气体放电导入电流的丝电爆制备纳米粉方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属粉在许多方面具有独特的优异性能,在国民经济和国防各领域都具有广阔的应用前景。但目前纳米金属粉的应用领域却十分有限,其原因主要是纳米粉价格昂贵,缺乏工业级宏量化可控制备技术。丝电爆技术用于纳米粉制备时具有许多优势,被认为是一种适合工业化规模生产纳米粉的方法。已有的丝电爆方法都是首先将金属丝与电极可靠接触,然后施加脉冲高电压,大电流通过接触的方式从电极导入到金属丝而发生电爆。但这种接触式丝电爆方法存在设备故障率高、烧损电极、粉末中始终存在微米级大颗粒等许多问题,而这些问题的产生几乎都与接触导入电流方式有关。为此本文提出了利用气体放电导入电流的丝电爆新方法,并对其进行了系统研究。
     为了实现通过气体放电导入电流,建立了两种气体放电式丝电爆方法,即孔-板电极式丝电爆方法和圆锥电极式丝电爆方法,并对这两种方法的气隙击穿特性进行了研究。在孔-板电极式丝电爆过程中,存在单气隙放电和双气隙放电两种气体放电模式,单气隙放电的击穿电压比双气隙放电的击穿电压小。能够发生双气隙放电时对应金属丝的最小长度,为适合丝电爆发生的最佳长度。在圆锥电极式丝电爆过程中,只存在双气隙放电模式,更便于工程应用。丝端部与电极之间的气隙放电过程与尖-板电极间气体放电过程相似:随着初始充电电压的增加,击穿气隙会逐渐增大,气隙的平均击穿场强随之减小。气隙的击穿电压与电极间距有关,电极间距增大后,气隙的击穿电压随之增大。
     丝电爆过程中,电流可以通过接触和气体放电两种方式导入到金属丝上,通过实验结果认识电流的导入机制。这两种方式导入电流时,光测量装置检测到的丝端部光电流都几乎与回路放电电流同时产生,而中间位置的光电流则要滞后一段时间;由探针收集的产物可知,金属丝端部主要形成金属熔融粒子,丝中间部分主要形成金属蒸汽;通过气体放电方式导入电流时,电极烧损明显减轻,并可以避免“积瘤”产生。分析可知,接触方式导入电流时丝端部也存在气体放电现象,大电流主要通过气体放电形成的等离子体导入。等离子体对电流的旁路作用会阻碍能量向金属丝沉积,这是产生微米级大颗粒和“积瘤”主要原因。
     进行丝电爆制备纳米粉实验,利用探针直接采集金属丝各部分形成的粉末,确定微米级大颗粒的形成位置,认识微米级大颗粒的形成特征。在丝端部形成的粉末中,微米级大颗粒比例要比丝中间部分的比例大。这种现象的原因是能量向丝中间部分和丝端部沉积的方式不同。在丝中间部分,能量主要通过焦耳加热作用沉积,而在丝端部,还会受到等离子体中高温带电粒子的高速撞击作用,这也会向丝端部沉积一部分能量。实验还发现,初始电压过高时粉末中微米级大颗粒的比例也会较大,其原因是丝表面发生了沿面放电现象,形成的等离子体湮没整根金属丝。等离子体对电流的旁路作用使丝上的沉积能量减小,因此粉末中微米级大颗粒比例也明显较大。最适合制备纳米粉的初始电压,为金属丝表面不发生沿面放电时对应的最高电压。进一步分析可知,丝表面沿面放电现象发生的平均击穿场强约为2.37kV/cm。丝表面不发生沿面放电时,沉积在丝上的能量密度随初始线能量的增加而增大,发生沿面放电后,能量密度就会迅速减小。
     建立了丝表面气体层模型,对气体放电式丝电爆过程进行电路模拟,认识能量沉积特征及其与工艺参数的关系。该模型考虑到了沿面放电现象对金属丝上沉积能量的影响,更接近丝电爆现象的实际情况。结果表明,丝端部放电气隙δ对气体放电式丝电爆过程影响很小;减小放电回路电感可明显提高能量沉积速率;在保持电容器储能不变的情况下,通过提高初始电压和减小电容的方法可以提高能量沉积速率;通过合理匹配金属丝直径和长度能够使爆炸前在金属丝上沉积足够的能量。
     在以上对气体放电式丝电爆方法研究的基础上,开发了一套实验室规模的气体放电式丝电爆制备纳米粉设备,该设备适合的金属丝直径范围为0.05~0.8mm,金属丝长度范围为25~100mm,爆炸频率可达2.1HZ以上,送丝率可达105mm/s以上。本设备在适用的丝径范围和生产效率方面优于国内外已有的电爆设备。
Metal nanopowders are materials with manifold excellent properties and havebroad application prospects in the field of national economy and national defence.However, the applications of metal nanopowders are limited at present because oftheir high price and the lack of preparation technology. Wire Electrical Explosion(WEE) method has many advantages in nanopowders preparation, and is considered asa preparation method for large-scale industrial nanopowders. In present WEE method,a metal wire was first linked with two electrodes, then the current was injected intothe metal wire from the electrodes through the channels which were provided by the"contact" of the electrodes and the wire ends. This method has lots of unavoidablydisadvantages in practice application, such as the high fault rate, the electrodesbeing ablated easily, some micron-size particles remaining in the powders, and so on.Previous studies shows that all of those problems are relevant to the "contact"channels through which the current is injected into the metal wire from the electrodes.Hence, a new method of WEE with gas discharge is proposed in this paper, in whichthe current flows into the wire by gas discharge. Then this WEE by gas discharge isalso investigated systematically.
     For the current channelling into the wire by gas discharge, two methods of WEEby gas discharge devices are designed, which are hole-to-plane electrode WEE deviceand conical electrode WEE device respectively. And the breakdown properties of theabove two methods are also researched. In the process of hole-to-plane electrode WEE,there are two forms of gas discharge, including the single air-gap discharge and thedouble air-gap discharge. The breakdown voltage of the single air-gap discharge issmaller than that of the double air-gap discharge. The optimum length of the metalwire for electrical explosion is the minimum length when the double air-gap dischargecan occur. However, there is only single air-gap discharge exist in the process ofconical electrode WEE. Hence, the conical electrode WEE is beneficial forengineering application. The gap discharge in this method is similar to that in therod-plane air gap: With the increasing of initial charging voltage, the length of theair-gap increases and the average breakdown electric field strength decreases; Thebreakdown voltage of air-gap is depedent on the distance between two electrodes, andgap increases with the increasing of electrodes distance.
     In the process of WEE, the current can be injected into the metal wire through the channels which are provided by the "contact" of the electrodes and the wire ends,as well as the "gas discharge" between them. Mechanism of current injection isdeduced according to the experimental results. In these two channels, the photocurrentdetected by photodiodes at the wire ends almost occurs simultaneously with thecircuit discharge current, but that at the center section lags behind the circuitdischarge current obviously; The initial explosion products of the wire ends is liquid,and that of the other parts of wire is gas; When the current is injected by the way ofthe "breakdown", the electrodes ablated is slight obviously, and there is no remainderon the electrodes. These results indicates that gas discharge also occurs at the wireends when the current is injected by the way of "contact". Because the plasmaprovides an alternated current path, the energy density of the wire ends decreases.Hence, the wire ends couldn't explode and formed remainder on the electrodes.
     In the process of nanopowders preparation by gas discharge WEE, the powdersfrom wire various sections are collected by a quartz probe, then the position ofmicron-size particles are observed. Moreover, the characters of particle formation arealso analyzed. The results shows that, the micron-size particles proportion of the wireends powders is higher than that of wire center section powders. The main reason forthis phenomenon is that the ways of energy deposition are different. At the center ofthe wire, the energy would deposit into the wire mainly by the Joule Heating.However, at the ends of wire, the charged particles which came from the plasmawould strike on the wire surface at a high speed. Thus, some energies also could beinjected into the wire end by this effect besides of the Joule Heating. When thecharging voltage is too high, the breakdown which is the major reason of theincreasing of micron-size particles proportion will occur surrounding the wire surface,and the plasma which is known as the shunting arc will form by the gas discharge.The optimum charging voltage for nanopowders preparation is the maximum voltageat which the surface discharge could not occur. The above analysis indicates that theaverage breakdown electric field strength for surface discharge is about2.37kV/cm,and the energy density deposition in the wire increases with the increasing of initiallinear energy, However, it will decrease again when the surface discharge occurred.
     Based on the experimental results, a gaseous layer model which considers the gasdischarge along the wire surface is proposed to understanding the characters of energydeposition and the influence of technological parameters. The electrical behavior ofthe discharge gap WEE is studied by numerically solving nonlinear differentialequation describing the discharge circuit based on this model. The numerical simulation results also shows that, the discharged gap has a little influence on theprocess of WEE. The energy deposition rate increases with the dcreasing of the circuitinductance or the capacitance of the energy-storage capacitor when the storage energyremains constant. Enough energy could deposit into the wire before the explosionwith the rational matching of the wire length and wire diameter.
     Based on the above research results, a industrialized equipment of gas dischargeWEE in laboratory scale is developed. In this equipment, the range of the wirediameter and length are0.05~0.8mm and25~100mm, respectively. Moreover, theexplosion frequency is higher than2.1Hz and the efficiency of wire feed is more than105mm/s. This gas discharge WEE equipment is better than the other equipments onthe respect of the wire diameter range the and production efficiency.
引文
[1]顾新梅.纳米技术简介.技术物理教学,2005,2(13):47-49.
    [2]朱孝信.超微细粉末材料的发展.材料开发与应用,1998,13(5):30-33
    [3]刘宏英,李春俊,白华萍,等.超细粉体的应用及制备.江苏化工.2001,29(1):30-38
    [4]张克,李良果,王洪友.超细粉体的性质、制备及其对工程学科的影响.粉体技术,1998,4(2):35-38.
    [5]李晓丽,张忠义.纳米催化领域的新材料与新技术.稀土,2009,30(5):90-94
    [6]孙振宇,陈莎,黄长靓,等.高能量超声辅助制备负载型贵金属纳米催化材料.中国科学:化学,2011,41(8):1366-1371
    [7]张全勤,张继文.纳米技术新进展.北京:国防工业出版社,2005:128-205.
    [8]王浩,赵文宽,方佑龄,等.二氧化钛催化杀灭肿瘤细胞的研究.催化学报,1999,20(30):373-374.
    [9] Yee Y, Nam H, Lee S, et al. PZT Actuate micromirror for fine tracking mechanismof high density optical data storage. Sensors and Actuators A,2000,89:166-173.
    [10] Wang S, Li J, Wakabayashi K, et al. Lost silicon mold process for PZTmicrostructure. Adv. Mater,1999,11(10):873-876
    [11]牛明勤,吴介达.超细镍粉的制备进展.精细化工.2001,12(20):715-717.
    [12]王晓锋,孔祥华.新型氧化镍超电容电极新材料的研究.无机材料学报.2001,16(5):815-819
    [13]任红轩,鄢国平.纳米科技发展宏观战略.北京:化学工业出版社,2008:13-38
    [14] Willian G C, Howard K M. Exploding Wires. Volumes1-4,(Plenum Press, Inc.,New York:)1959,1962,1964and1968
    [15] Nairne E. Electrical Experiments. Philosophical Transactions.1774,64:79-89
    [16] Haines M C, Lebedev S V, Chittenden J P, et al. The past pres ent, and future of Zpinches Physics of Plasmas,2000,7(5):1672-1680.
    [17] Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches. Rev. Mod.Phys,2000,72(1):167-223
    [18] Yadlowsky E J, Moschella J J, Hazelton R C, et al. Evidence for precursor plasmaformation resulting from heterogeneous current channels in wire array loads Phys.Plasmas,1996,3(5):1745-1753.
    [19]王莹.电爆炸导体及其应用.爆炸与冲击,1986,6(2):184-192
    [20] Bliss D E, Sarkisov G S, Stygar W S, et a1. Optical investigation z-pinch wirearray dynamics and X-ray/foil interactions. The29th IEEE InternationalConference on Plasma Science,2002,159-163
    [21] Li Y X, Yang L B, Sun C W. Expansion of Plasma of Electrically ExplodingSingle Copper Wire Under4.5kA~9.5kA/Wire. Plasma Science and Technology,2003,5(4):1915-1920
    [22] Deeney C, Douglas M R, Spichnan R B, et al. Enhancement of X-Ray Powerfrom a Z Pinch Using Nested-Wire Arrays Phys. Rev. Lett.,1998,81(22):4883-4886
    [23]龚兴根.电爆炸断路开关.强激光与粒子束,2002,14(4):577-582
    [24]杨宇,谢卫平,蒋吉昊,等.电爆炸金属丝电路特性的研究.电工技术,2005(6):54-56.
    [25]朱亮,张周伍.电爆技术用于超细粉制备和表面喷涂的研究进.材料导报,2005,19(12):76-79.
    [26] Sen P, Ghosh J, Abdullah A, et al. Preparation of Cu, Ag, Fe and Al nanoparticlesby the exploding wire technique. Journal of Chemical Sciences,2003,115(5):499-508
    [27] Tarasov S, Kolubaev A, Belyaevet S, et al. Study of friction reduction bynanocopper additives to motor oil. Wear,2002,252:63–69
    [28] Jiang W H, Yatsui K. Pulsed wire discharge for nanosize powder synthesis.Plasma Science,1998,26(5):1498-1501
    [29] Suematsu H, Ikeuchi T, Kinemuchi Y, et al. Repetitive pulsed wire discharge forapplications to material science. Conference Record of the Twenty-FifthInternational Power Modulator Symposium, Japan, Nagaoka,2002:138-141
    [30] Yoshiaki K, Keiichi M, Channalong S, et al. Nanosize powders of aluminumnitride synthesized by pulsed wire discharge. Journal of the American CeramicSociety,2003,86(3):420-424
    [31] Kazuyuki H, Naoyuki W, Ryuichi T, et al. Synthesis of TiN powders throughelectrical wire explosion in liquid nitrogen. Journal of Alloys and Compounds,2009,485:573–576
    [32] Lvanov V, Kotov Y A, Samatov O H. Synthesis and dynamic compaction ofceramic nanopowders by techniques based on electric pulsed power. Nano-Structured Materials,1995,6:287-290.
    [33] Bagazeev A V, Kotov Y A, Medvedev A I, et al. Characteristics of ZrO2nanopowders produced by electrical explosion of wires, Nanotechnologies inRussia,2010,5:656-664
    [34] Kotov Y A, Samatov O M. Production of nanometer-sized AlN powders by theexploding wire method. Nonostructured Materal,1999,12:119-122
    [35]伍友成,邓建军,郝世荣,等.电爆炸丝法制备纳米Al2O3粉末.强激光与粒子束,2005,17(11):1753-1756
    [36]伍友成,邓建军,郝世荣,等.电爆炸丝方法产生纳米二氧化钛粉末.高电压技术,2006,32(6):70-72
    [37]王群杨,杨海滨,邹广田.用电爆炸方法制备的γ-Fe2O3纳米微粉的物性研究,第七届全国X射线衍射学术会议论文集,武汉,1998
    [38] Wang Q, Yang H B, Shi J L, et al. One-step synthesis of nanometer particles ofγ-Fe2O3by wire electrical explosion method. Materials Research Bulletin,2001,36:503-509
    [39] Dong S S, Hou P, Yang H B, et al. Synthesis of intermetallic NiAl by SHSreaction using coarse-grained nicked and ultrafine-grained aluminum produced bywire electrical explosion. Intermetallics,2002,10:217-223
    [40]张秀梅,宋文绪,牟艳男,等.金属Ni、Al纳米材料的制备及其表征.有色金属(冶炼部分),2010,3:49-51
    [41]樊志良,郑峰,司徒健超.纳米金属Ni粉的电爆炸法制备与表征.中国有色金属学报,2010,20(3):545-550
    [42] Wang Q, Yang H B, Shi J L, et al. Preparation and characterization ofnanocrystalline powders of Cu-Zn alloy by wire electrical explosion method.Materials Science and Engineering,2001, A307:190-194
    [43]王群,杨海滨,鲍海飞,等.电爆炸一步法制备Cu-Zn合金超细微粉[J].金属学报,1999,35(12):1271-1273
    [44] Kwon Y S, An V V, Ilyin A P. Properties of powders produced by electricalexplosions of copper–nickel alloy wires. Materials Letters,2007,61:3247–3250
    [45] Kinemuchi Y, Ikeuchi T, Suzuk T i, et al. Synthesis of Nanosize PZT Powders byPulsed Wire Discharge. Plasma science,2002,30(5):1858-1862
    [46] Kinemuchi Y, Muri H, Suzuki T, et al. Increase in phase transition temperature ofactivated aluminum with nano-zirconia synthesized by pulsed wire discharge.Journal of the American Ceramic Society,2003,86(9):1522-1526
    [47] Lee P Y, Suematsu H, Nakayama T, Synthesis of ZnFe2O4nanosized powdersfrom pulsed metallic zinc and iron wire discharge in oxygen. Journal ofMagnetism and Magnetic Materials,2007,312:27-31
    [48] Wonbaek K, Park J S, Suh C Y, et al. Fabrication of alloy nanopowders by theelectrical explosion of electrodeposited wires. Materials Letters,2007,61:4259-4261
    [49] Wonbaek K, Park J S, Suh C Y, et al. Cu-Ni-P Alloy Nanoparticles Prepared byElectrical Wire Explosion, Journal of Alloys and Compounds,2008,465: L4-L6
    [50] Yavorovsky N A, Domashenko V G, Balukhtin P V. Production of ultradis-persedpowders with electric explosion method. The4th Korea-Russia InternationalSymposium on Science and Technology, KORUS, Ulsan,2000, vol3:280-285
    [51] Kwon Y S, Jung Y H. Ultra-fine powder by wire explosion method. ScriptaMater.,2001,44:2247-2251
    [52] Tokoi Y, Suzuki T, Nakayama T, et al. Effect of energy deposition on TiO2nanosized powder synthesized by pulsed wire discharge, Curr. Appl. Phys,2009,9:S193-S196.
    [53] Sinars D B, Min H, Chandler K M, Shelkovenko T A, et al. Experiments easuringthe initial energy deposition expansion rates and morphology of exploding wireswith about1kA/wire[J]. Physics of Plasmas,2001,8(1):216-230
    [54]朱亮,朱锦,毕学松.电爆过程中能量密度与爆炸产物变化的关系.中国表面工程,2010,23(4):65-69
    [55]朱亮,杨奇,毕学松.电爆喷涂中过程参数与涂层性质的关系.高电压技术,2009,35(9):2232-2237
    [56] Sindhutk S R, Chakravarthy S R. Understanding nanoparticle formation by a wireexplosion process through experimental and modelling studies. Nanotechnology,2008,19:025703(11pp)
    [57] Ivanov Y F, Osmonoliev M N, Sedoi V S, et al. Productions of Ultra-FinePowders and Their Use in High Energetic Compositions. Propellants, Explosies,Pyrotechnics.2003,28(6):319-333
    [58] Valentin S S, Gennady A M, Vladimir I O, et al. The current density and thespecific energy input in fast electrical explosion. IEEE Transactions on PlasmaScience,1999,27(4):845-850
    [59] Sarkisov G S, Struve K W, Mcdaniel D H. Effect of current rate on energydeposition into exploding metal wires in vacuum. Physics of Plasmas,2004,11(10):4573-4581
    [60] Sarkisov G S, Rosenthal S E, Struve K W, et al. Joule Energy Deposition inExploding wire Experiments.5th International Conference on Dense Z-Pinches.2002,651:213-216
    [61] Lee Y S, Bora B, Yap S L, et al. Effect of ambient air pressure on synthesis ofcopper and copper oxide nanoparticles by wire explosion process. Current AppliedPhysics,2011,06:1-5
    [62]周庆,张乔根,张俊,等.介质对铜丝电爆炸沉积能量的影响.高电压技术,2010,73(2):369-374
    [63] Chandler K M, Hammer D A, Sinars D B, et al. The Relationship BetweenExploding Wire Expansion Rates and Wire Material Properties Near the BoilingTemperature. IEEE Transactions on Plasma Science,2002,30(2):577-587
    [64] Oreshkin V I, Barengolts S A, Chaikovsky S A. Numerical Calculation of theCurrent Specific Action Integral at the Electrical Explosion of Wires. TechnicalPhysics,2007,52,(5):642–650
    [65] Kvartzkhava I F, Bondarenko V V, Plutto A P, et al. Oscillographicdetermination of the energy of electrical explosion of conductors. Zh. Eksper.Teor. Fiz,1956,31(5):745-751,
    [66] Sedoi V S, Ivanov Y F. Particles and crystallites under electrical explosion ofwires. Nanotechnology,2008,19:145710(6pp)
    [67] Kotov Y A. Electric explosion of wires as a method for preparation ofnanopowders. Journal of Nanoparticle Research,2003,5:539-550
    [68] Kotov Y A, Azarkevich E I, Beketov I B, et al. Producing Al and Al2O3Nanopowders by Electrical Explosion of Wire. Key Engineering Materials,1997,132-136: pp173–176
    [69] La Verne Cash, Exploding wire phenomena in various micron diameter graphiteand stainless steel fibers. Baltimore, Maryland: Johns Hopkins University.1999
    [70] Shakov V Y, Ilyin A P, Tikhonov D V, et al. Structural features of ultrafinepowders generated in conditions of wire electrical explosion. The4thKorea-Russia International Symposium on Science and Technology, Ulsan, SouthKorea,2000:277-279.
    [71] Kotov Y A. The Electrical Explosion of Wire: A method for the Synthesis ofWeakly Aggregated Nanopowders. Nanotechnologies in Russia,2009,4(7-8):415-424
    [72]李业勋.金属丝电爆炸机理及特性的研究.四川:中国工程物理研究院.2002
    [73] Debalina B, Kamaraj M, Murthy B S, et al. Generation and characterization ofnano-tungsten carbide particles by wire explosion process. Journal of Alloys andCompounds,2010,496:122-128
    [74] Chandler K M, Hammer D A, Sinars D B, et al. The Relationship BetweenExploding Wire Expansion Rates and Wire Material Properties Near the BoilingTemperature. IEEE Transactions on Plasma Science,2002,30(2):577-587
    [75] Me-Bar Y, Hare R. Electrical explosion of segmented wires. J. Appl. Phys.1996,79(4):1864-1868
    [76] Clinton E H, John D P, Michael J K, et al. Electrical conduction in explodedsegmented wires. Journal of Applied Physics,1998,84(9):4992-5000
    [77] Rousskikh A G, Baksht R B, Labetski A Y, et al. Electric Explosion of FineTungsten Wires in Vacuum. Plasma Physics Reports,2004,30(11):944-952.
    [78] Michael J T. Formation of plasma around wire fragments created by electricallyexploded copper wire. J. Phys. D: Appl. Phys,2002,35:700-709
    [79] Gennady S S, Mccrorey D. Imaging of Exploding Wire Phenomena. IEEETransactions on Plasma Science,2002,30(1):88-89
    [80]李业勋,杨礼兵,孙承纬.单金属丝电爆炸实验系统研究.爆轰波与冲击波,2002,6(2):65-69
    [81]卢新培,潘垣,张寒虹.水中脉冲放电等离子体通道特性及气泡破裂过程.物理学报,2002,8(51):1768-1772
    [82]张寒虹,陈志福.水中高压放电的二次放电现象.物理学报,2001,4(50):748-751
    [83] Mao Z G, Zou X B, Wang X X, et al. Evolution of the electrically exploding wireobserved with a Mach–Zehnder interferometer. Applied Physics Letters,2009,94:181501(3pp)
    [84]毛志国,邹晓兵,王新新,等.电爆金属丝产生纳米粉体.强激光与粒子,2010,22(3):691-695
    [85] B.A.布勒采夫.肖泽梅译.导体电爆炸及其在电物理装置中的应用.绵阳:中物院科技信息中心,2002
    [86] Tucker T J, Toth R P. EBW1: A computer code for the prediction of the behaviorof electrical circuits containing exploding wire elements. SAND-75-0041,1975:4-26.
    [87]杨汉武,钟辉煌. PSpice模型用于电爆炸丝的数值模拟.国防科技大学学报.2000,22(Sup.):38-42.
    [88]成剑,栗保明.电爆炸过程导体放电电阻的一种计算模型.南京理工大学学报.2003,27(4):371-375.
    [89]蒋吉昊,杨宇,胡熙静,等.电爆炸丝1维磁流体模型数值模拟.强激光与粒子束.2006,18(3):463-466.
    [90]毛志国.电爆炸金属丝制备纳米粉体的研究:[清华大学博士论文].北京:清华大学,2009,28-43
    [91] Mao Z G, Zou B X, Wang X X, et al. Circuit simulation of the behavior ofexploding wires for nano-powder production, Laser Part. Beams,2009,27:49-55.
    [92]杨家志,刘钟阳,许东卫,等.电爆炸过程中金属丝阻抗的变化[J].爆炸与冲击,2009,29(2):205-208
    [93] Jobin K A, Nilesh J V, Chakravarthy S R, et al. Understanding the mechanism ofnano-aluminum particle formation by wire explosion process using opticalemission technique. Journal of Quantitative Spectroscopy&Radiative Transfer,2011,111:2509-2516
    [94] Kwon Y S, Ilyin A P, Tikhonov D V, et al. Mechanism of metal destruction andformation of particles in electrical explosion of wires. The7th Korea-RussiaInternational Symposium on Science and Technology, KORUS,2003,1:217-220
    [95] Nikolay Yavorovsky, Peter balukhtin. Applicaton of ultradispersed powdersproduced by wire electrical explosion method. Proceeding of the7th Korea-RussiaInternational Symposium, KORUS,2003,1:51-54
    [96]美国金属间化合公司.发明专利:电爆法金属纳米粉制取设备.专利号:00813809.5
    [97] Zeng Y, Zhang T, Yang H B, et al. Preparation of Cu-Zn/ZnO core-shellnanocomposite by wire electrical explosion and precipitation process in aqueoussolution and CO sensing properties. Applied Surface Science,2009,255:4045-4049
    [98]冀清发,王志平.实用新型专利:电爆法金属纳米粉制取设备.专利号:00261102.3
    [99]铁生年,李星,李昀珺.超细粉体材料的制备技术及应用.中国粉体技术,2009,15(3):68-72
    [100]鲁林平,叶京生,李占勇,等.超细粉体分级技术研究进展.化工装备技术,2005,26(3):19-26
    [101]马振华,张少明,吴其胜.碟式分级机分级超细粉效率的模型.南京化工大学学报,1995,17(s1):89-93
    [102]钱海燕,叶旭初,王雅琴. NHJW-I型干法超细粉分级机的设计和性能.南京工业大学学报,2005,25(1):31-35
    [103]陶蓉,曹燕,庄严,等.铜超细粉体的液压法分级研究.稀有金属材料与工程,2009, s1:209-212
    [104]从恒斌,侯远成.涡轮式气力分级机流场的理论分析与计算.硅酸盐通报,2006,25(6):62-66
    [105]朱亮,罗仁昆,毕学松.高压电场中金属丝段的电爆现象.高电压技术,2008,34(10):2177-2180
    [106]朱亮,毕学松.发明专利:利用气体放电导入电流的金属丝电爆装置.公开号: CN102151838A
    [107]魏诗榴.粉体科学与工程.广州:华南理工大学科学出版社,2006:25-38
    [108]孟立凡,蓝金辉.传感器原理与应用.大连:电子工业出版社,2007
    [109]龙祖利.自积分式罗果夫斯基线圈的设计.测控技术,2006,25(8):87-88.
    [110]邹积岩,段雄英,张铁.罗柯夫斯基线圈测量电流的仿真计算及实验研究.电工技术学报,2001,16(1):82-84.
    [111]戴建华,李开成.基于Rogowski线圈的大电流测量.高电压技术,2002,28(1):6-7
    [112]杨楠,段雄英.一种新型的Rogowski线圈--PCB罗氏线圈.高压电器,2005,41(3):209-211
    [113]翟小社,王颖,林莘.基于Rogowski线圈电流传感器的研制.高压电器,2002,38(13):19-22+26
    [114] Shesha J, Xiao Y X, James D C. High-divider-ratio fast-response capacitivedividers for high-voltage pulse measurements. IEEE Trans on IndustryApplications,2000,36(3):920-922.
    [115]刘星.直流高电压电阻分压器的设计与实现.计测技术,2008,28(1):17-19
    [116]刘金亮.一种脉冲高压用电阻分压器.高电压技术,1996,22(4):65-67
    [117]清华大学电力系高电压技术专业.冲击大电流技术.北京:科学出版社,1978,152-179
    [118]刘天杰.脉冲高压强流测试装置的研制:[大连理工大学硕士论文].大连:大连理工大学,2008,26-35
    [119] Hnatiuc B, Hnatiuc E, Pellerin S, et al. Experimental analysis of a double-sparkignition system. Czech. J. Phys,2006,56:851-867
    [120]殷毅,刘金亮,钟辉煌,等.气体开关参数对调制器电压前沿的影响.高电压技术,2008,34(7):1432-1435
    [121]姜晓峰,孙凤举,梁天学,等.一种多间隙气体开关击穿特性的实验研究.高电压技术,2009,35(1):103-107
    [122] Florkowska B, Florkowski M, Roehrich J, et al. Modeling of PD Mechanism inNon-uniform Field at High Pressure. High Voltage Engineering,2008,34(12):2662-2667
    [123] Meek J M. The mechanism of growth of spark discharges. Appl. Sci.,1955,section B, vol5:269-276
    [124]蒋兴良,于亮,苑吉河,等.低气压棒-板间隙操作冲击放电特性及电压校正.高电压技术,2007,33(11):70-74
    [125]李瑞芳,吴广宁,曹晓斌,等.尖端-尖端的火花放电路径的选择性.天津大学学报,2009,42(6):497-501
    [126] Hiromu I, Yasuo S, Muneaki H. et al. Breakdown process of a rod to plane gapin atmospheric air under DC voltage stress. IEEE Trans on Electr Insul,1991,26(2):291-299.
    [127]周黎明,吴正宇,邱毓昌.锥尖棒-平板间隙电场不均匀系数的近似公式.电工技术学报,1994,5(2):39-42
    [128]张赟,曾嵘,黎小林,等.大气中短空气间隙流注放电过程数值仿真.中国电机工程学报,2008,28(28):6-12
    [129]章志鸣,沈元华,陈惠芬.光学.北京:高等教育出版社,2000
    [130]郑少波,赵清.物理光学基础.长沙:国防工业出版社(第1版),2009
    [131] Tamura H, Konoue M, Ikeda Y, et al. Generation of a high-velocity jet in theelectrothermal explosion of conductive ceramic powders. Thermal SprayTechnology,1998,7(1):87-92.
    [132]胡传忻.热喷涂原理及应用.北京:中国科学技术出版社(第1版),1994
    [133]贾力,方肇洪,钱兴华著.高等传热学.北京:高等教育出版社,2004:5-17
    [134] Sarkisov G S, Struve K W, Mcdaniel D H. Effect of deposited energy on thestructure of an exploding tungsten wire core in a vacuum. Physics of Plasmas,2005,12:052702
    [135]陈伟根,杨剑锋,凌云,等.变压器油纸绝缘沿面放电特性及其产气规律.重庆大学学报,2011,34(1):94-97
    [136]姚刚,文习山,蓝磊.湿润污秽绝缘表面电场及针板电极下的沿面放电.高电压技术,2010,36(6):1407-1413
    [137]陈景亮,姚学玲,孙伟.脉冲电流技术.西安交通大学出版社,2008,190-204
    [138]高景明,刘永贵,殷毅等.气体火花开关放电的数值模拟.强激光与粒子束,2007,19(6):1039-1043
    [139](苏)卡兰塔罗夫,采伊特林著;陈汤铭,刘保安,罗应立,等译.电感计算手册.机械工业出版社,1992:83
    [140] Suematsu H, Nishimura S, Murai K, et al. Pulsed wire discharge apparatus formass production of copper nanopowders. Review of Scientific Instruments,2007,78(5):056105.
    [141] Gromov A A, Forter-Barth U, Teipel U. Aluminum nanopowders produced byelectrical explosion of wires and passivated by non-inert coatings:Characterisation and reactivitywith air and water. Powder Technology,2006,164(2):111-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700