压电陶瓷叠堆执行器及其系统的迟滞现象模拟、线性化及控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电陶瓷执行器(Piezoelectric ceramic actuators, PCAs)是一种利用压电材料的逆压电效应制作而成的微位移执行器,具有体积小、能量密度高、分辨率高、频响快等优点,已经成为精密定位系统中重要定位及驱动元件。由于基于单片压电陶瓷晶片的压电陶瓷执行器的输出位移比较小,常常采用一定的工艺将多片压电陶瓷晶片和电极叠合而成压电陶瓷叠堆执行器(Piezoelectric ceramic stackactuators, PCSAs)以提高输出位移。然而这种通过一定的工艺叠合而成的压电陶瓷叠堆执行器存在的一些缺点限制了其在快速、高精密定位系统中的应用:首先压电陶瓷叠堆执行器会进一步加剧压电陶瓷晶片的输出位移与驱动电压之间存在多值对应的迟滞现象,如何实现对压电陶瓷叠堆执行器的有效控制成为精密定位控制研究中的重点和难点之一;其次叠合工艺会影响压电陶瓷叠堆执行器的动态性能,甚至缩短其使用寿命。因此,压电陶瓷叠堆执行器及其系统的迟滞线性化方法及压电陶瓷叠堆执行器的动态性能设计方法是压电陶瓷叠堆执行器在快速、高精密定位系统中应用时必须解决的问题,开展这方面的研究具有重要学术意义和工程应用前景。
     为了解决上述问题,本文建立了能描述压电陶瓷叠堆执行器的迟滞现象的Bouc-Wen数学模型,提出了基于Bouc-Wen数学模型的线性化控制方法用于实现压电陶瓷叠堆执行器的迟滞线性化;建立了能够同时模拟压电陶瓷叠堆执行器的迟滞现象和动态特性的综合模型,提出了能够合理设计压电陶瓷叠堆执行器的动态性能的方法;建立了预压紧压电陶瓷执行器的现象模型;在此基础上,提出并实现了压电致动二维微位移扫描平台的基于现象模型的鲁棒模型参考自适应控制方法。
     本文的主要研究工作和创新点可以归纳为以下六个方面:
     1.提出并研究了能够模拟压电陶瓷叠堆执行器的迟滞现象的Bouc-Wen数学模型。相应地提出并实现了能够求取模型参数的解析解的参数辨识方法,并且在辨识过程中采用最小二乘法以降低外界随机干扰的影响。建立相应的实验系统对模型进行实验验证。实验结果表明,Bouc-Wen数学模型及相应的参数辨识方法能够有效地模拟压电陶瓷叠堆执行器的迟滞现象,其模拟误差在3%左右。
     2.通过在Bouc-Wen迟滞算子中引入非对称因式用于模拟压电陶瓷叠堆执行器迟滞现象的非对称性,提出并研究了压电陶瓷叠堆执行器的非对称Bouc-Wen数学模型,建立了相应地能够求取模型参数的解析解的辨识方法。实验结果表明,非对称Bouc-Wen数学模型能够很好地模拟压电陶瓷叠堆执行器的迟滞现象,模拟误差与Bouc-Wen数学模型相比降低了30%左右。非对称Bouc-Wen数学模型以及相应的参数辨识方法也可以用于模拟其他具有非对称迟滞现象的材料或者系统。
     3.提出了基于压电陶瓷叠堆执行器的Bouc-Wen模型的前馈线性化控制方法和前馈补偿与PI反馈相结合的复合线性化控制方法。采用基于dSPACE实时仿真控制系统的快速控制原型技术建立了前馈和复合线性化控制方法的快速原型系统并对其进行实验验证。实验结果表明,前馈和复合线性化控制都能将压电陶瓷叠堆执行器的迟滞现象线性化,而且复合控制的线性化误差比前馈控制有显著降低,经过线性化控制后压电陶瓷叠堆执行器可以当成线性执行器使用。分别采用本文提出的压电陶瓷叠堆执行器的前馈和复合线性化控制方法,建立了压电致动微夹钳的夹爪位移伺服控制的开环和闭环控制系统,并实验验证了提出的线性化方法可以简化了压电致动微夹钳的控制算法并提高其定位控制精度。
     4.考虑粘结层为一个无源单自由度质量-阻尼-刚度系统,提出并建立了能够模拟压电陶瓷叠堆执行器的迟滞现象和动态特性的基于Bouc-Wen迟滞算子的综合模型。根据该综合模型,压电陶瓷叠堆执行器的叠合工艺可以看成通过改变粘结层的特性从而改变压电陶瓷叠堆执行器的动态特性但是不影响其迟滞特性,与实验测试结果相吻合。为了设计压电陶瓷叠堆执行器的动态特性,采用弹性变形元件对压电陶瓷叠堆执行器预压紧,提出了确定预压紧机构的参数的方法。仿真结果表明,该方法能够在一定程度上有效地设计压电陶瓷叠堆执行器的动态性能。
     5.提出并建立了能够模拟预压紧压电陶瓷叠堆执行器的迟滞和动态特性的基于Bouc-Wen迟滞算子的现象模型以及相应的参数辨识方法。实验结果表明,该现象模型以及相应的参数辨识方法能很好的模拟预压紧压电陶瓷叠堆执行器的输入输出特性。
     6.在上述工作的基础上建立了二维微位移扫描平台的现象模型,提出了基于二维微位移扫描平台的现象模型的鲁棒模型参考自适应控制方法,该方法在平台特性发生改变、存在着外界随机扰动和延时蠕变等情况下依然能够快速、精确地控制微位移扫描平台。在理论上证明了鲁棒模型参考自适应控制方法的稳定性。建立了相应的实验系统对鲁棒模型参考自适应控制进行实验验证,并将该控制方法的性能与基于现象模型的PID控制方法进行对比。实验结果显示鲁棒参考自适应控制系统能够显著地提高定位控制精度,并且具有较高的鲁棒性和学习能力。
     本文对压电陶瓷叠堆执行器及其系统的迟滞现象模拟、线性化及控制方法的研究,为压电陶瓷叠堆执行器在快速、高精密定位系统中的应用奠定了理论基础。
Piezoelectric ceramic actuators (PCAs) based on inverse piezoelectric effect havebeen widely used in precision positioning systems due to their apparent advantages,such as the small size, high energy density, high resolution, and quick frequencyresponse. The output displacement of single-wafer PCAs is relatively small, so thatpiezoelectric ceramic stack actuators (PCSAs), which are realized by assemblingmulti-chip piezoelectric ceramic wafers and electrodes, are the best choice to achievelarge output displacement with high resolution. However, some of the shortcomings ofPCSAs fabricated by layering/stacking processes greatly limit their applications in fastand high-precision positioning systems. Firstly, the hysteretic behavior of PCSAs isfurther worsened because of the accumulation of the hysteretic behavior of piezoelectricceramic wafers, so how to effectively control PCSAs is difficult and emphasized inprecise positioning systems; secondly, the different layering/stacking processes greatlyaffect the dynamic performances of PCSAs, even possibly shorten the life of PCSAs. Inthese cases, in order to let PCSAs be used in fast and high-precision positioning systems,it is urgent to study the linearization control method, which can linearize the hysteresisbehavior of PCSAs and PCSAs’ based systems, and the method to design dynamicperformance of PCSAs. Carrying out these methods has an important academicsignificance and prospect of engineering application.
     In this dissertation, in order to solve the above problems, a Bouc-Wenmathematical model for PCSAs to characterize the hysteresis behavior of PCSAs is putforward. Based on the proposed Bouc-Wen mathematical model for PCSAs, twolinearization control methods to linearize the hysteresis behavior of PCSAs areproposed and realized. In order to design dynamic performance of PCSAs, acomprehensive model that can accurately simulate the hysteresis behavior and thedynamic performance of PCSAs is put forward and a method to design dynamicperformance of PCSAs is established based on the proposed comprehensive model forPCSAs. In these cases, a phenomenon model for pre-stressed PCSAs is established andinvestigated and a robust model reference adaptive control method for atwo-dimensional piezo-driven micro-displacement scanning platform (2D-PDMDSP)based on the proposed phenomenon model is put forward.
     The major research works and the innovations in this dissertation are summarized as follows
     1. A Bouc-Wen mathematical model for PCSAs which can model the hysteresisbehavior of PCSAs is proposed, and a corresponding parameter identification method,which can identify the parameters by obtaining analytical solutions, is established. Inthe parameter identification, the least-squares method is used to reduce external randomdisturbances. The performance of the Bouc-Wen mathematical model with thecorresponding parameter identification method is experimentally verified by theestablished experimental setup. The experimental results show that the Bouc-Wenmathematical model can simulate PCSAs and the modeling errors are about3%.
     2. A non-symmetrical Bouc-Wen hysteresis operator for modeling thenon-symmetrical hysteresis of PCSAs is established by introducing a non-symmetricalformula into the Bouc-Wen hysteresis operator. Accordingly, a non-symmetricalBouc-Wen mathematical model for PCSAs is put forward by modeling thenon-symmetrical hysteresis component of PCSAs with the non-symmetrical Bouc-Wenhysteresis operator, and a corresponding parameter identification method, which canidentify the parameters by obtaining analytical solutions, is established. Theperformance of the non-symmetrical Bouc-Wen mathematical model with thecorresponding parameter identification method is experimentally verified by theestablished experimental setup. The experimental results show that the non-symmetricalBouc-Wen mathematical model can simulate PCSAs with the non-symmetricalhysteresis more accurately than the Bouc-Wen mathematical model, and the modelingerrors are decreased by about30%. The proposed non-symmetrical Bouc-Wenmathematical model with the corresponding parameter identification method can also beused to model other materials and systems with the non-symmetrical hysteresis.
     3. In order to linearize the hysteresis behavior of PCSAs, the feedforwardlinearization method based on the proposed Bouc-Wen mathematical model and thehybrid linearization method combining the feedforward and PI feedback loop tolinearize the hysteresis behavior of PCSAs are proposed and explored. The rapid controlprototypes of the linearization controllers for PCSAs using the proposed feedforwardand hybrid linearization methods with rapid control prototyping technique based on thereal-time simulation system are established and experimentally tested. The experimentalresults show that both the feedforward and hybrid linearization methods for PCSAs canlinearize the hysteresis behavior of PCSAs, and the proposed hybrid linearizationmethod can reach higher linearization accuracy than the feedforward linearization method. Utilizing the proposed linearization methods, the open-loop and closed-loopcontrols for the tip displacement of a piezoelectric-driven microgripper are realized,which indicates that the proposed linearization methods can simplify the control for thepiezoelectric-driven microgripper with high accuracy.
     4. Considering the bonding layers as passive single-DOF mass-damping-stiffnesssystems, a comprehensive model for PCSAs based on the Bouc-Wen hysteresis operator,which can simulate both the hysteresis behavior and the dynamic performance ofPCSAs, is proposed. According to the proposed comprehensive model, thelayering/stacking processes of PCSAs change the dynamic performance of PCSAs bychanging the parameters of the bonding layers but can’t affect the hysteresis behavior ofPCSAs, which is consistent with the experimental results. Letting PCSAs bepre-stressed with elastic deformation mechanisms, a method to determine themechanical parameters of pre-stressed mechanisms of PCSAs is proposed. Thesimulation results show that the proposed method can effectively design the dynamicperformance of PCSAs to some extent.
     5. A phenomenological model for modeling the hysteresis behavior and thedynamic performance of pre-stressed PCSAs by using the Bouc-Wen hysteresis operator,as well as the corresponding parameter identification method, is proposed. Theperformance of the phenomenological model with the corresponding parameteridentification method is experimentally verified by the established experimental setup.The experimental results show that the proposed phenomenological model forpre-stressed PCSAs with the corresponding parameter identification method canaccurately model the hysteresis behavior and the dynamic performance of pre-stressedPCSAs.
     6. Based on the afore-mentioned works, a phenomenological model for the2D-PDMDSP is established. Accordingly, a robust model reference adaptive controlmethod for the2D-PDMDSP is proposed and established and the stability istheoretically proved. The proposed control method is experimentally verified by theestablished experimental setup and the corresponding controlled results are comparedwith those by the PID control method based on the proposed phenomenon model. Theexperimental results show that robust model reference adaptive control method cansignificantly improve the accuracy of the positioning with high robustness and learningability.
     The research results on the hysteretic modeling, linearization, and control method for PCSAs and PCSAs’ based systems has established the theoretical foundation forapplying PCSAs in fast and high-precision positioning systems.
引文
[1] N. Christopher, B. Diann, B. Sivakumar, and M. Andrew. Piezoelectric Actuation: State of theArt [J]. The Shock and Vibration Digest, July2001,33:269-280.
    [2] O. Zuger, H. P. Ott, and U. Dorig. Variable-temperature ultrahigh vacuum scanning tunnelingmicroscope [J]. Mechanical and electronic instrumentation. Review of Scientific Instruments.1992,63:5634.
    [3] A. Mark. Ealey, Special Section, Guest Editorial: Active Optical Components [J]. OpticalEngineering.1990,29(11):1373-1382.
    [4] L. James, Fanson, H. E. Anderson, and R. Donald. Active structures for use in precisioncontrol of large optical systems [J]. Optical Engineering.1990,29(11):1320-1327.
    [5] W. Shane and S. Stuart. Design and performance of a dual drive system for tip-tilt angularcontrol of a300mm diameter mirror [J]. Mechatronics.2006,16:389-397.
    [6] E. S. Fredric and E. C. Teague. Piezodriven50-μm range stage with subnanometer resolution[J]. Review of Scientific Instruments. December1978,49(12):1735-1740.
    [7] N. W. Hagood, W. H. Chung, and A. V. Flotow. Modeling of piezoelectric actuator dynamicsfor active structural control [J]. Journal of Intelligent Material Systems and Structures,1990,327-354.
    [8] C. Niezrecki and H. H. Cudney. Feasibility to control launch vehicle internal acoustics usingpiezoelectric actuators [J]. Journal of Intelligent Material Systems and Structures.2001,12,647-660.
    [9] D. Stans. Underwater Electroacoustic Transducers. Bath University Press and Institute ofAcoustics. Bath, UK,1991.
    [10] W. Peter. Micropumps-past, progress and future prospects [J]. Sensors and Actuators B,2005,105:28-38.
    [11] B. J. Kenton, A. J. Fleming, and K. K. Leang. Compact ultra-fast vertical nanopositioner forimproving scanning probe microscope scan speed [J]. Review of Scientific Instruments,2011,82(12):123703
    [12] N. Vorbringer-Dorozhovets, T. Hausotte, E. Manske, J. C. Shen, and G. J ger. Novel controlscheme for a high-speed metrological scanning probe microscope [J]. Measurement Science&Technology, Sep2011,22(9):094012.
    [13] Y. M. Li and Q. S. Xu. A totally decoupled piezo-driven XYZ flexure parallelmicropositioning stage for micro/nanomanipulation [J]. IEEE Transactions on AutomationScience and Engineering, April2011,8(2):265-79.
    [14] D. H. Wang, Q. Yang, and H. M. Dong. A Monolithic Compliant Piezoelectric-DrivenMicrogripper: Design, Modeling, and Testing [J]. IEEE/ASME Transactions onMechatronics,2011, Digital Object Identifier:10.1109/TMECH.2011.2163200.
    [15] I. Florin, K. Kostadin, A. Stefan, and A. Dragos. Hybrid Micro-Nano Robot for Cell andCristal Manipulations [J]. CEAI,2011,13(2):56-63.
    [16] J. Jongchul and H. Kunsoo. Simulation tool design for the two-axis nano stage of lithographysystems [J]. Mechatronics, Aug.2010,20(5):574-81.
    [17] C. H. Liu, W. Y. Jywe, Y. R. Jeng, T. H. Hsud, and Y. T. Li. Design and control of along-traveling nano-positioning stage [J]. Precision Engineering, July2010,34(3):497-506.
    [18] K. Tanaka. Development of6-dof parallel linked stage for lithography tool: Proof of function[J]. Journal of the Japan Society of Precision Engineering, March2010,76(3):304-311.
    [19] James A. Burns, Brian F. Aull, Chenson K. Chen, Chang-Lee Chen, Craig L. Keast, Jeffrey M.Knecht. Vyshnavi Suntharalingam, Keith Warner, Peter W. Wyatt, and Donna-Ruth W. Yost,A Wafer-Scale3-D Circuit Integration Technology, IEEE Transactions on Electron Devices,Vol53, No10,2507-2516, October2006
    [20] S. Chris and S. Greg. Piezoelectric Fuel Injection: Pulse-to-Pulse Coupling and Flow RateEstimation [J]. IEEE/ASME Transactions on Mechatronics, August2011,16(4):627-642.
    [21] M. S. Senousy, R. K. N. D. Rajapakse, D. Mumford, and M. S. Gadala, Self-heat generationin piezoelectric stack actuators used in fuel injectors [J]. Smart Materials and Structures,2009,18:045008(11pp).
    [22] M. S. Senousy, R. K. N. D. Rajapakse, and M. Gadala. Experimental Investigation andTheoretical Modeling of Piezoelectric Actuators Used in Fuel Injectors, IUTAM Symposiumon Multiscale Modelling of Fatigue [J]. Damage and Fracture in Smart Materials, IUTAMBookseries,2011,24:219-227.
    [23] M. S. Senousy, L. F. X. D. Mumford, M. Gadala, and R. K. N. D. Rajapakse.Thermo-electro-mechanical Performance of Piezoelectric Stack Actuators for Fuel InjectorApplications [J]. Journal of Intelligent Material Systems and Structures, Mar2009,20(4):387-399.
    [24] E. H. Yang, Y. Hishinuma, R. Toda, and K. Shcheglov. Piezoelectric microactuatortechnologies for wavefront correction in space [J]. Proceedings of the SPIE, April2007,6556(1): pp.65560A-1-11,27.
    [25] S. Sherrit, X. Q. Bao, C. M. Jones, J. B. Aldrich, C. J. Blodget, J. D. Moore, J. W. Carson,and R. Goullioud. Piezoelectric multilayer actuator life test [J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2011,58(4):820-828.
    [26] P. A. Sente, F. M Labrique, and P. J. Alexandre. Efficient Control of a Piezoelectric LinearActuator Embedded Into a Servo-Valve for Aeronautic Applications [J]. IEEE Transactionson Industrial Electronics, April2012,59(4),1971-1979.
    [27] S. Moriyama, F. Uchida, and E. Seya. Development of a precision diamond-turning machinefor fabrication of asymmetric aspheric mirrors [J], Optical Engineering,1988,27(11):1008-1012.
    [28] R. V. Lapshin, O. V. Obyedkov. Fast-acting piezoactuator and digital feedback loop forscanning tunneling microscopes [J]. Rev Sci Instrum,1993,64(10):2883-2887.
    [29]袁智敏,张江陵,张勇.电致伸缩陶瓷微位移非线性的数值补偿方法[J].压电与声光,1994,16(5):16-18.
    [30] S. B. Jung. Improvement pf scanning accuracy of PZT piezoelectric actuators by feed-forwardmodel-reference control [J]. Precision Engineering,1994,14:49-55.
    [31] L. N. Sun, C. H. Ru, W. B. Rong, L. G. Chen, and M. X. Kong. Tracking control ofpiezoelectric actuator based on a new mathematical model [J], Journal of Micromechanics andMicroengineering,2004,14(11):1439-1444.
    [32] F. Preisach. Uber Die Magnetische Nachwrikung. Zeitschrift fur Physki,1935,94:277-302.
    [33] I. D. Mayergoyz and C. Nikola. Modeling Piezoelectric Stack Actuators for Control ofMicromanipulation [J]. IEEE Control Systems,1997,69-79.
    [34] P. Ge and M. Jouaneh. Generalized Preisach model for hysteresis momlinearity ofpiezoceramic actuators [J]. Precision Engineering,1997,20(2):99-111.
    [35] J. Hewon, Y. S. Jong, and G. G. Dae. Enhancement of AFM image by compensating thehysteresis and creep effect with in PZT [C]. SPIE,1999,3740:327-330.
    [36] A. R. Freeman, S. P. Joshi. Numerical modeling of PZT nonlinear electromechanical behavior
    [C]. SPIE,1996,2715:602-613.
    [37] P1handbook. http://www.phisickinstrumente.com
    [38]张波,王纪武,陈恳.压电致动晶体的特性研究[J].中国机械工程,2002,13(5):446-449.
    [39]王立松,苏宝库,董中.电致伸缩微位移装置的高精度控制方法研究[J].中国机械工程,2002,13(3):201-203
    [40]耿洁,刘向东,陈振,赖志林. Preisach迟滞逆模型的神经网络分类排序实现[J].光学精密工程,2010,18(4):855-862.
    [41] Yu Y, Naganathan N, and Dukkipati R. Preisach modeling of hysteresis for piezoceramicactuator system [J]. Mechanism and Machine Theory,2002,37(1):49-59.
    [42] Song G, Zhao J Q, Zhou X Q, and de Abreu-Garcia J A. Tracking control of a piezoceramicactuator with hysteresis compensation using inverse Preisach model [J]. IEEE-ASMETransactions on Mechatronics,2005, Vol.10, No.2,198-209.
    [43] J. K. Park, G. Washington, and H. S. Yoon. A hybrid approach to model hysteretic behaviorof PZT stack actuators [J]. Journal of Intelligent Material Systems and Structures,2009,20(4):467-480.
    [44] M. Goldfarb, N. Celanovic. Modeling piezoelectric stack actuators for control ofMicromanipulation [J]. IEEE Control Systems,1997,17(3):69-79.
    [45] M. Jurgen, S. Thonmas, and F. Norbert. Model-based control for ultrasonic motors [J].IEEE/ASME Transaction on mechatroni s,2000,5(2):165-180.
    [46] G. H. Choi, J. O. Hyyun, and G. S. Choi. Repetitive tracking control of a coarse-fine actuator
    [C]. Proceedings of the1999IEEE internatopnal conference on advanced intelligentmechatronics. Atlanta, USA,1999,335-339.
    [47]秦月霞,胡德金.压电致动器的非线性建模[J].上海交通大学学报,2004,8(8):1334-1341.
    [48] M. Quant, H. Elizalde, A. Flores, R. Ramírez, P. Orta, and G. Song. A comprehensive modelfor piezoceramic actuators: modelling, validation and application [J]. Smart Materials andStructures,2009,18(12):125011(16pp).
    [49] M. A. Krasnosel’skii and A. V. Pokrovkii. Systems with Hysteresis [J]. Nauka, Moscow,inRussian.Math.Rev,1983,458-468.
    [50] P. Kreci and K. Kuhnen. Inverse control of systems with hysteresis and creep [J]. IEEEProceeding-Control Theory and Applications,2001,148(3):185-192.
    [51] Y. C. Shee, U. X. Tan, C. N. Riviere, T. W. Ang and T. W. Latt. Feedforward controller ofill-conditioned hysteresis using singularity-free Prandtl-Ishlinskii model [J]. IEEE/ASMETransactions on Mechatronics,2009,14(5):598-605.
    [52] W. T. Ang, F. A. Garmon, P. K. Khosla, and C. N. Riviere. Modeling rate-dependenthysteresis in piezoelectric actuators [C]. Proceedings of the2003IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS2003), Las Vegas NV,2003,2: pp.1975-1980.
    [53] U. X. Tan, W. T. Latt, F. Widjaja, C. Y. Shee, C. N. Riviere, and W. T. Ang. Tracking controlof hysteretic piezoelectric actuator using adaptive rate-dependent controller [J] Sensors andActuators A: Physical,2009,150(1):116-123.
    [54] P. Dahl. A solid friction model [R]. The Aerospace Corp., Tech. Rep. TOP-0158(3107-18)-1,El Segundo, CA.1968.
    [55] B. A. Awabdy, W. C. Shih, and D. M. Auslander. Nanometer positioning of a linear motionstage under static loads [J]. IEEE/ASME Transactions on Mechatronics,1998,3(2):113-119.
    [56] T. Hong and T. N. Chang. Control of nonlinear piezoelectric stack using adaptive dither [C].1995, Seattle, WA, USA.
    [57]曾祥进,黄心汉,王敏.基于Dahl模型的压电陶瓷微夹钳控制研究[J].中国机械工程,2008,19(7):766-769.
    [58] Q. S. Xu, Y. M. Li. Dahl Model-Based Hysteresis Compensation and Precise PositioningControl of an XY Parallel Micromanipulator With Piezoelectric Actuation [J]. Jouranl ofDynamic Systems Measurement and Control-Transactions of the ASME, Jul2010,132(4):041011.
    [59] B. D. Coleman and M. L. Hodgdon. On a Class of Constitutive Relations for FerromagneticHysteresis [J]. Archive for Rational Mechanics and Analysis,1987,99(4):375-396.
    [60] J. W. Macki, P. Nistri, and P. Zecca. Mathematical Models for Hysteresis [J]. SIAM Review1993,35(1):94-123.
    [61] R. Banning, W. L. Koning, J. J. Adriaens, and R. K. Koops. State-space Analysis andIdentification for a Class of Hysteretic Systems [J]. Automatica,2001,3(12):1883-1892.
    [62] W. F. Xie, J. Fu; H. Yao, and C. Y. Su. Observer based control of piezoelectric actuators withclassical Duhem modeled hysteresis [C]. American Control Conference,2009,4221-4226.
    [63] M. Kamlah and Q. Jiang. A constitutive model for ferroelectric PZT ceramics under uniaxialloading [J]. Smart Materials and Structure,1999,8(4):441-459.
    [64] Y. Stepanenko and C. Y. Su. Intelligent control of piezoelectric actuators [C]. Proceedings ofthe37th IEEE Conference on Decision and Control,1998,4:4234-4239.
    [65] D. C. Jiles and D. L Atherton. Theory of the Magnetisation Process in Ferromagnets and itsApplication to the Magnetomechanical Effect [J]. Journal of Physics D: Applied Physics,1984,17:1265-1281.
    [66] Y. Stepanenko and C. Y. Su. Intelligent control of piezoelectric actuators [C]. Proceedings ofthe37th IEEE Conference on Decision and Control,1998,4:4234-4239.
    [67] A. Salvini and F. R. Fulginei. Genetic algorithms and neural networks generalizing theJiles-Atherton model of static hysteresis for dynamic loops [J]. IEEE Transactions onMagnetics,2002,38(2):873-876.
    [68] T. Hegewald, B. Kaltenbacher, and M. Kaltenbacher. Efficient modeling of ferroelectricbehavior for the analysis of piezoceramic actuators [J]. Journal of Intelligent MaterialSystems and Strucrures, Oct.2008,19(1):1117-1129.
    [69]刘向东,修春波,刘承,李黎.基于混沌神经网络的压电陶瓷迟滞模型[J].北京理工大学学报,2006,26(2):135-138.
    [70]赵新龙,谭永红.对压电陶瓷执行器迟滞特性的智能建模[J].系统仿真学报,2006,16(1):23-25.
    [71]马连伟,谭永红,邹涛.基于神经网络的迟滞逆模型[J].控制理论与应用,2008,25(5):823-826.
    [72] J. P. Lien, T G Fang, D. G, and Buckner. Hysteretic neural network modeling ofspring-coupled piezoelectric actuators [J]. Smart Material and Strucures, Jun.2011,20(6):065007.
    [73] J. Cas, G. Skorc, R. Safaric. Improved Micropositioning of2DOF Stage by Using the NeuralNetwork Compensation of Plant Nonlinearities [J], Strojniski Vestnik-Journal of MechanicalEngineering, Oct.2010,56(10):599-608.
    [74] C. Canudas de Wit, H. Olsson, and K. J. Astrom. A New Model for Control of Systems withFriction [J]. IEEE Transactions on Automatic Control,1995,40(3):419-425..
    [75] J. W. Li, X. B. Chen, Q. An. Friction models incorporating thermal effects in highly precisionactuators [J]. Revies of Scientific Instruments, Apr2009,80(4):045104
    [76] R, F, Fung, C. F Han, and J. R. Chang. Dynamic modeling of a high-precision self-movingstage with various frictional models [J]. Applied mathematical Modelling, Sep.2008,32(9):1769-1780.
    [77] R. Bouc. Forced vibration of mechanical systems with hysteresis [C]. Proceedings of the4thConference on Nonlinear Oscillations, Prague, Czechoslovakia,1967.
    [78] Y. K. Wen. Method for random vibration of hysteretic systems [J]. Journal of EngineeringMechanics-ASCE,1976,102(2):249-263.
    [79] A. W. Smyth, S. F. Masri, E. B. Kosmatopoulos, A. G. Chassiakos, and T. K. Caughey.Development of adaptive modeling techniques for nonlinear hysteretic systems [J].International Journal of Non-Linear Mechanics,2002,37(8):1435–1451.
    [80] M. Ismail, F. Ikhouane, J. Rodellar, The Hysteresis Bouc-Wen Model, a Survey [J]. Archivesof Computational Methods in Engineering, Jun.2009,16(2):161-188.
    [81] Ismail M, Ikhouane F, Rodellar J, The Hysteresis Bouc-Wen Model, a Survey [J]. Archives ofComputational Methods in Engineering, Jun2009,16(2):161-188.
    [82] B. F. Spencer, S. J. Dyke, M. K. Sain, and J. D. Carson. Phenomenological model formagnetorheological damper [J]. Journal of Engineering Mechanics,1997,123(3):230–238.
    [83] A. Dominguez, R. Sedaghati, and I. Stiharu. Modeling and application of MR dampers insemi-adaptive structures [J]. Computers and Structures,2008,86(3-5):407–415.
    [84] G. C. Foliente. Hysteresis modeling of wood joints and structural systems [J]. Journal ofEngineering Mechanics,1995,121(6):1013–1022.
    [85] K. Liao, Y. Wen, and D. A. Foutch. Evaluation of3D steel moment frames under earthquakeexcitations. I: Modeling [J]. Journal of Engineering Mechanics,2007,133(3):462–470.
    [86] X. Lu and Q. Zhou. Dynamic analysis method of a combined energy dissipation system andits experimental verification [J]. Earthquake Engineering and Structural Dynamics,2002,31(6):1251–1265.
    [87] D. Laxalde, F. Thouverez, and J. J. Sinou. Dynamics of a linear oscillator connected to asmall strongly non-linear hysteretic absorber [J]. International Journal of Non-linearMechanic,2006,41(8):969–978.
    [88] S. ólafsson, S. Remseth, and R. Sigbj rnsson. Stochastic models for simulation of strongground motion in Iceland [J]. Earthquake Engineering and Structural Dynamics,2001,30(9):1305–1331.
    [89] N. Gerolymos and G. Gazetas. A model for grain-crushing-induced landslides-application tonikawa, Kobe1995[J]. Soil Dynamics and Earthquake Engineering,2007,27(9):803–817.
    [90] J. L. Ha, Y. S. Kung, R. F. Fung, and S. C. Hsien. A comparison of fitness functions for theidentification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm[J]. Sensors and Actuators A: Physical,2006,132(2):643-650.
    [91] C. J. Lin and S. R. Yang. Precise positioning of piezo-actuated stages usinghysteresis-observer based control [J]. Mechatronics,2006,16(4):417-426.
    [92] R. F. Fung, W. C. Lin. System identification of a novel6-DOF precision positioning table [J].Sensors and Actuators A: Physical, Mar2009,150(2):286-295.
    [93] R. F. Fung, M. H. Weng, Y. S. Kung. FPGA-based adaptive backstepping fuzzy control for amicro-positioning Scott-Russell mechanism [J]. Mechanical Systems and Signal Processsing,Nov.2009,23(8):2671-2686.
    [94] O. Gomis-Bellmunt, F. Ikhouane, P. Castell-Vilanova, and J. Bergas-Jane. Modeling andvalidation of a piezoelectric actuator [J]. Electrical Engineering,2007,89(8):629-638.
    [95] O. Gomis-Bellmunt, F. Ikhouane, D. Montesinos-Miracle. Control of a piezoelectric actuatorconsidering hysteresis [J]. Journal of Sound and Vibration, Oct.2009,326(3-5):383-399.
    [96] J. M. T. A. Adriaens, W. L. de Koning, and R. Banning. Modeling piezoelectric actuators [J].IEEE/ASME on Mechatronics,2000,5(4):331-341.
    [97] V. Newcomb and I. Flinn. Improving the Linearity of Piezoelectric Ceramic Actuators [J].Electr. Letter,1982,18(11):442-444.
    [98]吴一辉.压电定位元件的非线性及其线性化控制原理[J].功能材料与器件学报,1996,2(3):169-171.
    [99] H. Kaizuka and B. Sui. A simple way to reduce hysteresis and creep when using piezoelectricactuators [J]. Japanese Journal of Applied Physics,1988,27(5):773-776.
    [100] P. T. Hanbppl. A new method to compensation for hysteresis of PZT actuators [EB/OL],2000.
    [101]杨宜民.新型三自由度机器人及其控制系统[J].控制理论及应用,1995,12(5):727-737.
    [102] S. Jung and S. Kim. Improvement of scanning accuracy of PZT piezoelectric actuators byfeed-forward model-reference control [J]. Precision Engineering,1994,16:57-63.
    [103] H. Janocha and K. Kuhnen. Real-time compensation of hysteresis and creep in piezoelectricactuators, Sensors and Actuators A: Physical,2000,79(2):83-89
    [104] G. Schitter and A. Stemmer. Identification and open-loop tracking control of a piezoelectrictube, scanner for high-speed scanning-probe microscopy [J]. IEEE Transactions on Controlsystems technology,2004,12(3):449-454.
    [105] C. H. Ru and L. N. Sun. Hysteresis and creep compensation for piezoelectric actuator inopen-loop operation [J]. Sensors and Actuators A: Physical,2005,122(1):124-130.
    [106]陶永华.新型PID控制及其应用(第2版)[M]..北京:机械工业出版社,2004,1-30.
    [107] H. Richter, E. A. Misawa, and D. A. Lucca. Characterization of nonlinearities in apiezoelectric positioning device [C]. Proceedings of the1997IEEE International Conferenceon Control Applications, Chicago,1997,717-720.
    [108]薛琳.微位移闭环控制系统的研究[D].哈尔滨工业大学,2002,35-45.
    [109] G. Ping, M. Jouaneh. Modeling hysteresis in piezoceramic actuators [J]. PrecisiomEngineering,1995,17:211-221.
    [110]吴广玉.系统辨识与自适应控制[M](下册).哈尔滨工业大学出版社,1987,1-17.
    [111]谢新民,丁锋.自适应控制系统[M].北京:清华大学出版社,2002,1-9,61-84.
    [112] L. M. H. Chi and Y. Kwang,. Application of the Free-Mode based on Neural Networks inModel Reference Adaptive Inverse Control [C]. Proceedings of the American ControlConference,2000,664-1668.
    [113] M. Krstic, I. Kanellakopoulos, and P. Kokotovic. Nonlinear and adaptive control design [M].John Wiley&Sons. New York,1995,42-63.
    [114] C. Y. Su, Y. H. Tan and Y, Stepanenko. Preisach modeling of hysteresis for piezoceramicactuator system [J]. Mechanism andf Machine Theory,2002,37:49-59.
    [115] Z. Q. Lu, D. J. Chen, and H. F. Kong. Neuronnet control and it’s application in precision feedmechanism of machine tool driven by PZT [C]. New York: Proceedings of the IEEEInternational Conference on Industrial Technology,1994,80-82.
    [116] S. C. Dongwoo and L. James. Modeling of piezo actuator’s nonlinear and frequencydependent dynamics [J]. Mechatronics,1999,9:391-410.
    [117] C. Li and Y. H. Tan. A neural networks model for hysteresis nonlinearity [J].Sensors andActuators,2004,112(1):49-54.
    [118]孙立宁,孙绍云,曲东升.基于PZT的微驱动定位系统及控制方法的研究[J].光学精密工程,2004,12(1):55-59.
    [119]傅星,胡小唐.模糊控制在压电陶瓷控制中的应用[J].压电与声光,1999,21(3):200-202.
    [120]孙立宁,孙绍云,曲东升.基于的微驱动定位控制方法的研究[J].压电与声光,2003,25(5):436-438.
    [121]节德刚,孙立宁,曲东升.压电陶瓷微位移系统的模糊PID控制方法[J].哈尔滨工业大学学报,2005,37(2):145-147.
    [122]丁文明.压电陶瓷执行器的驱动技术研究[D].重庆大学,2007.
    [123] Wang D H, Zhu W, Yang Q, and Ding W M. A high-voltage and high-power amplifier fordriving piezoelectric stack actuators [J]. Journal of Intelligent Material Systems andStructures, Oct.2009,20(16):1987-2001.
    [124]董宁.自适应控制[M].北京理工大学出版社,2009,1-10.
    [125]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨工业大学出版社,2006,404-406.
    [126]石辛明,郝整清.模糊控制及其MATLAB仿真[M].清华大学出版社,2010,1-10.
    [127]董维杰.压电自感知执行器理论与应用研究[D].大连理工大学,2003.
    [128] K. Marko and R. Juha. Software Based Neural Network Assisted Movement Compensationfor Nanoresolution Piezo Actuators [C]. Conference on Intelligent Robots and ComputerVision XXIX-Algorithms and Techniques,2012, DOI:10.1117/12.905749
    [129] J. Cas, G. Skorc, and R. Safaric. eural network position control of XY piezo actuator stage byvisual feedback [J]. Neural Computing and Applications,2010,19(7):1043-1055.
    [130] W. Wang and X. D.Liu. Fuzzy sliding mode control for a class of piezoelectric system with asliding mode state estimator [J]. Mechatronics,2010,20(6):712-719.
    [131] H W Ji and Y Q Wen. Model and Control on Hysteresis of Piezoelectric Actuator [J].Advanced Materials Research2011,179:635-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700