常用有机外墙外保温系统火灾特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国家“节能减排”政策促使了有机外墙外保温技术的迅速推广,一方面建筑节能效果显著提高,而另一方面与之配套的消防安全法规却相对滞后,大量可燃、易燃的外墙保温材料被用于建筑外墙,火灾事故时有发生,严重威胁了人民生命和财产安全。虽然公安部消防局在65号文严格限制可燃外墙保温材料的使用,但先前已有大量有机外墙外保温系统安装于外墙,造成了既有的巨大火灾隐患。因此,对建筑外墙外保温系统火灾特性的研究就凸显重要。
     通过对山东省外墙外保温系统(材料)生产和应用情况的统计,本文将有机外墙外保温系统归为粘贴保温板薄抹灰外墙外保温系统,胶粉浆料复合保温板外墙外保温系统,瓷砖饰面粘贴保温板外墙外保温系统和保温装饰板外墙外保温系统四个大类,而保温系统中的保温层材料包括常用的聚氨酯硬泡(RPUF)、膨胀聚苯乙烯泡沫(EPS)和挤塑聚苯乙烯泡沫(XPS)三类。
     本文首先对市场上常用的聚氨酯硬泡和聚苯乙烯泡沫外墙外保温材料进行了热重分析,通过等转化率和多参数非线性回归相结合的方法得到了材料的热解动力学参数并确定了其反应机理函数。进而基于动力学参数和反应机理函数,对聚氨酯硬泡材料和聚苯乙烯泡沫材料在不同温度下的寿命进行了预测。
     其次,基于小尺寸的锥形量热仪实验对不同外墙外保温系统防护层对抑制热穿透和热释放速率的有效性进行了研究。防护层阻止热穿透的性能主要体现在两个方面:一是对峰值温度的抑制,也即降低了系统内各层的温度;二是对升温速率的抑制,也即推迟了材料热解和达到峰值温度的时间。对于第一个方面,本文从防护层内外温差和没有防护层样品内部温度与有防护层样品相应位置的温度之差这两个参数对其进行了评测。对于第二个方面则是从系统到达阈值温度所用的时间来量化比较。防护层的存在降低了有机保温材料生成可燃气的速率,其最终结果是抑制了材料燃烧的热释放速率,对此本文从峰值热释放速率、平均有效燃烧热以及达到峰值热释放速率的时间三个方面进行了评测。
     为了进一步评测外墙外保温系统诸如空腔火以及聚苯乙烯泡沫融化、滴落燃烧等特殊的火行为,本文基于ISO9705实验台对应用最为广泛的薄抹灰外墙外保温系统进行大尺寸实验研究。通过测量薄抹灰系统点燃时间、热释放速率和温度,评测了防护层防火的有效性,并分析了系统空腔和材料燃烧滴落对测量结果的影响。
     在系统火蔓延危险性评测方面,认为火灾增长速度和火灾强烈程度是决定外墙外保温系统火蔓延危险性的关键因素。火灾增长速度用峰值热释放速率与点燃时间的比值来表征,火灾强烈程度则是用平均燃烧热来描述。以PHRR/点燃时问为横坐标,以平均燃烧热为纵坐标,绘出了二维火蔓延风险分布图,对各类外墙保温系统在不同工况下的火蔓延危险性进行了比较。
In recent years, the "energy-saving policy" from the government has greatly prompted the application of a variety of organic exterior wall insulation systems in buildings. On one hand the effect on energy-saving efficiency has been significantly increased, but on the other hand the corresponding fire prevention codes lags far behind. A lot of combustible and flammable wall insulation materials have been used in exterior walls. As a result, the exterior wall fire accident occurs occasionally which threaten people's safety of life and wealth. Although the No.56Decree of Fire Department of Ministry of Public Security strictly limited the use of combustible wall insulation materials, but a large number of organic insulation systems had been installed on the exterior wall which resulting in a significant fire hazards. Therefore, the study of fire properties of commonly used organic exterior insulation systems has become more important.
     Based on the statistics of the production and application of exterior wall insulation systems in Shandong province, the insulation systems studied in this paper can be grouped into four categories. They are the thin-plastering exterior insulation system (thin-plastering system), the exterior thermal insulation system with ceramic tile face (ceramic face system), the composited exterior wall thermal insulation system with mineral binder and expanded polystyrene granule aggregate (mineral binder composited system) and the decorative insulated exterior wall panel system (decorative panel system). The materials of thermal insulation layer of the exterior wall insulation systmes include commonly used rigid polyurethane foam(RPUF), expanded polystyrene foam(EPS) and extruded polystyrene foam(XPS).
     Firstly, the thermogravimetric studies were conducted on the commercial grade RPUF, EPS and XPS. The dependence of the activation energy on the conversion degree was evaluated by using the isoconversional methods. The multivariate non-linear regression method was applied for investigation the kinetic model and the corresponding kinetic parameters. Based on the kinetics parameters and the kinetic models, the lifetime of EPS at different temperature was predicted.
     Secondly, based on cone calorimeter experiments of small scale samples of exterior wall insulation systems, the effects of protective layers on preventing the heat penetration and reducing the heat release rate were evaluated. The performances of the protective layer to prevent heat penetration is mainly reflected in two aspects: First, inhibits the temperature of each layers within the system which also reduces the peak temperature; Second, suppresses the heating rate which delays the time of material to pyrolysis and to reach peak temperature. For the first aspect, two parameters were used for evaluation, that is, the temperature differences between the two sides of protective layer and the internal temperature differences of corresponding locations between samples with and without protective layer. The second aspect was quantified and compared by the time when the system reached the threshold temperature. The protective layer reduces the rate of organic insulation materials to generate the combustible gas which eventually resulted in the reduction of heat release rate. The extent of reduction was evaluated by the peak heat release rate, the average effective heat of combustion and the time to peak heat release rate.
     In order to further investigate the special fire behavior of the exterior wall insulation systems, such as the flame spread in cavities and the melt, dripping burning of polystyrene foam, the large scale experiments were conducted on the thin-plastering system based on the ISO9705test rig. By measuring the time to ignition, the heat release rate and the internal temperature, the fire prevention effectiveness of the protective layers was evaluated and the influences of the cavity and the dripping burning on the experimental results were analyzed.
     It is considered that the fire growth rate and the fire intensity are the key factors for the fire spread risk assessment of the exterior wall insulation systems. The fire growth rate was characterized by the ratio of the peak heat release rate(PHRR) and the ignition time and the fire intensity was described by the average effective heat of combustion. The PHRR/ignition time was set as the abscissa axis and the average effective heat of combustion was set as the vertical axis with the aim to draw the two-dimensional fire spread risk maps and to compare the relative risk of fire spread among different types of exterior wall insulation systems.
引文
[1]GBT 17795-1999建筑绝热用玻璃棉制品[S].1999.
    [2]GBT 13350-2008绝热用玻璃棉及其制品[S].2008.
    [3]GB10801.1-2002绝热用模塑聚苯乙烯泡沫塑料[S].2002.
    [4]GB/T 1080.2-2002绝热用挤塑聚苯乙烯泡沫塑料(XPS)[S].2002.
    [5]GBT 21558-2008建筑绝热用硬质聚氨酯泡沫塑料[S].2008.
    [6]NYT 758-2003 硬质酚醛泡沫绝热制品(PF) [S].2003
    [7]GBT 20974-2007绝热用硬质酚醛泡沫制品(PF)[S].2007.
    [8]JG 149-2003膨胀聚苯板薄抹灰外墙外保温系统[S].2003.
    [9]挤塑聚苯板(XPS)薄抹灰外墙外保温系统(征求意见稿)[S].2010.
    [10]JG 158-2004胶粉聚苯颗粒外墙外保温系统[S].2004.
    [11]CAS126-2005胶粉聚苯颗粒复合型外墙外保温系统[S].2005.
    [12]DB11/T463-2007外墙外保温施工技术规程(胶粉聚苯颗粒复合型外墙外保温系统)[S].2007.
    [13]DB11T/644-2009外墙外保温技术规程(现浇混凝土模板内置保温板做法)[S].2009.
    [14]DB11/T697-2009外墙外保温施工技术规程(外墙保温装饰板做法)[S].2009.
    [15]DBJ/T14-072-2010保温装饰板外墙外保温系统应用技术规程[S].2010.
    [16]崔嵛.竖直壁面条件下常用有机外墙保温材料的火灾行为研究[D].合肥;中国科学技术大学,2012.
    [17]黄新杰.不同外界环境下典型外墙保温材料PS火蔓延特性规律研究[D].合肥;中国科学技术大学,2011.
    [18]Guyot A. Recent developments in the thermal degradation of polystyrene-A review [J]. Polymer Degradation and Stability,1986,15(3):219-235.
    [19]Kannan P, Biernacki J J, Visco JR D P. A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process [J]. Journal of Analytical and Applied Pyrolysis,2007,78(1):162-171.
    [20]Levchik S V, Weil E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature [J]. Polymer International,2004,53(11): 1585-1610.
    [21]Singh H, Jain A K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review [J]. Journal of Applied Polymer Science,2009,111 (2):1115-1143.
    [22]Checchin M, Cecchini C, Cellarosi B, et al. Use of cone calorimeter for evaluating fire performances of polyurethane foams [J]. Polymer Degradation and Stability,1999,64(3): 573-576.
    [23]Chow W K. Fire hazard assessment on polyurethane sandwich panels for temporary accommodation units [J]. Polymer Testing,2004,23(8):973-977.
    [24]Joshua L, Gurman, Laura Baier, Barbara C. Polystyrenes:A review of the literature on the products of thermal decomposition and toxicity [J]. Fire and Materials,1987,11(3):109-130.
    [25]Maya Paabo B C L. A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams [J]. Fire and Materials,1987, 11(1):1-29.
    [26]Sorathia U, Rollhauser C M, Hughes W A. Improved fire safety of composites for naval applications [J]. Fire and Materials,1992,16(3):119-125.
    [27]Collier P, Baker G. The Influence of Construction Detailing on the Fire Performance of Polystyrene Insulated Panels [J]. Fire Technology,1-17.
    [28]Griffin G J, Bicknell A D, Bradbury G P, et al. Effect of Construction Method on the Fire Behavior of Sandwich Panels with Expanded Polystyrene Cores in Room Fire Tests [J]. Journal of Fire Sciences,2006,24(4):275-294.
    [29]季广其,朱春玲.聚氨酯外保温体系的防火特性研究[J].建设科技,2007,18,63-65.
    [30]季广其,朱春玲,宋长友等.外墙外保温系统竖炉防火试验研究[J].建筑科学,2008,24(2),43-48.
    [31]季广其,朱春玲,宋长友等.外墙外保温系统防火试验研究—模型火UL 1040试验一[J].建筑科学,2008,24(2),49-55.
    [32]季广其,朱春玲,宋长友等.外墙外保温系统防火试验研究—模型火UL 1040试验二[J].建筑科学,2008,24(2),56-63.
    [33]季广其,朱春玲,宋长友等.外墙外保温系统防火试验研究—模型火UL 1040试验三[J].建筑科学,2008,24(2),64-69.
    [34]季广其,朱春玲,宋长友等.外墙外保温系统防火试验研究—模型火BS 8414-1试验一[J].建筑科学,2008,24(2),70-73.
    [35]季广其,朱春玲,宋长友等.外墙外保温系统防火试验研究—模型火BS 8414-1试验二[J].建筑科学,2008,24(2),74-77.
    [1]胡荣祖,高胜利,赵风起等,热分析动力学(第二版).2008,北京:科学出版社.
    [2]ISO 11358. Plastics-Thermogravimetry (TG) of polymers-General principles.1997.
    [3]Vytenis Babrauskas, Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption. Fire and Materials,1984.8(2):p.81-95.
    [4]Vytenis Babrauskas, W.J.P., Ignitability measurements with the cone calorimeter. Fire and Materials,1987.11(1):p.31-43.
    [5]Vytenis Babrauskas, W.H.T., Marc Janssens, Shyuitsu Yusa,, A cone calorimeter for controlled-atmosphere studies. Fire and Materials,1992.16(1):p.37-43.
    [6]Babrauskas, V., Smoke and gas evolution rate measurements on fire-retarded plastics with the cone calorimeter. Fire Safety Journal,1989.14(3):p.135-142.
    [7]ASTM E354. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter.2004.
    [8]ISO 5660-1. Reaction-to-fire tests—Heat release,smoke production and mass loss rate Part 1:Heat release rate (cone calorimeter method).2002.
    [9]ISO 5660-2. Reaction-to-fire tests—Heat release,smoke production and mass loss rate —Part 2:Smoke production rate (dynamic measurement).2002.
    [10]ISO 5660-3. Reaction-to-fire tests—Heat release,smoke production and mass loss rate —Part 3:Guidance on measurement.2003.
    [11]ISO 9705. Reaction-to-fire tests—Full-scale room tests for surface products Part 2:Technical background and guidance.2001.
    [12]ISO 9705. Fire tests-Full-scale room test for surface products.1993.
    [13]Clayton Huggett, Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials,1980.4(2):p.61-65.
    [14]Parker, W.J., Calculations of the Heat Release Rate by Oxygen Consumption for Various Applications. Journal of Fire Sciences,1984.2(5):p.380-395.
    [15]Janssens, M.L., Measuring rate of heat release by oxygen consumption. Fire Technology, 1991.27(3):p.234-249.
    [16]ISO 4934-1. Reaction-to-fire tests—Calibration and use of radiometers and heat flux meters —Part 1:General principles.2010.
    [17]ISO/TS 14934-4:2007. Fire tests-Calibration of heat flux meters—Part 4:Guidance on the use of heat flux meters in fire tests.2007.
    [18]ISO 14934-3:2006. Fire tests—Calibration and use of heat flux meters—Part 3:Secondary calibration method.2006.
    [19]ISO 14934-2:2006. Fire tests—Calibration and use of heat flux meters—Part 2:Primary calibration methods.2006.
    [1]Budrugeac P. Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment [J]. Journal of Thermal Analysis and Calorimetry,2009,97(2):443-451.
    [2]Budrugeac P. Theory and practice in the thermoanalytical kinetics of complex processes: Application for the isothermal and non-isothermal thermal degradation of HDPE [J]. Thermochimica Acta,2010,500(1-2):30-37.
    [3]Hong J, Guo G, Zhang K. Kinetics and mechanism of non-isothermal dehydration of nickel acetate tetrahydrate in air [J]. Journal of Analytical and Applied Pyrolysis,2006,77(2): 111-115.
    [4]Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data [J]. Journal of Polymer Science Part B:Polymer Letters,1966,4(5): 323-328.
    [5]Ozawa T. A New Method of Analyzing Thermogravimetric Data [J]. Bulletin of the Chemical Society of Japan,1965,38(11):1881-1886.
    [6]Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data [J]. Journal of Polymer Science Part B:Polymer Letters,1966,4(5): 323-328.
    [7]Opfermann J. Kinetic Analysis Using Multivariate Non-linear Regression. I. Basic concepts [J]. Journal of Thermal Analysis and Calorimetry,2000,60(2):641-658.
    [8]Sestak J. Thermophysical properties of solids:Their measurements and theoretical thermal analysis [M]. Amsterdam:Elsevier,1984.
    [9]朱吕民,刘益军等.聚氨酯泡沫塑料(第三版)[M].化学工业出版社,2005.
    [10]Levchik S V, Weil E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature [J]. Polymer International,2004,53(11): 1585-610.
    [11]Li S, Jiang Z, Yuan K, et al. Studies on the Thermal Behavior of Polyurethanes [J]. Polymer-Plastics Technology & Engineering,2006,45(1):95-108.
    [12]Singh H, Jain A K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review [J]. Journal of Applied Polymer Science,2009,111(2):1115-1143.
    [13]Maya Paabo B C L. A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams [J]. Fire and Materials,1987, 11(1):1-29.
    [14]袁开军,江治,李疏芬等.聚氨酯的热分解研究进展[J].高分子材料科学与工程,2005,21(4):51-58.
    [15]Tang Z, Maroto Valer M M, Andrsen J M, et al. Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents [J]. Polymer,2002,43(24):6471-6479.
    [16]Chang T C, Chiu Y S, Chen H B, et al. Degradation of phosphorus-containing polyurethanes [J]. Polymer Degradation and Stability,1995,47(3):375-381.
    [17]Chang T C, Shen W S, Chiu Y S, et al. Thermo-oxidative degradation of phosphorus-containing polyurethane [J]. Polymer Degradation and Stability,1995,49(3): 353-360.
    [18]Duquesne S, Bras M, Bourbigot S, et al. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings [J]. Polymer Degradation and Stability,2001, 74(3):493-499.
    [19]Yoshitake N, Furukawa M. Thermal degradation mechanism of a,y-diphenyl alkyl allophanate as a model polyurethane by pyrolysis-high-resolution gas chromatography/FT-IR [J]. Journal of Analytical and Applied Pyrolysis,1995,33,269-281.
    [20]ISO 11358:1997 Plastics-Thermogravimetry (TG) of polymers-General principles [S]. 1997.
    [21]Bilbao R, Mastral J F, Ceamanos J, et al. Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres [J]. Journal of Analytical and Applied Pyrolysis,1996,37(1):69-82.
    [22]Wang P S, Chiu W Y, Chen L W, et al. Thermal degradation behavior and flammability of polyurethanes blended with poly(bispropoxyphosphazene) [J]. Polymer Degradation and Stability,1999,66(3):307-315.
    [23]Mequanint K, Sanderson R, Pasch H. Thermogravimetric study of phosphated polyurethane ionomers [J]. Polymer Degradation and Stability,2002,77(1):121-128.
    [24]Arthur F G, Charles A W. Fire Retardancy of Polymeric Materials [M]. New York:Marcel Dekker,2000.
    [25]Dosanjh S S, Pagni P J, Fernandez-Pello A C. Forced cocurrent smoldering combustion [J]. Combustion and Flame,1987,68(2):131-142.
    [26]Kannan P, Biernacki J J, Visco JR D P. A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process [J]. Journal of Analytical and Applied Pyrolysis,2007,78(1):162-171.
    [27]Mcneill I C, Zulfiqar M, Kousar T. A detailed investigation of the products of the thermal degradation of polystyrene [J]. Polymer Degradation and Stability,1990,28(2):131-151.
    [28]Guyot A. Recent developments in the thermal degradation of polystyrene-A review [J]. Polymer Degradation and Stability,1986,15(3):219-235.
    [29]Jun H C, Oh S C, Lee H P, et al. A kinetic analysis of the thermal-oxidative decomposition of expandable polystyrene [J]. Korean Journal of Chemical Engineering,2006,23(5):761-766.
    [30]Kannan P, Biernacki J J, Visco JR D P, et al. Kinetics of thermal decomposition of expandable polystyrene in different gaseous environments [J]. Journal of Analytical and Applied Pyrolysis,2009,84(2):139-144.
    [31]Peterson J D, Vyazovkin S, Wight C A. Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene) [J]. Macromolecular Chemistry and Physics,2001,202(6):775-784.
    [32]Grassie N, Scott G. Polymer Degradation and Stabilisation [M]. Cambridge:Cambridge University Press,1985.
    [33]Madorsky S L. Thermal Degradation of Organic Polymers [M]. New York:Interscience Publishers,1964.
    [34]Dauengauer S A, Utkina O G, Sazanov Y N. Thermal and thermo-oxidative degradation of polystyrene in the presence of bromine-containing flame retardants [J]. Journal of Thermal Analysis and Calorimetry,1988,33(4):1213-1219.
    [35]IEC-216. Guide for the determination of thermal endurance properties of electrical insulating materials, parts 1-5. [S]. Geneva, Switzerland:Bureau Central de la CEI.2005.
    [1]ISO 5660-1. Reaction-to-fire tests—Heat release,smoke production and mass loss rate Part 1:Heat release rate (cone calorimeter method) [S].2002.
    [2]ISO 5660-2. Reaction-to-fire tests—Heat release,smoke production and mass loss rate —Part 2:Smoke production rate (dynamic measurement) [S].2002.
    [3]ISO 5660-3. Reaction-to-fire tests—Heat release,smoke production and mass loss rate—Part 3:Guidance on measurement [S].2003.
    [4]ISO 9705. Reaction-to-fire tests—Full-scale room tests for surface products Part 2:Technical background and guidance [S].2001.
    [5]ISO 9705. Fire tests-Full-scale room test for surface products [S].1993.
    [6]JGJ 126-2000外墙饰面砖工程施工及验收规程[S].2000.
    [7]JC/T547-2005陶瓷墙地砖胶粘剂[S].2005.
    [8]GB/T4100-2006陶瓷砖[S].2006.
    [9]JC/T1004-2006陶瓷墙地砖填缝剂[S].2006.
    [10]JGJl44-2008外墙外保温工程技术规程[S].2008.
    [11]JC 561.2-2006聚合物基外墙外保温用玻璃纤维网布.第2部分:聚合物基外墙外保温用玻璃纤维网布[S].2006.
    [12]JG 158-2004胶粉聚苯颗粒外墙外保温系统[S].2004.
    [13]CAS126-2005胶粉聚苯颗粒复合型外墙外保温系统[S].2005.
    [14]DB11/T463-2007外墙外保温施工技术规程(胶粉聚苯颗粒复合型外墙外保温系统)[S].2007.
    [15]DB11/T697-2009外墙外保温施工技术规程(外墙保温装饰板做法)[S].2009.
    [16]DBJ/T14-072-2010保温装饰板外墙外保温系统应用技术规程[S].2010.
    [17]Hopkins D, Quintiere J G. Material fire properties and predictions for thermoplastics [J]. Fire Safety Journal,1996,26(3):241-268.
    [18]Materials A S F T A. ASTM E1321 Standard Test Method for Determining Material Ignition and Flame Spread Properties [S].2009.
    [19]Janssens M L. Improved method of analysis for the LIFT apparatus, Part I:ignition. Proceedings of the 2nd Fire and Materials Conference. Arlington:Interscience Communications,1993.
    [20]Brown J E, raun E, Twilley W H. Cone calorimeter evaluation of the flammability of composite materials [R]. National Bureau of Standards, Center for Fire Research,1988.
    [21]Hirunpraditkoon S, Dlugogorski B Z, Kennedy E M. Fire properties of surrogate refuse-derived fuels [J]. Fire and Materials,2006,30(2):107-130.
    [22]Delichatsios M A. Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres [J]. Fire Safety Journal,2005,40(3):197-212.
    [23]Spearpoint M J, Quintiere J G. Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux [J]. Fire Safety Journal,2001,36(4):391-415.
    [24]Babrauskas V, Peacock R D. Heat release rate:The single most important variable in fire hazard [J]. Fire Safety Journal,1992,18(3):255-272.
    [1]JC 561.2-2006聚合物基外墙外保温用玻璃纤维网布.第2部分:聚合物基外墙外保温用玻璃纤维网布[S].2006.
    [2]BSEN 8414-1:2002 Fire performance of external cladding systems -Part 1:Test method for non-loadbearing external cladding systems applied to the face of the building [S].2002,
    [3]UL1040. UL 1040 Fire Test of Insulated Wall Construction [S].2007,
    [4]Lattimer B Y, Sorathia U. Thermal characteristics of fires in a combustible corner [J]. Fire Safety Journal,2003,38(8):747-770.
    [5]Lattimer B Y, Sorathia U. Thermal characteristics of fires in a noncombustible corner [J]. Fire Safety Journal,2003,38(8):709-745.
    [6]Lattimer B Y, Hunt S P, Wright M, et al. Modeling fire growth in a combustible corner [J]. Fire Safety Journal,2003,38(8):771-796.
    [7]Ohlemiller T J, Shields J R. The effect of surface coatings on fire growth over composite materials in a corner configuration [J]. Fire Safety Journal,1999,32(2):173-193.
    [8]Ohlemiller T, Cleary T, Shields J. Effect of ignition conditions on upward flame spread on a composite material in a corner configuration [J]. Fire Safety Journal,1998,31(4):331-344.
    [9]Deakin G, Cooke G. Future codes for fire safety design [J]. Fire Safety Journal,1994,23(2): 193-218.
    [10]Quintiere J G. A simulation model for fire growth on materials subject to a room-corner test [J]. Fire Safety Journal,1993,20(4):313-339.
    [11]崔嵛,张和平,赵庆等.建筑物外墙保温系统火灾实验装置[P].CN 102052936 A,2010.
    [12]亓延军,崔嵛,赵艳萍等.窗口溢流火燃烧试验与数值模拟研究[J].安全与环境学报,2011,11(5):144-148.
    [13]ISO 9705. Fire tests-Full-scale room test for surface products [S].1993,
    [14]ISO 9705. Reaction-to-fire tests— Full-scale room tests for surface products Part 2:Technical background and guidance [S].2001.
    [15]Kokkala M. Characteristics of a flame in an open corner of walls[C]. Proceedings of Interflam. London:Interscience Communications,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700