用户名: 密码: 验证码:
多孔质气悬浮特性的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体相关产业的发展,半导体晶圆及液晶玻璃基板(TFT-LCD)等产品呈现大型化、薄型化的发展趋势,其传输过程中需要采用无摩擦非接触的方式以确保表面无划伤。当前较为活跃的非接触式传输技术主要包括电磁悬浮式、静电悬浮式、超声波悬浮式和空气悬浮式。其中,基于气悬浮方式构建的传输系统具有清洁无污染,不发热,不生磁等优点,成为当前非接触式传输领域的主流。传统的气悬浮传输导轨采用小孔作为节流元件使压缩空气经小孔进行供给,在基板下方形成一层空气薄膜,对基板施加向上的压力以平衡其重量从而达到非接触状态。然而,节流小孔中心存在压力尖峰,容易导致产生应力集中,同时从小孔喷出的高速气流亦会对周围清洁环境造成破坏。为避免此类问题,通常利用多孔质代替小孔作为节流元件,缓解应力集中现象并达到抑制空气喷流速度的目的。随着大型液晶基板高端生产线的不断建设,利用多孔质作为节流元件构建非接触式传输系统势必成为未来的发展趋势,而当前多孔质气悬浮基础理论模型的匮缺将在很大程度上限制生产效率的提高。
     为指导基于多孔质气悬浮技术的非接触式传输系统的优化设计,本文采用理论分析、数学建模、数值仿真和试验研究相结合的方法,对多孔质气悬浮的特性进行了系统、深入的研究。首先,从最基本的多孔质气阻元件的流量特性着手,基于流体在多孔介质内部的基本流动规律建立了流量特性模型,提出简便快捷的一次充气流量特性测试法,极大地降低了测试时耗及能耗。其次,围绕空气薄膜的静态特性和动态特性,分别建立了气膜压力特性的数学模型,分析了各系统参数对气膜特性的影响,并通过试验对模型的有效性进行了验证。最后设计了局部多孔质气浮导轨,并针对不同规格的玻璃基板提出了相应的系统构建准则。现将各章内容分述如下:
     第一章简要介绍了玻璃基板传输技术的发展历程和主要特点;按照不同实现形式分类详细阐述了非接触式传输技术的研究现状,分析总结了各类悬浮方式的原理,结构特点和优缺点,指出了基于多孔质气悬浮构建非接触式传输系统的优势;阐述了非接触式传输技术所涉及的多孔质流量特性,气体润滑等相关气动技术进展;最后概括了本课题的研究意义及主要研究内容。
     第二章针对IS06358标准及其流量扩展式在描述多孔质气阻流量特性上的缺陷,考虑多孔介质内部气孔率和流体基本流动规律,基于Darcy-Forchheimer定律对多孔质气阻元件建立了流量特性模型;制备了6种不同尺寸,不同气孔率的烧结金属多孔质进行流量测试试验,通过辨识模型中的渗透系数和惯性系数以对其流量特性进行描述;提出等温容器结合压力微分计的多孔质流量特性一次充气测试法,与传统的定常测试法相比,极大地降低了测试能耗,缩短了测试时间。最后,对基于各模型的计算结果与试验数据进行了误差对比分析,对试验系统的测试精度进行了评估。
     第三章在具有代表性的多孔质基本区域单元内分别建立了平行圆板间放射状间隙流压力分布求解模型和三维有限元求解模型,对比分析了两种不同模型之间的仿真结果差异,并通过压力分布试验进行了验证;搭建了气膜承载力测试装置进行相关试验,结合仿真研究揭示了供给流量、间距高度和单元区域半径等因素对气膜承载力及刚度的影响,进一步验证了仿真模型的可靠性。
     第四章考虑多孔质表面的速度滑移现象,建立了包含多孔质特性和间隙流特性的气膜压力动态模型,利用有限体积法(FVM)求解对气膜压力特性进行描述;设计了模拟基板受到冲击扰动时多孔质表面气膜动态特性的试验装置,仿真与试验结合研究了气膜压力、刚度系数、阻尼系数与间隙距离之间的内在变化规律;搭建了脉冲扰动下的工件自由振荡试验测试装置,仿真结合试验对自由振荡衰减特性进行了分析;最后,通过振荡衰减曲线中第二个与第三个波峰的幅值比求取阻尼比来描述衰减快慢程度,并对其影响因素进行了分析。
     第五章基于薄板一维形变模型,分析了基板在分布载荷作用下的虚拟形变情况,论述了导轨间距、供给流量、固壁宽度、多孔区域半径等因素对形变的影响。设计了一种局部多孔质导轨单元,采用三个单元组合成双列排布式气浮导轨,搭建了气悬浮综合试验装置。提出了通过平行圆板间放射状间隙流模型结合Hele-Shaw流动模型对导轨气膜压力分布进行快速求解的方法,大大提高了计算效率。仿真与试验结合研究了气浮导轨的流量特性、能耗及工件运动过程中的上下振动等问题,将其流量特性通过Darcy-Forchheimer表示法进行描述,并引入气动功率的概念对能耗加以评价。利用负压加载的方式可以降低工件悬浮高度,增大气膜刚度,提高其抗外扰动能力。对局部多孔质及全多孔质导轨就悬浮工件运动平稳性及有效功率等方面进行了对比,分析总结了两种导轨的各自特点及优势。最后,为传输流水线设计了4种气悬浮导轨,针对不同规格玻璃基板的气浮支撑模块提出了相应的构建方法。
     第六章对本论文的主要工作、研究结论和创新点进行了总结,展望了未来的研究工作。
With the development of semiconductor related industry, TFT-LCD products are now showing the trends of becoming larger and thinner, and therefore non-contact mode is required during the conveying process in order to prevent scratch on the surface. Current non-contact conveying technologies typically employ magnetic, electrostatic, ultrasonic and pneumatic levitation. The pneumatic levitation based conveying system has several advantages such as clean, magnetic free and generating little heat, and therefore comes to dominate in the non-contact conveying field. Traditional conveyors supply pressurized air beneath the floating glass by means of small orifices, balancing the weight of the glass panel by the lifting force to achieve non-contact status. However, there exists a considerable pressure peak at the center of the orifice, where stress concentration is likely to be caused. Besides, the high speed airflow from the orifice will undoubtedly puff up a large amount of dust and deteriorate the cleanliness. In order to avoid these problems, porous media are usually used to replace orifices to relieve the stress concentration and also restrain the airflow speed. As the continuous construction of the advanced production line for large LCD panel, to build non-contact conveying system using porous media is sure to become future tendency, but, the absence of basic theory model undoubtedly restricts the improvement of productivity greatly.
     In order to give instructions for optimal design of the porous media based non-contact conveying system, the present thesis adopts methods including theory analysis, mathematical modeling, numerical simulation and experimental study, to carry out a systematically and deeply research on the basic knowledge involved in the process of system construction. First of all, a flow rate characteristics model is established on the basis of principle when flowing through porous media, and a simple, convenient charge method for determining the flow rate characteristics of porous media is also proposed, with great reduction in the testing time and air consumption. Secondary, mathematical models that are able to describe the static and dynamic pressure characteristics of the air film are established respectively. Influence of the system parameters on the air film characteristics is analyzed, and the validity of the models is verified experimentally. Finally, a partial porous conveyor is designed, and corresponding instructions for system construction are proposed considering the dimensions of the glass panel. The main content of each chapter is summarized as follows:
     In chapter1, developmental course and main features of the conveying technologies for glass panel are briefly introduced. A review on the non-contact conveying technology is presented into categories, and the principles, constructional features, advantages as well as disadvantages of each approaches, are summarized, pointing out the superiority of employing porous media to build the non-contact conveying system. Developmental course of some pneumatic technologies concerning the flow measurement and gas lubrication are also presented. Finally, significance and main contents of this research are illustrated briefly.
     In chapter2, in view of the existing problems of ISO6358standard as well as its expanded expression in representing the flow rate characteristics of porous media, a Darcy-Forchheimer model is established to describe the flow rate characteristics considering the flow pattern in the porous media.6sintered metal porous resistances with different dimensions and porosities are prepared to perform test for examining the flow rate characteristics. A charge method employing an isothermal chamber and a pressure differentiator to determine the permeability coefficient and inertia coefficient is proposed. The charge method has advantages over the conventional steady state method for it takes only seconds to finish the test and consumes less air. At last, it is confirmed that the model based calculated flow rate show good agreement with the experimental data, and the experimental testing system can afford sufficient accuracy for practical use.
     In chapter3, a theoretical model, considering the radial flow between two parallel disks, and a3D finite element model are established within a representative region, respectively. Comparison of the simulation results between the two models is presented, and pressure distribution experiment is performed to verify the validity of the models. Experiments are also carried out to measure the load capacity of the air film, revealing that some factors such as supply flow rate, gap height and region radius have impacts on the load capacity and stiffness of the air film, and the reliability of the models are further confirmed.
     In chapter4, considering the velocity-slip phenomenon on the porous surface, a theoretical model concerning the air flow through the porous media into the gap was established within a representative region unit, and solved by using finite volume method (FVM). An apparatus, which vibrates a work piece back and forth to squeeze the air film, is designed to investigate the pressure response, and the relationship among air film pressure, stiffness, damping, and gap height are studied experimentally and theoretically. The experiment of free vibration for work piece under pulse disturbance is conducted, and the decay characteristic is analyzed in comparison with the model based calculated results. Finally, a principle, for determining the damping ratio by amplitude of the second and the third wave crest in the vibrating decay curve. is provided to represent the decay speed, and its influencing factors are also investigated.
     In chapter5, based on the1D deformation theory, virtual deformation of the panel under distributed load is calculated. Influences from the space between conveyors, supply flow rate, and flange width are detailed, and basic principles for parameter determination are provided. A kind of assembling unit for partial porous conveyor is developed, and an experimental system is set up using a double line distributed conveyor which is assembled by3units. A fast-solving method, based on the combined model of the radial flow and the Hele-Shaw flow between two parallel disks, is proposed to calculate the pressure distribution, improving the efficiency greatly. Flow rate characteristics, energy consumptions, together with the vibrating problems encountered in the conveying process are investigated experimentally and theoretically. The flow rate characteristics are described subjected to the Darcy-Forchheimer equation, and the fundamental conception of air power is introduced for energy evaluation. The approach of loading with negative pressure is able to decrease the floating height, increase the air film stiffness, and improve the Anti-Disturbance ability. Comparisons between the partial and total porous conveyors are conducted from the aspect of the stability of the movement, and the effective power as well. Features and advantages for each type of the conveyor are also summarized. In the end,4series of the air conveyor are designed for the production line, and corresponding constructional instructions according to different glass panel are provided.
     In chapter6, main research work, conclusions and innovation points of the thesis are summarized and future work is suggested.
引文
[1]门连通,白淑璠.非接触式传输设备在液晶物流中的应用[J].物流技术,2006,5:27-29
    [2]王涛,杨玉贵,彭光正.半导体及平板显示制造业中的空气非接触式传输技术[J].液晶与显示,2009,24(3):404-408
    [3]R. L. Guldi, M. T. Whitfield, F. D. Poag. Strategy and metrics for wafer handling automation in legacy semiconductor fab [J]. IEEE Transactions on Semiconductor,1999, 12(1):102-108
    [4]V. Vandaele, P. Lambert, A. Delchambre. Non-contact handling in microassembly: Acoustical levitation [J]. Precision Engineering,2005,29(4):491-505.
    [5]E. H. Brandt. Levitation in physics [J]. Science,1989,243(4889):349-355.
    [6]Moon F C. Magneto-Solid Mechanics. New York:Cornell Univercity.1984
    [7]小豆泽:磁気浮上を利用した搬送技术,精密工学会志.1997,63(7):938-942
    [9]PR Southworth, GR Baxter. Semiconductor wafer transport system. US Patent 4540326[P/OL], Sep.10,1985
    [10]D Belna. Linear induction semiconductor wafer transportation apparatus. US Patent 4624617[P/OL], Nov.25,1986
    [11]K. H. Park, K. Y. Ahn, S. H. Kim, Y. K. Kwak, and I. A. Wang. Contactless magnetically levitated silicon wafer transport system [J]. Mechatronics,1996,6(5):591-610
    [12]K. H. Park, K. Y. Ahn, S. H. Kim, and Y. K. Kwak. Wafer Distribution System for a Clean Room Using a Novel Magnetic Suspension Technique [J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS,1998,3(1):73-77
    [13]S. J. Kwang, B. S. Ki. Noncontact conveyance of conductive plate using omni-directional magnet wheel [J]. Mechatronics,2010,20(4):496-502
    [14]S. Kumar, D. Cho, and W. Carr. Experimental study of electric suspension for microbearings [J]. Journal of Microelectro mechanical systems,1992, 1(1):23-30
    [15]Jong Up Jeon, Toshiro Higuchi. Electrostatic Suspension of Dielectrics [J]. IEEE Transactions on industrial electronics,1998,45(6):938-946
    [16]Fowlai POH, Toshiro HIGUCHI, Koji Yoshida and Koichi OKA. Non-contact Transportation System for Thin Glass Plate Utilizing combination of air bearing and electrostatic force [C]. Proceedings of the 38th SICE Annual Conference.1999, Vol.212B2: 1053-1058
    [17]E. Van West, A. Yamamoto, B. Burns, T. Higuchi. Non-contact handling of hard-disk media by human operator using electrostatic levitation and haptic device [C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA:1106-1111.
    [18]J. U. Jeon, K. Y. Park, T. Higuchi. Contactless suspension and transportation of glass panels by electrostatic forces [J]. Sensors and Actuators A,2007,134(2):565-574
    [19]S. Ueha, Y. Hashimoto, Y. Koike. Non-contact transportation using near-field acoustic levitation [J]. Ultrasonics,2000,38(1):26-32
    [20]E. Matsuo, Y. Koike, K. Nakamura, et al. Holding characteristics of planar objects suspended by near-field acoustic levitation,2000,38(1):60-63
    [21]Y. Hashimoto, Y. Koike, S. Ueha. Transporting objects without contact using flexural traveling waves [J]. Acoustical Society of America,1998,103(6):3230-3233
    [22]C. Waltham, S. Bendall, A, Kotlicki. Bernoulli levitation [J]. Am. J. Phys,2002,71(2): 176-179
    [23]J. D. Tedford. Developments in robot grippers for soft fruit packing in New Zealand [J]. Robotica,1990,8(4):279-283
    [24]G. Solero, A. Coghe. Experimental fluid dynamic characterization of a cyclone chamber [J]. Experimental Thermal and Fluid Science,2002,27:87-96
    [27]平山朋子.静圧気体轴受たよる非接触搬送技术[J].油空圧技术.2008,47(10):7-11
    [28]G. Zitouni, G. H. Vatistas. Purely accelerating and decelerating flows within two flat disks. Acta Mechanica.1997,123:151-161
    [29]D. Katoshevski, I. Frankel and D. Weihs. Viscous interaction between parallel radial streams [J]. Fluid Dynamics Research.1993,12:153-161
    [30]J. D. Raal. Radial source flow between parallel disks [J]. Journal of Fluid Mechanics. 1978,85:401-416
    [31]P. S. Moller. Radial flow without swirl between parallel discs. Aeronautical Q,1963, 14:163-186
    [32]P. S. Moller. A radial diffuser using incompressible flow between narrowly spaces disks. Journal of Basic Engineering.1966,67:155-162
    [33]C. E. Wark, J. F. Foss. Forces caused by the radial out-flow between parallel disks [J]. Transactions of the ASME,1984,106(9):292-297
    [34]F. Erzincanli, J. M. Sharp, S. Erhal. Design and operational considerations of a non-contact robotic handling system for non-rigid materials [J]. Int. J. Mach. Tools Manufact,1998,38(4):353-361
    [35]S. Davis, J. O. Gray, D. G. Caldwell. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables [J]. Robotics and Computer-Integrated Manufacturing. 2008,24:249-257
    [36]X. F. Brun, S. N. Melkote. Modeling and Prediction of the Flow, Pressure, and Holding Force Generated by a Bernoulli Handling Device [J]. ASME Journal of Manufacturing Science and Engineering,2009,131:031018-1-7
    [37]F. C. Possamai, R. T. S. Ferreira, A. T. Prata. Pressure distribution in laminar radial flow through inclined disks [J]. International Journal of Heat and Fluid Flow,2001,22:440-449
    [39]A. J. Hoekstra, J. J. Derksen, H. E. A. Van Den Akker. An experimental and numerical study of turbulent swirling flow in gas cyclones [J]. Chemical Science,1999,54: 2055-2065
    [40]S. Jakirlic, K. Hanjalic and C. Tropea. Modeling Rotating and Swirling Turbulent Flows: A perpetual challenge, AIAA J.,2000,40(10):1984-1996
    [41]Jolius Gimbun, T. G. Chuah, A. Fakhru'l-Razi, Thomas S. Y. Choong. The influence of temperature and inlet velocity on cyclone pressure drop:a CFD study [J]. Chemical Engineering and Processing.2005,44:7-12
    [42]J. J. Derksen. Simulations of confined turbulent vortex flow [J]. Computers & Fluids. 2005,34:301-318.
    [43]Amit Gupta, Ranganathan Kumar. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations [J]. International Journal of Heat and Fluid Flow.2007,28: 249-261.
    [44]黎鑫.空气圧の旋回流を用いた非接触搬送装置た关する研究[D].东京:东京工业大学,2009
    [45]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Dynamic Modeling of Vortex Levitation. 2008 Asia Simulation Conference,218-224.
    [46]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Dynamic Characteristics of Vortex Levitation. Proc. Of SiCE Annual Conference,2008,1175-1180
    [47]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Analysis of vortex levitation [J]. Experimental Thermal and Fluid Science,2008,32:1448-1454
    [48]Xin Li, Shouichiro Lio, Kenji Kawashima, and Toshiharu Kagawa. Computational Fluid Dynamics Study of a Noncontact Handling Device Using Air-Swirling Flow [J]. Journal of Engineering Mechanics,2011,137(6):400-409
    [49]Shouichiro Lio, Masako Umebachi, Xin Li, Toshiharu Kagawa, Toshihiko Ikeda. Performance of a non-contact handling device using swirling flow with various gap height [J]. Journal of visualization,2010,13(4):319-326
    [51]K. Gururajan, J. Prakash. Roughness effects in a narrow porous journal bearing with arbitrary porous wall thickness [J]. International Journal of Mechanical Sciences,2002, 44(5):1003-1016
    [52]Changzhi Cui, K. Ono. Theoretical and Experimental Investigation of an Externally Pressurized Porous Annular Thrust Gas Bearing and Its Optimal Design [J]. ASME Journal of Tribology,1997,119:487-492
    [53]S. C. Sharma, S. C. Jain, K. K. Bharuka. Influence of Recess Shape On the Performance of A Capillary Compensated Circular Thrust Pad Hydrostatic Bearing [J]. Tribology International,2002,35:347-356
    [55]M. F. Chen, Y. T. Lin. Static behavior and dynamic stability analysis of grooved rectangular aerostatic thrust bearings by modified resistance network method [J]. Tribology International,2002,35:329-338
    [56]G. Belforte, T. Raparelli, V. Viktorov, A. Trivella. Discharge coefficients of orifice-type restrictor for aerostatic bearings [J]. Tribology International,2007,40:512-521
    [57]Yuntang Li, Han Ding. Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance [J]. Tribology International,2007,40:1120-1126
    [58]C. J. G. Chandra, Y. L. Srinivas, K. N. Seetharamu, M. A. Parameswaran. Investigation of air film conveyor pressurised through multiple holes. Finite Elements in Analysis and Design,1990,6:235-243
    [59]M. Foruka, Y. Tian, M. Bonis. Prediction of the stability of air thrust bearings by numerical [J], analytical and experimental methods. Wear,1996,198:1-6
    [60]Y. B. P. Kwan, J. Corbett. Porous aerostatic bearings-an updated review. Wear,1998.222: 69-73
    [61]杜金名.多孔质流体静压轴承润滑技术的研究[D].哈尔滨:哈尔滨工业大学.2003
    [62]杜金名,卢泽生,孙雅洲.影响空气静压多孔质轴承静态性能的有关因素[J].中国机械工程,2003,14(5):417-419
    [63]于雪梅.局部多孔质气体静压轴承关键技术的研究[D].哈尔滨:哈尔滨工业大学,2007
    [64]卢泽生,于雪梅,孙雅洲.局部多孔质气体静压轴向轴承静态特性的数值求解[J].摩擦学学报,2007,27(1):68-72
    [65]H. G. Lee, D. G. Lee. Design of a large LCD panel handling air conveyor with minimum air consumption. Mechanism and Machine Theory,2006,41:790-806
    [66]M. Masuda, A. Kitano, T. Hirayama, T. Matsuoka. Theoretical analysis of aerostatic porous bearing guide for large glass sheets in liquid crystal display manufacturing equipment. World Tribol Cong 2009:489
    [67]K. Amano, S. Yoshimoto, M. Miyatake and T. Hirayama. Basic investigation of noncontact transportation system for large TFT-LCD glass sheet used in CCD inspection section. Precision Engineering,2011,35(1):58-64
    [68]http://www.orbotech.com/
    [70]http://www.ckd.co.jp/
    [71]http://www.convum.co.jp/en/convum.html
    [72]http://www.newwayairbearings.com/
    [73]Drew Devitt (New Way Air Bearings)ガラス基板が空中た浮く理由:太阳雷池制造た活用されるFPD搬送技术(解说)Semiconductor International日本版.2009,5:20-25
    [74]Adrian E. Scheidegger. The physics of flow through porous media (Third Edition). Toronto,1974
    [75]Donald A. Nield, Adrian Bejan. Convection in Porous Media (Third Edition). New York, 2006
    [76]J. Bear. Dynamics of fluids in porous media. New York,1972
    [77]顾临,邱世庭,赵扬.烧结金属多孔滤材技术综述[J].流体机械,2002,30(2):30-34
    [78]P. H. Forchheimer. Wasserbewegun durch Boden. Zeitschrift des Vereines Deutscher Ingenieure,1901,45:1782-1788
    [79]E. F. Blick. High speed flow through Porous Media. Ph. D. dissertation. Pp:15-43, University of Oklahoma,1963
    [80]E. F. Blick. Capillary-Orifice Model for High-Speed Flow through Porous Media. Ind. Eng. Chem. Process Des. Dev.,1966,5(1):90-94
    [81]J. C. Ward. Turbulent Flow in Porous Media. Journal of Hydraulics Division. Proceedings of the American Society of Civil Engineers,1964,90:1-12
    [82]G. S. Beavers, E. M. Sparrow. Non-Darcy Flow through Fibrous Porous Media [J]. Journal of applied mechanics,1969,36:711-714.
    [83]G. S. Beavers, E. M. Sparrow, D. E. Rodenz. Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres [J]. Journal of applied mechanics,1973,40:655-660.
    [84]B. V. Antohe, J. L. Lage, D. C. Price, R. M. Weber. Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices [J]. Journal of Fluids Engineering.1997,119(6):402-412
    [85]J. L. Lage, B. V. Antohe, D. A. Nield. Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media [J]. Journal of Fluids Engineering.1997,199(3):700-706
    [86]W. T. Wu, J. F. Liu, W. J. Li, W. H. Hsieh. Measurement and correlation of hydraulic resistance of flow through woven metal screens [J]. Intrenational Journal of Heat and Mass Transfer.2005,48:3008-3017
    [87]Tongbeum Kim, Tian Jian Lu. Pressure Drop Through Anisotropic Porous Mediumlike Cylinder Bundles in Turbulent Flow Regime [J]. Journal of Fluids Engineering.2008.130: 104501-1-5
    [88]L. E. Brownell, H. S. Dombrowshi, C. A. Dickey. Pressure drop through porous media-part IV [J]. Chemical Engineering Progress,1950,46:415-422
    [89]J. R. Lin. Optimal design of one-dimensional porous slider bearings using the Brinkman Model. Tribology International.2001,34:57-64
    [90]J. R. Lin, C. C. H. Lubrication of short porous journal bearings-use of the Brinkman-extended Darcy Model. Wear.1993,161:93-104
    [91]A. A. Elsharkawy, L. H. Guedouar. Hydrodynamic Lubrication of Porous Journal Bearings Using A Modified Brinkman-extended Darcy Model. Tribology International.2001,34: 767-777
    [92]K. Cieslizki. Investigations of the effect of inertia on flow of air through porous bearing sleeves [J]. Wear,1994,172(1):73-78
    [93]F. M. Allan, M. A. Hajji, M. N. Anwar. The Characteristics of Fluid Flow through Multilayer Porous Media [J]. ASME Journal of Applied Mechanics,2009,76:014501-1-7
    [94]T. S. Luong, W. Potze, J. B. Post, R. A. J. van Ostayen, A. van Beek. Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors. Tribology International.2004,37:825-832
    [95]Determination of flow-rate characteristics of components using compressible fluids-Part 3, ISO/CD 6358-3,2005
    [96]蔡茂林.现代气动技术理论与实践——第一讲:气动元件的流量特性[J].液压气动与密封,2007(2):44-48
    [97]滕燕,李小宁.针对IS06358标准的气动元件流量特性表示式的研究[J].液压与气动,2004(2):6-9
    [98]王雪松,彭光正.气动调速阀流量特性试验研究[J].机床与液压,2006(7):154-156
    [99]徐文灿.串接音速排气法测定气动元件的流量特性[J].液压与气动,1989(2):40-43
    [100]ZHANG Huping, SENOO Mitsuru, ONEYAMA Naotake. Study and suggestions on flow-rate characteristics of pneumatic components [C]//ISFP'2003 Proceedings of the Fourth International Symposium on Power Transmission and Control, April 8-10,2003, Wuhan, China. International Academic Publishers Word Publishing Corporation,2003: 326-331
    [101]藤燕,孟国香,张护平,小根山尚武.气动元件合成流量特性的相关研究[J].液压与气动,2004,12:28-30
    [102]G. Belforte, T. Raparelli, V. Viktorov, A. Trivella. Permeability and Inertial Coefficients of Porous Media for Air Bearing Feeding Systems. Journal of Tribology.2007,129(10): 705-711
    [103]G. Belforte, T. Raparelli, V. Viktorov, A. Trivella. Feeding System of Aerostatic Bearings With Porous Media.6th JFPS International Symposium on Fluid Power, Tsubuka, Japan, Nov.7-10, pp:126-131
    [104]G. Belforte, T. Raparelli, V. Viktorov, A. Trivella. Metal woven wire cloth feeding system for gas bearings [J]. Tribology International,2009,42(4):600-608
    [105]D. A. Sullivan. Historical Review of Real-Fluid Isentropic Flow Models [J]. Journal of Fluids Engineering.1981,103(6):258-267
    [106]S. De Las Heras, A new experimental algorithm for the evaluation of the true sonic conductance of pneumatic components using the characteristic unloading time[J]. International Journal of Fluid Power,2001,2(1):17-24.
    [107]K. Kuroshita. Study on Measurement Method of Flow-rate Characteristics of Pneumatic Solenoid Valve. Proceedings of the 5th JFPS International Symposium on Fluid Power. 2002,1:74-78
    [108]K. Kawashima, T. Kagawa, T. Fujita. Instantaneous Flow Rte Measurement of Ideal Gases [J]. Journal of Dynamic Systems, Measurement, and Control.2000,122:174-178
    [109]K. Kawashima, T. Fujita, T. Kagawa. Flow Rate Measurement of Compressible Fluid using Pressure Change in the Chamber [J]. Transaction of the Society of Instrument and Control Engineers.2001, E-1,1:1-7
    [110]K. Kawashima, T. Kagawa. Unsteady flow generator for gases using an isothermal chamber [J]. Measurement.2003,33:333-340
    [111]川嶋健嗣,香川利春.等温化压力容器を用いた=空気の非定常流量凳生装置[C].计测自动制御学会论文集,1998,34(12):1773-1778
    [112]K. Kawashima, Y. Ishii, T. Funaki, T. Kagawa. Determination of Flow Rate Characteristics of Pneumatic Solenoid Valves Using an Isothermal Chamber. Journal of Fluids Engineering.2004,126:273-279.
    [116]S. J. Kline. Describing uncertainties in single-sample experiments. Mechanical Engineering.1953,75(1):3-8
    [117]R. J. Moffat. Describing the uncertainties in experimental results. Experimental thermal and science.1988,1(1):3-17
    [118]K. Kawashima, T. Kato, Y. Yamazaki, M. Yanagisawa, T. Kagawa. Development of slit-type pressure differentiator using an isothermal chamber [J]. Measurement Science and Technology.2005,16:1150-1156
    [119]T. Kato, K. Kawashima, K. Sawamoto, T. Kagawa. Active control of a pneumatic isolation table using model following control and a pressure differentiator [J]. Precision Engineering.2007,31:269-275
    [120]堀幸夫.流体润滑.养贤堂,2002
    [121]靳兆文.气体润滑技术及其研究进展[J].通用机械,2007(3):57-60
    [122](社)日本油空圧学会:油空圧便览,才オーム社,1989.
    [124]W. S. Griffin, H. H. Richardson, S. Yamanami. A Study of Fluid Squeeze-Film Damping. Journal of Basic Engineering.1966,6:451-456.
    [125]M. H. Sadd, A. Kent Stiffler. Squeeze Film Dampers:Amplitude Effects at Low Squeeze Numbers. Journal of Engineering for Industry.1975,11:1366-1370
    [126]T. Veijola, H. Kuisma, J. Lahdenpera. The influence of gas-surface interaction on gas-film damping in a silicon accelerometer. Sensors and Actuators A.1998,66:83-92
    [127]F. Pan, J. Kubby, E. Peeters, A. T. Tran, S. Mukherjee. Squeeze film damping effect on the dynamic response of a MEMS torsion mirror [J]. J. Micromech. Microeng.1998,8: 200-208
    [128]Minhang Bao, Yuanchen Sun, Jia Zhou, Yiping Huang. Squeeze-film air damping of a torsion mirror at a finite tilting angle. Institute of Physics Publishing J. Micromech. Microeng.2006,16:2330-2335
    [129]Minhang Bao, Heng Yang. Squeeze film air damping in MEMS. Sensors and Actuators A. 2007,123:3-27
    [130]X. Li, K. Kawashima, and T. Kagawa. Dynamic modeling of vortex levitation. Asia simulation conference 2008-7th International conference on System Simulation and Scientific Computing (ICSC), Beijing, China, pp.218-224
    [131]X. Li, K. Kawashima, and T. Kagawa. Dynamic Characteristics of Vortex Levitation. SICE Annual Conference 2008, Tokyo, Japan, pp.1175-1180
    [132]魏浩东,敖宏瑞,姜洪源.磁头/盘界面超薄气膜挤压效应和动压效应研究[J].摩擦学学报,2010,30(5):505-512
    [133]L. C. Chow, R. J. Pinnington. Practical industrial method of increasing structural damping in machinery I:Squeeze-film damping with air.1987,118(1):123-139
    [135]J. S. Andrade, Jr., U. M. S. Costa, M. P. Almeida, H. A. Makse, H. E. Stanley. Inertial Effects on Fluid Flow through Disordered Porous Media [J]. Phys. Rev. Lett.1999,82(26): 5249-5252
    [136]M. Rasoloarijaona, J. L. Auriault. Nonlinear seepage flow through a rigid porous medium [J]. Eur. J. Mech., B/Fluids.1994,13:177-195
    [137]S.-M. Kim, S. M. Ghiaasiaan. Numerical Modeling of Laminar Pulsating Flow in Porous Media [J]. Journal of Fluids Engineering.2009,131:041203-1-9
    [138]J. S. Plante, J. Vogan, T. E. Aguizy, A. H. Slocum. A design model for circular porous air bearings using the 1D generalized flow method [J]. Precision Engineering.2005,29: 336-346
    [139]J. Ellis, J. B. Roberts, A. H. Sianaki. A Comparison of Identification Methods for Estimating Squeeze-Film Damper Coefficients [J]. ASME Journal of Tribology,1988,110: 119-127
    [140]M. M. H. Megat Ahmad, D. T. Gethin, T. C. Claypole, et al. Numerical and experimental investigation into porous squeeze films [J]. Tribology International,1998,31(4):189-199
    [141]S. Ishizawa, E. Hori. The flow of a viscous fluid through a porous wall into a narrow gap [J]. The Japan Society of Mechanical Engineers.1966,9(36):719-730
    [142]G. S. Beavers, D. D. Joseph. Boundary conditions at a naturally permeable wall [J]. J. Fluid Mech,1967,30(1):197-207
    [143]G. I. Taylor. A model for the boundary condition of a porous material. Part 1 [J]. J. Fluid Mech,1971,49(2):319-326
    [144]E. M. Sparrow, G. S. Beavers, and I. T. Hwang. Effect of velocity slip on porous-walled squeeze films. Journal of Lubrication Technology,1972,94:260-265
    [145]A. G. Naaum, G. K. Lewis. The steady performance of externally pressurized porous rectangular pad gas bearings incorporating viscous and inertia dominated flow. Journal of Mechanical Engineering Science,1980,22:203-205
    [146]Y. B. P. Kwan, J. Corbett. A simplified method for the correction of velocity slip and inertia effects in porous aerostatic thrust bearings [J]. Tribology International.1998, 31(12):779-786
    [147]R. Nicoletti, Z. C. Silveira, B. M. Purquerio. Modified Reynolds Equation for Aerostatic Porous Radial Bearings With Quadratic Forchheimer Pressure-Flow Assumption [J]. Journal of Tribology.2008,130:031701-1-12
    [148]N. B. Naduvinamani, S. B. Patil. Numerical solution of finite modified Reynolds equation for couple stress squeeze film lubrication of porous journal bearings [J]. Computers & Structures,2009,87(21-22):1287-1295
    [149]Fluent Inc.:Fluent manual,2005
    [150]蔡茂林.现代气动技术理论与实践——第四讲:压缩空气的能量[J].液压气动与密封,2007(5):54-59
    [151]Maolin Cai, Kenji Kawashima, Toshiharu Kagawa. Power Assessment of Flowing Compressed Air [J]. ASME Journal of Fluids Engineering,2006,128:402-405
    [152]竹園茂男.弹性力学入门(基础理论から数值解法まで),森北出版株式会社
    [153]G. S. Beavers, E. M. Sparrow, R. A. Magnuson. Experiments on coupled parallel flows in a channel and a bounding porous medium [J]. ASME Journal of Basic Engineering,1970, 92(4):843-848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700