95.
    [27]Chen Y M, Ke H, Fredlund D G, Zhan T L T, Xie Y. Secondary compression of municipal solid wastes and a compression model for predicting settlement of MSW landfills. Journal of Geotechnical and Geoenvironmental Engineering, 2010a,136(5),706-717.
    [28]Chen Yun-min, ZHAN Liang-tong, LI Yu-chao. Development of leachate mounds and control of leachate-related failures at MSW Landfills in Humid Regions [C]. Proceedings of the 6th International Congress on Environmental Geotechnics, New Delhi, India:Tata McGraw Hill Education Private Limited, 2010.
    [29]Carman P C. The determination of the specific surface of powders. J. Soc. Chem. Ind. Trans.,1938,57:225-234.
    [30]Carman P C. Flow of gases through porous media, Butterworths Scientific Publications, London.1956.
    [31]Carrier W D. Goodbye, Hazen; Hello, Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering.2003,129(11):1054-1056.
    [32]Cestaro S, Cossu R, Lanzoni S, Raga R. Analysis of pressure field in a landfill during in-situ aeration for waste stabilization. Proceedings Sardinia 2003, Ninth International Waste Mangement and Landfill Symposium, Cagliari, Italy,6-10 October,2003.
    [33]Corcoran B W, Bhatia S K. Evaluation of geotextile filter in a collection system at fresh landfill. Recent developments in geotextile filters and prefabricated drainage geocomposites, ASTM Special Technical Publication NO.1281. ShobhaK. Bhatia and L David Suits, Eds., American Society for Testing and Materials,1996,182-195.
    [34]Cox S E, Powrie B W, Cole D J. Installation of Horizontal wells in landfilled waste using Directional Drilling. Journal of Geotechnicalnical and Geoenvironmental Engineering [J].2006,132(7):869-878.
    [35]Craven W, Townsend T G, Vogel K, Laux S. Field investigation of landfill leachate collection system clogging [J]. Practice Periodical of Hazardous, Toxic, and Radioative Waste Management.1999,3(1):2-9.
    [36]Chen T H, Chynoweth D P. Hydraulic conductivity of compacted municipal solid waste [J]. Bioresource Technology,1995,51:205-212.
    [37]Dixon N, Langer U. Development of a MSW classification system for the evaluation of mechanical properties. Waste Management,2006,26(3):220-232.
    [38]Durmusoglu E. Municipal landfill settlement with refuse decomposition and gas generation. PhD Dissertation. Texas A&M University.2002.
    [39]Durmusoglu E, Corapcioglu M, Tuncay K. Modelling of settlement in saturated and unsaturated municipal landfills. International Journal of Geomechanics, 2006a,6(4):269-278.
    [40]Durmusoglu E, Sanchez I M, Corapcioglu M Y. Permeability and compression characteristics of municipal solid waste samples. Environmental Geology,2006b, 50(6):773-786.
    [41]Demetracopoulos A C, Korfiatis G P, Bourodimos E L, Nawy E G. Unsaturated flow through solid waste landfills:model and sensitivity analysis [J]. Water Resources Bulletin.1986,22(4):601-609.
    [42]Dixon N, Jones D R V. Engineering properties of municipal solid waste [J]. Geotextiles and Geomembranes.2005,23:205-233.
    [43]Dollar L H. Moisture retention of municipal solid waste mixed with sewage sludge and ash in a semi-arid climate [J]. Waste management & Research.2005, 23:209-219.
    [44]Ettala M. Infiltration and hydraulic conductivity at a sanitary landfill [J]. Aqua Fennica,1987,17(2):231-237.
    [45]El-Fadel M, Findikakis A N, Leckie J O. Gas simulation models for solid waste landfills [J]. Critical reviews in environmental science and technology,1997, 27(3):237-283.
    [46]Edil T B. A review of aqueous-phase VOC transport in modern landfill liners [J]. Waste management,2003,23:561-571.
    [47]Edil T B, Ranguette V J, Wuellner W W. Settlement of municipal refuse: Geotechnics of waste fills-Theory and practice.ASTM Spec. Tech. Publ.,1990: 225-239.
    [48]Eleazer W E, Olde-Ⅲ W S, Wang Y S, Barlaz M A. Biodegradability of municipal solid waste components in laboratory-scale. Environmental Science & Technogoly,1997,31(3):911-917.
    [49]Edgers L, Noble J J, Williams E. A biologic model for long term settlement in landfills. Proc. Mediterranean Conference on Environmental Geotechnology, 1992:177-184.
    [50]Fredlund D G, XING A, HUANG S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31:533-546.
    [51]Fredlund M.D, G.W.Wilson, Fredlund,D.G., Prediction of the Soil-Water Characteristic Cureve from the Grain-Size Distribution Curve.Proceedings of the 3rd Symposium on Unsaturated Soil, Rio de Janeiro, Brazil, April 20-22, pp.13-23.
    [52]Fleming I R, Rowe R K, Cullimore D R. Field observations of clogging in a landfill leachate collection system [J]. Canadian Geotechnical Journal,1999, 36(4):685-707.
    [53]Fleming I R, Rowe R K. Laboratory studies of clogging of landfill leachate collection and drainage systems [J]. Canadian Geotechnical Journal.2004, 41(2):134-153.
    [54]Fleming I R, Rowe R K, Cullimore D R. Field observations of clogging in a landfill leachate collection system [J]. Canadian Geotechnical Journal.1999, 36(4):289-296.
    [55]Fredlund D G & Morgenstern N R. Stress state variables for unsaturated soils [J]. Journal of the Geotechnical Engineering Division, Proceedings, ASCE (GT5). 1977,103:447-466.
    [56]Green,R.E., Corey, J.C., Calculation of hydraulic conductivity:A further evaluation of some predictive methods. Soil Science Society of America Proceedings,1971,35:3-8.
    [57]Giroud, J.P., Gross, B.A., and Darasse, J. Flow in leachate collection layers, steady-state. GeoSyntec. Consultants,1992, Rep:62.
    [58]Gan J K-M, Fredlund DG, Rahardjo H. Determination of the shear strength Parameters of an unsaturated soil using the direct shear test [J]. Canadian Geotechnical Journal.1988,25(8):500-510.
    [59]Gartung I E. Landfill technology-German practice of Geotechnical landfill design and construction [M], Compiled for Zhejiang University,2006.
    [60]Gupta R K, Rudra R P, Dickinson W T, et al. Comparison of saturated hydraulic conductivity measured by various field methods. Transactions of the ASAE,1993, 36(1):51-55.
    [61]Guyonnet D, Didier-Guelorgeet B, Provost G, Feuillet C. Accounting for water storage effects in landfill leachate modeling [J]. Waste management and research. 1998,16(3):285-295.
    [62]Geo-Slope International Ltd. SEEP/W for finite element seepage analysis, v5.0. Users Manual. Calgary, Alberta, Canada,2003
    [63]H.J.Ehig. Quality and quantity of sanitary landfill leachate. Waste Management & Research,1983,1:53-68
    [64]Hjelmar.O, Johannessen, J.M. Knox.K. Composition and management of leachate from landfills within the EU. Proceedings of Sardinin 95,5th International Landfill Symposium, CISA, Cagliari,1995,243-262.
    [65]Hamilton J M, Daniel, D E, and Olson R E. Measurement of the Hydraulic Conductivity of. Partially Saturated Soils. Permeability and Groundwater Contaminant Transport, ASTM STP 746, American Society for Testing and Materials, Philadelphia.1981,182-196.
    [66]Huang Y H. Stability Analysis of Earth Slopes[M]. New York:Van Nostrand Reinhold Company,1983.
    [67]Jain P., Powell J., Townsend T. G., et al. Air permeability of waste in a municipal solid waste landfill[J]. Journal of Environmental Engineering,2005, 131(11):1565-1573.
    [68]Jang Y. S., Kim Y. W., Lee S. I. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea[J]. Waste Management,2002, 22(3):261-267.
    [69]Jang Y S. Analysis of flow behavior in a landfill with cover soil of low hydraulic conductivity [J]. Environmental Geology,2000,39(3-4):292-298.
    [70]Jang Y S, Kim Y W, Lee S I. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea [J]. Waste management,2002, 22(3):261-267.
    [71]Koerner R M, Soong T Y. Leachate in landfills:the stability issues [J]. Geotextiles and Geomembranes,2000,18(5):293-309.
    [72]Koerner R M, Soong T Y. Stability analyses of ten landfill failures [C].2nd Austrian Geotechnical Congress, Eschenbachgasse, Vienna:Austrian Engineering and Architects Society,1999.
    [73]Koerner, G.R., Koerner, R.M., and Martin, J.P.1994. Design of Landfill Leachate-Collection Filters. Journal of Geotechnical Engineering, ASCE,120(10): 1792-1803.
    [74]Koerner, R.M., and Koerner, G.R.1995. Leachate clogging assessment of geotextile (and soil) landfill filters, US Environmental Protection, Washington, DC.
    [75]Koerner, R.M., and Soong, T.-Y.1999. Stability analyses of ten landfill failures. In 2nd Austrian Geotechnical Congress. Eschenbachgasse, Vienna. Austrian Engineering and Architects Society, pp.9-50.
    [76]Koerner, R.M., and Soong, T.Y.2000a. Leachate in landfills:the stability issues. Geotextiles and Geomembranes,18(5):293-309.
    [77]Koerner R M, Soong T-Y. Stability assessment of ten large landfill failures [A]. Advances in transportation and geoenvironmental systems using geosynthetics. Proceedings of Sessions of GeoDenver 2000, ASCE Geotechnical Special Publication [C]. No.103, pp.1-38.
    [78]Koerner R M, Koerner G R. Leachate clogging assessment of geotextile (and soil) landfill filters [R], US Environmental Protection, Washington, DC,1995.
    [79]Koerner G R, Koerner R M, Martin J P. Design of landfill leachate-collection filters. Journal of Geotechnical Engineering, ASCE,1994,120(10):1792-1803.
    [80]Koerner R M, Soong T-Y. Stability assessment of ten large landfill failures [A]. Advances in transportation and geoenvironmental systems using geosynthetics. Proceedings of Sessions of GeoDenver 2000, ASCE Geotechnical Special Publication [C]. No.103, pp.1-38.
    [81]Korfiatis G. P., Demetracopoulos A. C., et al. Moisture transport in a solid waste column [J]. Journal of Environmental Engineering.1984,110(4):789-796.
    [82]Kiran K P. Permeability of municipal solid waste in bioreactor landfill with degradation [D]. Arlington:The university of Texas at Arlington,2007.
    [83]Merry S M, Fritz W U, Budhu M, Jesionek K. Effect of gas on pore pressures in wet landfills [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(5):553-561.
    [84]Merry S M, Kavazanjian E, Fritz W U. Reconnaissance of the July 10,2000 Payatas Landfill failure [J]. Journal of Performance of Constructed Facilities, 19(2):100-107.
    [85]Mcdougall J R, Sarsby R W, HILL N J. A numerical investigation of landfill hydraulic using variably saturated flow theory [J]. Geotechnique,1996,46(2): 329-341.
    [86]Matyas E L, Radhakrishna H S. Volume change characteristics of partially saturated soils [J]. Geotechnique.1968,18 (4):432-448.
    [87]Mclsaac Reagan, Rowe R K. Clogging of gravel drainage layers permeated with landfill leachate [J]. Journal of Geotechnical and Geoenvironmental engineering, ASCE,2007,133(8):1026-1039.
    [88]McCreanor P. T. Landfill leachate recirculation systems mathematical modeling and validation [D]. Department of Civil and Environmental Engineering, in the College of Engineering at the University of Central Florida, Orlando, Florida, 1998.
    [89]McEnroe B M. Maximum saturated depth over landfill liner [J]. Journal of Environmental Engineering.1993,119(2):262-270.
    [90]McIsaac R S, Rowe R K, Fleming I R, Armstrong M D. leachate collection system design and clog development [A]. Proceedings of the 6th Canadian Environmental Engineering Conference [C], London, Ontario.2000,66-73.
    [91]Mitchell J K, Seed R B. Kettleman Hills Waste Landfill Slope Failure. Ⅰ: Liner-System Properties. [J]. Journal of Geotechnical Engineering, 1990,116(4):647-668
    [92]Mohanty B P, Kanwar R S, Everts C J. Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil [J]. Soil Science Society of America Journal,1994,58(3):672-677.
    [93]Merry, S.M., Fritz, W.U., Budhu, M., and Jesionek, K. Effect of gas on pore pressures in wet landfills. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(5):553-561.
    [94]Ng C W W and Zhan L T. Fundamentals of re-compaction of unsaturated loose fill slopes [A]. Proceedings of International Conference on Landslides [C]. June, 2001, Davos, Switzerland, pp.557-564.
    [95]Noble J J and Arnold A E. Experimental and mathematical modeling of moisture transport in landfills [J]. Chemical Engineering Communication.1991, Vol.100: 95-111.
    [96]Oweis I S, Smith D A, Ellwood R B, Greene D S. Hydraulic characteristics of municipal refuse [J]. Journal of Geotechnical Engineering.1990,116(4): 539-553.
    [97]Parker A. Chapter 7. Behavior of Wastes in Landfill-Leachate. Chapter 8. Behaviour of Wastes in Landfill-Methane Generation. Practical Waste Management, John Wiley &Sons, Chichester, England,1983:225-207.
    [98]Paksy A, Powrie W, Robinson J P, Peeling L. A laboratory investigation of anaerobic microbial clogging in granular landfill drainage media [J]. G e otechnique,1998,48(3)389-401.
    [99]Peeling L, Paksy A, Robinson J P. Removal of volatile acids from synthetic landfill biofilms on drainage aggregates:a laboratory study [J]. Waste Management.1999,17:141-149.
    [100]Pham H T V, Fredlund D G. The application of dynamic programming to slope stability analysis [J]. Canadian Geotechnical Journal,2003,40(4):830-847.
    [101]Powrie W, Beaven R P. Hydraulic properties of household waste and their implications for fluid flow in landfills [A]. Proceedings of the Institution of Civil Engineers (Geotechnical Engineering) [C].1999 137 (4),235-247.
    [102]Powrie W, Paksy A, Robinson J P. Impact of clogging on the performance of a leachate collection system:a theoretical study [A]. Proceedings of the 7th International Landfill Symposium [C], Cagliari, Italy, Oct.1999,253-260.
    [103]Qian X D. Analysis of allowable reintroduction rate for landfill leachate recirculation. Lansing Michigan,USA:Michigon department of environmental quality, Nov.1994.
    [104]Qian X D, Koerner R M, Gray D H. Geotechnical aspects of landfill design and construction [M]. New Jersey, America:Prentice-Hall, Inc.,2002.
    [105]Qian X D, Koerner R M, Gray D H. Geotechnical aspects of landfill design and construction [M]. New Jersey:Prentice-Hall, Inc,2002.576-602.
    [106]Rowe R K, Armstrong MD, Cullimore D R. Mass loading and the rate of clogging due to municipal solid waste leachate [J]. Canadian Geotechnical Journal,2000,37:355-370.
    [107]Rowe R K, Armstrong MD, Cullimore D R. Particle size and clogging of granular media
    [108]Rowe R K, Reagan McIsaac. Clogging of tire shreds and gravel permeated with landfill leachate [J]. Journal of Geotechnical and Geoenvironmental engineering, ASCE,2005,131(6):682-693.
    [109]Rowe R K, Nadarajah P. Estimating leachate drawdown due to pumping wells in landfills [J]. Canadian Geotechnical Journal,1996,33(1):1-10.
    [110]Jang, Y.S.2000. Analysis of flow behavior in a landfill with cover soil of low hydraulic conductivity. Environmental Geology,39(3-4):292-298.
    [111]Rowe R K, Armstrong M D, Cullimore D R. Particle size and clogging of granular media permeated with leachate [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE.2000b,126(9):775-786.
    [112]Rowe R K, Fleming I, Cullimore R, Kosaric N, Quigley R M.A research study of clogging encrustation in leachate collection systems in municipal solid waste landfills [D]. Geo- technical Research Center, the University of Western Ontario. Report prepared for Interim Waste Authority Ltd.,1995.
    [113]Reddi, Lakshmi N, Particle transport in soils:review of significant processes in infrastructure Systems [J]. Journal of Infrastructure Systems.1997,3(2):78-85.
    [114]Reinhart D R and McCreanor P T. Assessment of Leachate Collection System Clogging at Florida municipal solid waste landfills [D]. Department of Environmental Engineering and Sciences, the University of Central Florida. Report prepared for Florida Central for Solid and Hazardous Waste Management, Oct.1998.
    [115]Richardson G, and Zhao A. Design of Lateral Drainage Systems for landfills. GRI 12th confe-rence proceedings,1998. pp:177-196.
    [116]Rittmann B E, Banaszak J E, Cooke A, Rowe R K. Biogeochemical evaluation of mechanisms controlling CaCO3 precipitation in landfill leachate-collection systems [J]. Journal of Environmental Engineering, ASCE.2003, 129(8):723-730.
    [117]Rittmann B E, Fleming I R, Rowe R K. Leachate chemistry:its implication for clogging [A]. Proceedings of the North American Water and Environment Congress'96 [C], Aneheim California. June 22-28,1996.
    [118]Rowe R K, Armstrong M D, Cullimore D R. Particle size and clogging of granular media permeated with leachate [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE.2000b,126(9):775-786.
    [119]Rowe R K, Fleming I, Cullimore R, Kosaric N, Quigley R M.A research study of clogging encrustation in leachate collection systems in municipal solid waste landfills [D]. Geo- technical Research Center, the University of Western Ontario. Report prepared for Interim Waste Authority Ltd.,1995.
    [120]Performance (HELP) Model:Engineering Documentation for Version 3 [D]. EPA/600/R-94/168b, September 1994, U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.
    [121]Straub W A, Lynch D R. Models of landfill leaching:moisture flow and inorganic strength [J]. Environmental Engineering Division.1982, Vol.108: 231-250.
    [122]Sangam H P and Rowe R K. Effects of exposure condition on the deletion of antioxidants from HDPE Geomembranes [J]. Canadian Geotechnical Journal. 2002,39(6):1221-1230.
    [123]Schroeder P R, Dozier T S, Zappi P A, Aziz N M. The Hydrologic Evaluation of Landfill
    [124]Siegel R A, Kovacs W D. Lovell C Ran dom surface generation in stability analysis [J]. Journal of Geotechnical Enginering, ASCE,1981,107(7):996-1002.
    [125]Stegmann R., Ehrig H-J. Leachate production and quality-results of landfill processes and operation [A]. Proceeding of 2nd International Landfill Symposium, Sardinia, Italy,1989 [C]. Vol.ⅩⅩⅧ:1-16.
    [126]Straub W A, Lynch D R. Models of landfill leaching:moisture flow and inorganic strength [J]. Environmental Engineering Division.1982, Vol.108: 231-250.
    [127]Townsend T G, Wise W R, Jain P. One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills [J]. Journal of Environmental Engineering, ASCE,2005,131(12):1716-1723.
    [128]Townsend T G, Miller W L, Lee H-J, Earle J F K. Acceleration of landfill stabilization using leachate recycle [J]. Journal of Environmental Engineering. 1996,122(4):263-268.
    [129]USEPA,1989. Seminar publication-requirement for hazardous waste landfill design, construction and closure [S]. EPA/625/4-89/022, U.S. EPA, Center for Environmental Research Information, Office of Research and Development, Cincinnati, Ohio 45268.
    [130]USEPA,1991. Design and Construction of RCRA/CERCLA Final Covers [J], EPA/625/4-91/025, Technical Guidance Document, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, May.
    [131]Van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Sci. Soc. Am. J.1980, Vol.44: 892-898.
    [132]VanGulck J F. Biodegradation and clogging in gravel size material [D]. Queen's University, Kingston, Ontario, Canada,2003.
    [133]Wang Hongtao & Nie Yongfeng. Municipal solid waste characteristics and management in China [J]. Journal of the air & waste management.2001,51(3): 250-263.
    [134]Zeiss C and Uguccioni M. Mechanisms and patterns of leachate flow in municipal Solid Waste Landfills [J]. Journal of environmental systems.1994-95, 23(3),247-270.
    [135]Xie H J, Chen Y M, Lou Z H. An analytical solution to contaminant transport through composite liners with geomembrane defects [J]. Science China: Technological Sciences,2010,53(5):1424-1433.
    [136]Young A. Mathematical modeling of landfill gas extraction. Journal of Enviromental Engineering,1989,115(6):1073-1087.
    [137]Yuen S T S, Styles J R, McMahon T A. Process-based landfills achieved by leachate recirculation-a critical review and summary. Centre for Environmental Applied Hydrology Report. University of Melbourne, November 1994.
    [138]Zornberg J G, Jernigan B L, Sanglerat T R, et al. Retention of free liquids in landfills undergoing vertical expansion [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(7):583-594.
    [139]Zhan, T.L.T., Chen, Y.M., and Ling, W.A.2008. Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering Geology, 97(3-4):97-111.
    [140]Zornberg, J.G., Jernigan, B.L., Sanglerat, T.R., and Cooley, B.H.1999. Retention of free liquids in landfills undergoing vertical expansion. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,125(7):583-594
    [141]Zeiss C, Uguccioni M. Mechanisms and patterns of leachate flow in municipal solid waste landfills. Journal Environmental Systems,1995,23(3):247
    [142]Zhao Y C, Liu J Y, Huang R H, Gu G W. Long-term monitoring and prediction for leachate concentration in Shanghai refuse landfill. Water, Air and Soil Pollution,2000,122(3-4):281-297.
    [143]曹丽文,姜振泉,张静等.垃圾填埋场排水层淤堵实验特征[J].重庆大学学报(自然科学版),2007,30(8):75-80.
    [144]陈云敏.环境土力学研究进展[A].第九届全国岩土力学数值分析与解析方法讨论会论文集,武汉,2007:190-249.
    [145]黄志中,弓晓峰.山谷型垃圾卫生填埋场渗滤液水量计算[J].江西化工,2005,21(1):89-92.
    [146]顾高莉.填埋场导排层淤堵实验研究及淤堵条件下最高水位计算[D].杭州:浙江大学,2011.
    [147]林伟岸.复合衬垫系统剪力传递、强度特性及安全控制[D].杭州:浙江大学,2009.
    [148]刘钊.填埋垃圾渗透特性测试及抽排竖井渗流分析[D].杭州:浙江大学,2010.
    [149]刘战宇,何翔,梁军,等.垃圾填埋场渗滤液产量计算及流场分布预测[J].能源环境保护,2003,17(4):30-33.
    [150]孙钥,李国建.垃圾渗滤水水量计算中的几个问题[J].环境卫生工程,1998,6(4):139-140.
    [151]王学华,胡玉才,吴健民.山谷型垃圾填埋场渗沥液水量计算方法比较研究[J].城市环境与城市生态,1995,8(4):38-41.
    [152]魏海云.城市生活垃圾填埋场气体运移规律研究[D].杭州:浙江大学,2007.
    [153]魏海云,詹良通,陈云敏.城市生活垃圾气体渗透性的试验研究[J].岩石力学与工程学报,2007,26(7):1411-1414.
    [154]万小丽.垃圾填埋场导排层渗滤液水位研究[D].杭州:浙江大学,2008.
    [155]谢海建,楼章华,陈云敏,金爱民,陈培雄.污染物通过GCL/AL防渗层的对流-弥散解析解[J].科学通报,2010,55(21):2148-2155.
    [156]谢海建,詹良通,陈云敏,楼章华.我国四类衬垫系统防污性能的比较分析[J].土木工程学报,2011,44(7):134-141.
    [157]夏越青,李国建,邹庐泉.冬季垃圾填埋场渗滤液回灌水量平衡的实验研究[J].环境污染与防治,2001,23(1):7-9.
    [158]魏海云,詹良通,陈云敏,张泉芳.城市生活垃圾的持水曲线研究[J].岩土工程学报,2007,29(5):712-726.
    [159]中华人民共和国环境保护部.生活垃圾填埋场污染控制标准 (GB16889-2008)[S].北京:中国计划出版社
    [160]中华人民共和国住房与城乡建设部.生活垃圾卫生填埋技术规范(CJJ17-2004)[S].北京:中国建筑工业出版社
    [161]中华人民共和国住房与城乡建设部.生活垃圾卫生填埋场岩土工程技术规范(CJJ176-2011)[S].北京:中国建筑工业出版社
    [162]中华人民共和国环境保护部.生活垃圾填埋场渗滤液处理工程技术规范(HJ546-2010)[S].北京:中国计划出版社
    [163]张文杰.城市生活垃圾填埋场中水分运移规律研究[D].杭州:浙江大学,2011.
    [164]张瑞明,俞凯舰,徐月恩,郑学娟.污水回喷法处理垃圾填埋渗滤液[J].环境污染与防治,1998,20(4):23-25.
    [165]张文杰,詹良通,陈云敏,魏海云.垃圾填埋体中非饱和-饱和渗流分析[J].岩石力学与工程学报,2007,26(1):87-93.
    [166]张斌,何品晶,邵立明,王如意.垃圾填埋场覆盖层灌溉处理渗滤液的试验研究[J].长江流域资源与环境,2005,14(4):516-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700