测试性虚拟验证技术及其在直升机航向姿态系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测试性是装备一个重要的设计特性。测试性验证是检验和衡量装备测试性水平是否达到设计要求的重要技术手段。
     目前应用的测试性验证方法主要是基于故障注入的实物验证。该方法存在故障注入受限、费用高、周期长等问题。随着建模仿真的发展,测试性虚拟验证日益受到关注。但目前测试性虚拟验证在技术流程、面向测试性的虚拟样机建模、故障样本集生成、测试性综合评估等方面还需要深入研究。本文针对上述问题,以某直升机航向姿态系统及其机内测试(Built-in Test,BIT)为对象,开展测试性虚拟验证技术及应用研究。
     论文的主要研究内容包括:
     1.针对目前测试性虚拟验证技术流程不明晰的问题,在分析测试性实物验证技术流程的基础上,对测试性虚拟验证和实物验证进行比对了分析,提出了测试性虚拟验证的技术流程,分析了测试性虚拟验证的若干关键技术环节,为开展关键技术研究和直升机航向姿态系统BIT虚拟验证提供了指导。
     2.针对传统测试性模型和功能虚拟样机模型不能用于测试性虚拟验证的问题,分析了面向测试性的虚拟样机组成要素及其之间的相互关系,阐述了面向测试性的虚拟样机建模方法和流程。应用Multisim10软件,建立了航向姿态系统的结构-功能-行为-故障-测试一体化虚拟样机模型,为测试性虚拟验证的开展奠定了基础。
     3.为获取测试性虚拟验证所需要注入的故障样本集,综合考虑工作环境应力、维修活动等实际影响因素,提出了基于蒙特卡洛方法的故障样本集模拟生成方法,给出了故障样本集模拟生成的具体过程,并应用该方法生成了航向姿态系统BIT虚拟验证所需注入的故障样本集。
     4.为提高测试性虚拟验证结论置信度,提出了融合虚拟试验数据与实物试验数据的测试性指标综合评估方法,并对其中的仿真信息可信性分析和基于Bayes的测试性指标评估进行了阐述。对航向姿态系统进行了测试性虚拟验证,评估得到了航向姿态系统BIT的测试性指标,并通过不同验证方法的评估结果分析,说明了本文所述方法的可行性与有效性。
Testability is a crucial characteristic of equipments. Testability verification is a primary and widely used instrumentality to evaluate whether the testability level is satisfying with the requirements stated in the contract.
     Up to now, testability verification is mainly carried out with the physical test based on fault injection. Practice shows that the physical test has the deficiencies such as the difficulty in fault injection, high risk and cost, long testing period and so on. As the development of modeling and simulation technology, more and more attention has been paid to the Testability Virtual Verification (TVV). However, there are still many problems to research such as TVV flow deciding, testability virtual prototype modeling, fault samples generation, synthesize evaluation and so on. Focus on these issues, the TVV technology is researched and applied to one in this paper.
     The major contents of the dissertation are as follows.
     1. Focus on the indeterminacy to the TVV implement flow, the differences between testability physical test verification and virtual test verification are analyzed. Based on the implement flow of physical test, the implement flow of virtual test is proposed. Then, some crucial technology points of TVV are construed. It supplies the guidance to the research on the TVV technology and application on the Built-in test (BIT) of heading and attitude system in certain helicopter.
     2. Because neither the traditional testability model nor traditional functional virtual prototype can meet the requirement of TVV, the components of testability virtual prototype and the interrelation among the components are studied. Meanwhile, the testability virtual prototype modeling method and flow are described. The basic of TVV, Configuration-Function-Fault-Test-Environment integrated model of the heading and attitude system is set with the software Multisim10.
     3. In order to obtain the fault injection samples used in the testability verification, a new approach considering the effects of environment stress and maintenance to generate fault samples sequence is proposed based on the Monte Carlo simulation. The implement flow of simulation method is put forward and used to generate the fault injection samples of heading and attitude system. 4. In order to improve the conclusion confidence level of the virtual verification, an integrated evaluation method considering both the physical and virtual test data is put forward. The simulation information creditability analysis theory and the testability index evaluation method based on Bayes are discussed. At last, the virtual test and the index evaluation method are carried out on the heading and attitude system. Compared with other evaluation methods, the approach is demonstrated to be feasible and effective.
引文
[1] GJB3385-1998.测试与诊断术语[S].北京:国防科工委军标出版社, 1998.
    [2] GJB451A-2005.可靠性维修性保障性术语[S].北京:国防科工委军标出版社, 2005.
    [3]田仲,石君友.现有测试性验证方法分析与建议[J].质量与可靠性,2006(2):47-51.
    [4]田仲,石君友.系统测试性设计分析与验证[M].北京:北京航空航天大学出版社,2003.
    [5] GJB2547-95.装备测试性大纲[S].北京:国防科工委军标出版社, 1995.
    [6] Pattipati K R, Raghavan V , Shakeri M. TEAMS: Testability Engineering and Maintenance System[C]. Proceeding of the American Control Conference, 1994.
    [7] Deb S, Pattipati K R, Raghavan V.Multi-Signal Flow Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis[J].IEEE AES Magazine,1995(5):14-25.
    [8]刘海明,易晓山.多信号流图的测试性建模与分析[J].中国测试技术,2007.1,33(1):49-50.
    [9] Fang Tu, Deb K R, Malepati S.Computationally Efficient Algorithms for Multiple Fault Diagnosis in Large Graph-Based Systems[J].IEEE Design and Test of Computers,2003,33(1):73-85.
    [10] Paul.D.Logic Moedling as A Tool for Testability[C].IEEE AUTOTESTCON'85,1985.
    [11]邱静,刘冠军,李天梅.基于虚拟样机的可测性虚拟试验验证技术研究及发展[C].第二届国防科技工业试验与测试技术发展战略高层论坛论文集,2008
    [12] Anderson J L, Figurerres Z E, Hovakemian A.Using ATE Simulation to Develop Test Procedures and Verify Testability for the Standard Missile[C] . AUTOTESTCON’98. IEEE Systems Readiness Technology Conference,1998:28-34.
    [13]张宝珍.国外武器装备综合试验与评价的发展及应用[J].计算机测量与控制,2009,17(1):1-5.
    [14]赵雯,胡德风.武器系统虚拟试验验证技术发展研究[J].计算机测量与控制,2008,16(1):1-3.
    [15] Barnett . In-service Reliability, Maintainability and Testability Demonstrations-15years of Experimence[C].Proceedings Annual Reliability andMaintainability Symposium,2003,587-592
    [16] DMSO. Instruction 5000.61. DoD Modeling and Simulation (M&S) Verification,Validation, and Accreditation (http: //www.dmso.mil) , 1996.
    [17] DMSO. Modeling and Simulation(M&S)Master Plan (http://www.dmso.mil/public/dod/policy), 1995.
    [18] DMSO. VV&A Recommended Practice Guide Millennium Edition (http://www.dmso.mil), 2000.
    [19] Kadir A A, Xu X, Haemmerle E.Virtual machine tools and virtual machining-a technological review[J].Robotics and Computer-Integrated Manufacturing,2011,27(3):494-508.
    [20]李果,高建民,姜洪权.基于多色集合的多重故障建模与推理技术研究[J].计算机集成制造系统,2007,13(4):643-648.
    [21]连光耀,黄考利,吕晓明,薛凯旋.基于混合诊断的测试性建模与分析[J].计算机测量与控制,2008.5,16(5):601-603.
    [22]焦鹏.导弹制导仿真系统VV&A理论和方法研究[D].国防科学技术大学,2010.
    [23]李鹏波,张金槐.仿真可信性的研究综述[J].计算机仿真,2007.7,17(4):12-14.
    [24]李鹏波.仿真可信性及其在导弹系统一体化研究中的应用[D].国防科技大学,1999.
    [25] Fishman G. S, Kiviat P. J.The Analysis of Simulation Generated Time Series[J],1976,13(7):525-557.
    [26]李姝.导弹系统仿真模型验证方法研究[D].国防科技大学,2003.
    [27] GJB2072-94 (1995).维修性试验与评定.北京:国防科工委军标出版社, 1995.
    [28]李天梅,邱静,刘冠军.测试性模拟故障注入试验中的故障模型研究[J].中国机械工程,2009.8,20(16):1923-1927.
    [29]石君友,康锐,田仲.测试性试验中样本集的测试覆盖充分性研究[J].测控技术,2004,23(12):19-21.
    [30] Tianmei L.The Allocation Plan of Failure Sample Based on Failure Rate in Testability Demonstration Tests[J].Acta Aeronautica et Astronautica Sinica,2009,30(9):1661- 1665.
    [31] Liu L, Chang J Y, Zhou M G.Selection and Simulation of Fault Samples in Weapon Equipment's Maintainability Test[C].8th International Symposium on Test Measure,2009:3296-3299.
    [32]曾天翔.电子设备测试性及诊断技术[M].北京:航空工业出版社,1996.
    [33] Jarboui T, Alart A,Crouzet Y,et al.Experimental Analysis of the Errors Induced into Linux by Three Fault Injection Technology[C].IEEE Proceedings of the International Conference on Dependable Systems and Networks,2002
    [34] Karsson J, Gunneflo U, Liden P, et al.Two Fault Injection Techniques for Test of Fault Handling Mechanisms[C].IEEE Inter.Conference on Test,2001:140-149.
    [35]徐萍.测试性试验方法与试验平台研究[D].北京航空航天大学,2006.
    [36]任向隆,马捷中,曾宪炼.基于VHDL的故障注入技术研究[J].测控技术,2009,28(11):73-76.
    [37] Segall Z, Vrsalovic D, Siewiorek D, et al.FIAT– Fault Iinjection Based Automated Testing Environment[C].Proc.of the 18th Int’l Symp.on Fault-Tolerant Computing (FTCS-18),1988:102-107.
    [38] Thorhuus R.Software Fault Injection Testing[C].Master of Science Thesis,2000:5-21.
    [39]胡坚.基于虚拟仪器的雷达自动测试平台研制[D].华南理工大学,2007.
    [40]周润景,郝晓霞.Multisim&LabVIEW虚拟仪器设计技术[M].北京:北京航空航天大学出版社,2008.
    [41]李天梅.装备测试性验证试验优化设计与综合评估方法研究[D].国防科技大学,2010.
    [42]高鑫宇.测试性虚拟验证中的故障建模技术研究[D].国防科技大学,2008.
    [43]张金槐,刘琦,冯静.Bayes试验分析方法[M].长沙:国防科技大学出版社,2007.
    [44] Aminzadeh M S.Bayesian Estimation of Renewal Function for Inverse Gaussian Renewal Process[J].Journal of Statistical Computation and Simulation,2011,81(3):331-341.
    [45]金星,洪延姬,沈怀荣,张铮.可靠性数据计算及应用[M].北京:国防工业出版社,2002.
    [46]张湘平.小子样统计推断与融合理论在武器系统评估中的应用研究[D].国防科技大学,2003.
    [47] Alderighi M,Angelo D S,Mancini M,et al.A fault Injection Tool for SRAM-based FPGA[C].Proceedings of 9th IEEE International On-Line Testing Symposium(IOLTS 2003),2003:129-133.
    [48]卢建林,杨士元,王红,胡庚.基于PSPICE进行模拟电路故障建模的方法[J].微电子学与计算机,2006,23(7):17-23.
    [49]毛磊,唐华.基于LASAR的数字电路可测试性设计仿真[J].中国测试技术,2007.9,33(5):109-113.
    [50]闰颖良,王平,徐香.基于orCAD PSpice的电路故障建模方法研究[J].计算机测量与控制,2009,17(2):278-280.
    [51] J S Liu.Monte Carlo Strategies in Scientific Computing[M].Beijing:World Books Publishing Corporation,2005.
    [52]邓爱民.高可靠长寿命产品可靠性技术研究[D].国防科技大学,2006.
    [53]冯静,孙权,罗鹏程等.装备可靠性与综合保障[M].长沙:国防科技大学出版社,2008.
    [54]孙进康,郦正能.可修复系统故障率分析[J].北京航空航天大学学报,2001.10,27(5):578-581.
    [55]张春香.可维修系统的可靠性研究[D].燕山大学,2001.
    [56]陈琳,李东升,徐明珠.可修复系统故障时刻的估计[J].大庆石油学院学报,1996.6,20(2):67-70.
    [57]吴月明.可修复系统事后维修可靠性仿真[J].计算机仿真,2007.07,24(7):107-111.
    [58] GJB299C-2006.电子设备可靠性预计手册[S].北京:国防科工委军标出版社, 2006.
    [59] MIL-HDBK-217F. Reliability Prediction of Electronic Equipment[S]. 1992.
    [60]曹然,陈颖,康锐.基于Bellcore标准的电子产品可靠性预计方法及案例研究[J].电子质量,2010(6):60-83.
    [61] Veber B, Nagode M, Fajdiga M.Generalized Renewal Process for Repairable Systems Based on Finite Weibull Mixture[J].Reliability Engineering & System Safety,2007,93(10):1461-1472.
    [62]金振中,向杨蕊.武器系统仿真结果可信性分析及其应用[J].系统仿真学报,2009.6,21(12):3599-3602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700