基于氧化物薄膜的光电器件及电阻转变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继传统的氧化物半导体、铁磁体、传感器等的广泛应用,近年来氧化物超导、巨磁阻材料、多铁性材料及其光伏材料等层出不穷,基于氧化物的纳米多孔结构和薄膜异质结特性可望获得独特的物理现象和新型器件,因此这些领域越来越受到人们的关注。其中,基于氧化物薄膜的电化学器件,特别是染料敏化太阳能电池(DSSC)因其较高的热稳定性、较低的工艺成本、柔性化及环境友好等优点,尤其引人注目。利用氧化物纳米多孔结构制备的半导体电极,Michael Gratzel等人创立并发展了DSSC,当前其光电转换效率已提高到12%,使人们看到了这类电化学结构的太阳能电池具有良好的应用前景。类似于传统的硅基p-n结可用于晶体管或光电器件的开发,染料敏化纳米多孔结构的氧化物半导体电极可望能制备出新型晶体管和光电器件。
     本论文的第一部分围绕着染料敏化太阳能电池的性能机制,研究DSSC光阳极异质结界面的传输性质,进而探索基于DSSC原理的新型光电器件。另一方面,我们注意到碘系电解质作为一种特殊的电极材料,可望能获得新型的基于氧化物薄膜的电化学结构。本论文的第二部分围绕着CeO_2/碘电解质结构中电阻转变行为,以及导致负电容行为的动力学过程进行探索和讨论。
     为了保障上述研究工作的开展,我们在器件单元制备、性能检测与表征等方面开展一系列工作,包括:(a)搭建低温环境下的电、磁测试系统,和太阳能电池研究所需的光伏测试系统,通过LABVIEW软件,使得测试系统可由计算机控制,实现了操作的自动化。使用ANSYS软件分析电磁测试系统中的样品台在升降温过程中的温度分布,并讨论热电偶与样品的合理摆放位置。(b)开展染料敏化太阳能电池制备工艺,以及氧化物薄膜的脉冲激光沉积条件的一系列实验研究,并通过形貌表征,物性测量优化样品的制备工艺及质量。(c)提出一种具有自主知识产权的电灼烧刻蚀方法。该方法类似于电点焊结构,在透明导电玻璃与针形电极间施加电压,致使针尖的点接触部分产生焦耳热。由于氧化物薄膜的热导率和比热容都较小,导致晶体结构被瞬间灼烧,发生化学计量比偏离,并形成一条较窄的绝缘沟道(宽度不足100m,依赖于针尖尺寸)。相比于传统的激光、离子束和化学法等刻蚀手段,电灼烧刻蚀法具有更廉价、易操作,以及刻蚀时间短等优势。
     在完成上述实验条件准备的基础上,设计并建立两种新型氧化物薄膜的电化学结构及器件单元,对它们的光电特性、电传输(如电阻转变行为)进行了实验测量和模型分析,主要研究内容和结果如下:
     (1)研制出一种基于DSSC的新型光敏晶体管。不同于传统意义上的光敏场效应管(一般要利用几十伏的背门电压进行驱动),它利用DSSC内在的电荷分离机制,实现光电的驱动。基于DSSC光晶体管的工作电压范围仅在1V以内,属于一种低功耗的器件。其光灵敏系数约为0.1A/W,开关(On/Off)比值在100mW/cm2时可达到1000量级,在3.5mW/cm2时也能达到100量级以上。动态响应研究表明:该器件的截止频率随负载电阻的增大而呈幂函数关系减小。另外,通过能带电势图和器件结构的分析,建立唯像的等效电路模型,对器件传输特性进行表征,得到在不同光强控制下的V-I表达式,为这类器件的工艺研究和性能提高方面提供理论依据。
     (2)提出一种独特的基于恒电流放电的光电压衰减(CCDVD)表征技术,它的优势在于能分辩出FTO/TiO_2和TiO_2/电解液两个界面的传输特征,可有效开展DSSC光阳极中的异质结界面的传输特性研究。通过分析FTO/TiO_2这类n+-n型异质结界面的电势变化,建立相应的传输模型,很好地解释CCDVD的实验结果。这些表明:CCDVD法是研究光阳极中异质结界面传输特性的一种新型有效手段,对明确DSSC光电转换机制和性能提高具有重要价值。
     (3)设计一种新型电化学结构:FTO/CeO_2/电解液/FTO,在直流传输测试中观察到该结构具有双极性的电阻转变的行为(RS)。虽然该器件在反复读写操作中表现出较好的稳定性。进一步的机理研究表明:该电阻转变行为不同于传统固体异质结中所表现的那样,它不仅可以由外加负电场驱动,而且还能由光辐照所驱动。另外,还观察到RS行为随着CeO_2的膜厚增加而变化,这可能是由于膜厚增加,CeO_2表面性质发生变化,出现部分Ce~(3+)替代了原有的Ce~(4+)的现象,而Ce~(3+)使得CeO_2表面的Lewis酸性增强,吸附了I-/I3-反应中的中间态I2-*自由基,该过程类似于一个“储电”过程,在正压下的电荷释放可导致阻态的变化。
     (4)在上述含CeO_2电化学单元中观察到负电容的行为。交流阻抗谱的虚部表明:当外加电压大于-2V时,样品表现出感抗行为。这可能与Li~+受电场驱动而在CeO_2表面聚合并在正向扫描时突然释放有关。在分析Li~+阳离子电迁移对传输动力学影响机制的基础上,我们推测,Li~+会在高界面电场的驱动下嵌入非晶相的CeO_2-x晶格内,导致了CeO_2薄膜的能带上出现了额外的界面态,增大了溶液中氧化态电解质对电子的俘获截面,并由此建立唯像的动力学模型,很好地解释实验观察到的负电容行为。
Since the wide applications of conventional oxides materials in the fields ofsemiconductors, magnets and sensing devices, the investigations into nano effectsand heterojunction performances of various functional oxides, such assuperconductors, giant magnets and multiferroics, have attracted a lot of attention,because of potential unique phenomenon as well as the emerge devices consisting ofthese oxide materials. Moreover, electrochemical devices based on oxide films,especially such as dye sensitized solar cell (DSSC), have been widely studied due toits advantages of high thermal stability, low-cost, flexibility, and friendly toenvironment. Michael Graztel et al, who discovered and improved the DSSC,haveachieved the photo-electric conversion efficiency of12%for such anelectrochemical solar cell, demonstrating a very promising future. It is believed thatthe DSSC is applicable for novel photo-electronic devices, just as Silicon-based p-njunctions available for various transistors and relevant photo-electric devices.
     In the first part of this dissertation, we study on the transport performance ofDSSC photoanode at heterostructrual interfaces, and then explore the novelphototransistor device based on the dye sensitized solar cell, On the other hand, wenote the iodide based electrolyte may serve as a special electrode, allowing anemerged electrochemical devices with distinct transport phenomenon, such asresistive switching behavior. In the second part, we analyze and study on the originof resistive switching and negative capacitance existing in the heterostructure unitconsisting of Cerium oxides/electrolyte.
     To realize the researches mentioned above, a number of preliminary work isdone for the sample preparation and characterization, such as (a) building up twomeasurement systems, for characterizations of the low temperature electric andmagnetism,as well as of the photovoltaic behaviors. With the software of ANSYS,the temperature distributions of sample plates are analyzed. As well, the measurement control programs are compiled for a transport measurement system byusing LabVIEW;(b) improving the preparation technology of DSSC and oxide thinfilms, ensuring the quality of the studied samples;(c) creating an etching methodwith electrical burning to separate the hard conducting layer of F-doped SnO2(FTO)into two parts. This approach employs one electrode connecting the side of FTOplate, and the other one, shaped as a needle, scratching along the middle of FTOpiece. With sufficient voltages, Joule heating occurring at the contact spot, willaccumulate and increase the local temperature, due to low specific heat and weakthermal conductivity of the conducting oxides. This makes the crystal structure meltand the stechiometry shift, resulting in an insulating groove of approximate100m.
     With the techniques mentioned above, we establish some interestingelectrochemical devices and study their electric transport properties, as well aspropose relevant models for explanation of the observed phenomenon. Main researchcontents and associated results are summarized as follows:
     (1) A novel DSSC-based phototransistor is developed. Such a phototransistormay work at the operation voltage as low as1V. Regardless of the light sensitivityof0.1A/W, its on/off ratio approximately reach a ratio of1000at100mW/cm2, and100even at3.5mW/cm2. The dynamical measurements confirm the stability ofrepeatable operation and indicate the cutoff frequency of such a device,demonstrating a law relation of load resistances. By using the energy level diagramtogether with the structure analysis, an equivalent electric circuit is modeled tocharacterize the DC transport, providing a theoretical basis for further improvementnot only on the technology but also on the performance.
     (2) A distinct photovoltage decay measurement is established using the methodof constant current discharge to study the electronic transport behavior in thephotoanode heterojunction for a typical dye-sensitized solar cell. With such atechnique, a clear mechanism is revealed with respect to the electron transport. Theexperimental results are well simulated by the theoretical prediction, indicating not only the charge transfer dynamics in such an n+-n heterojunction, but also thefeasibility of the present decay measurement. It is believed that the proposedmeasurement is a promising and effective method to characterize variousphotoanodes, giving significant information which is hard to realize for thoseconventional transport measurements.
     (3) A special electrochemical device consisting of FTO/CeO_2/electrolyte/FTO isdesigned. The resistive switching (RS) behavior is observed, being induced throughapplying a sufficient negative pulse, as well as through the light illumination.Moreover, the endurance measurements are done, confirming its stability in therepeatable operation. It is revealed as well that as the depth of CeO_2thin filmincreases, the observed RS phenomenon becomes significant, implying that thesurface deficiencies, e.g. Ce~(3+)substituting Ce~(4+), is probably the cause of thisbehaviors. It is assumed that the diiodide radical arising from the reaction with surfacedeficiencies, i.e., storing amounts of electrons at CeO_2surface, results in the observedswitching behavior.
     (4) A negative capacitance behavior is observed in the CeO_2electrochemicaldevice discussed above. Under a negative bias as large as-2V, a lower semicircle ispresent in the electrical impedance spectrum (EIS). It is believed that the cation, i.e.Li~+, can be driven by the applied voltage, and be accumulated at the interface, leadingto an intermediate state. This state allows the electrons hopping through the junctioneasier, and results in junction current larger than the virginal current. With the abovedynamical mechanism, the negative capacitances observed in various measurementsof impedance spectrum, LCR measurement and current response are reasonable andunderstandable.
引文
[1] R. A. Marcus,"On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer.I", Journal of Chemical Physics,24(1956)966.
    [2] R. A. Marcus,"Electrostatic Free Energy and Other Properties of States HavingNonequilibrium Polarization. I", Journal of Chemical Physics,24(1956)979.
    [3] R. A. Marcus,"On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.II. Applications to Data on the Rates of Isotopic Exchange Reactions", Journal of ChemicalPhysics,26(1957)867.
    [4] R. A. Marcus,"On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer.III. Applications to Data on the Rates of Organic Redox Reactions", Journal of ChemicalPhysics,26(1957)872.
    [5] R. A. Marcus,"Exchange reactions and electron transfer reactions including isotopic exchange.Theory of oxidation-reduction reactions involving electron transfer. Part4.—Astatistical-mechanical basis for treating contributions from solvent, ligands, and inert salt",Discussions of the Faraday Society,29(1960)21.
    [6] R. A. Marcus,"On The Theory Of Oxidation--Reduction Reactions Involving ElectronTransfer. V. Comparison And Properties Of Electrochemical And Chemical Rate Constants",Journal of Chemical Physics,67(1963)853.
    [7] R. A. Marcus,"On the Theory of Electron-Transfer Reactions. VI. Unified Treatment forHomogeneous and Electrode Reactions", Journal of Chemical Physics,43(1965)679.
    [8] R. R. Dogonadze, A. M. Kuznetsov, and A. A. Chernenko,"Theory of Homogeneous andHeterogeneous Electronic Processes in Liquids ", Russian Chemical Reviews,34(1965)759.
    [9] H. Gerischer,"Charge transfer processes at semiconductor-electrolyte interfaces in connectionwith problems of catalysis ", Surface Science,18(1969)97.
    [10] K. J. Laidler," The world of physical chemistry", Oxford University Press,1995.
    [11] S. R. Morrison,"Electrochemistry at semiconductor and Oxidized Metal Electrodes", Plenumpress, New York and London,1980.
    [12] W. Vielstich, A. Lamn, and H. A. Gasteiger,"Handbook of Fuel Cells: Fundamentals,Technology and Applications", John Wiley, New York,2003.
    [13] B. E. Conway,"Electrochemical Supercapacitors: Scientific Fundamentals and TechnologicalApplications", Wiley;2edition, December18,2000.
    [14] S. Tanaka,"Performance Simulation for Dye-Sensitized Solar Cells: Toward High Efficiencyand Solid State ", JAPANESE JOURNAL OF APPLIED PHYSICS,40(2001)97.
    [15] S. M. Sze,"Physics of Semiconductor Devices", Wiley, New York,1981.
    [16] A. J. Bard and L. R. Faulkner,"Electrochemical methods: Fundamentals and applications",2nd edition (John Wiley and Sons Inc),2001.
    [17] H. Gerischer,"Semiconductor Electrochemistry in: Physical Chemistry", New York: AcademicPress,1970.
    [18]吴辉煌,"电化学",北京:化学工业出版社,2004.
    [19] B. Oregan and M. Gratzel,"A Low-Cost, High-Efficiency Solar-Cell Based on Dye-SensitizedColloidal TiO2Films", Nature,353(1991)737.
    [20] J. Kyokane and K. Yoshino,"Organicsolid capacitor with conducting thin films as electrolyteby ion-beam-assisted deposition", Journal of Power Sources,60(1996)151.
    [21] Y. Jiang, P. Liu, Y. L. Cao, J. F. Qian, and H. X. Yang,"An efficient and nonflammable organicphosphate electrolyte for dye-sensitized solar cells ", Journal of Applied Electrochemistry,39(2009)1939.
    [22] B. E. Hardin, H. J. Snaith, and M. D. McGehee,"The renaissance of dye-sensitized solar cells",Nature Photonics,6(2012)162.
    [23] M. D. McGehee,"Paradigm Shifts in Dye-Sensitized Solar Cells", Science,334(2011)607.
    [24] D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess,"Nature of Photovoltaic Actionin Dye-Sensitized Solar Cells", Journal of Physics and Chemistry B,104(2000)2053.
    [25] G. Hodes, L. Thompson, J. DuBow, and K. Rajeshwar,"Heterojunction silicon/indium tinoxide photoelectrodes: development of stable systems in aqueous electrolytes and theirapplicability to solar energy conversion and storage", J. Am. Chem. Soc,105(1983)324.
    [26] L. Kronik, N. Ashkenasy, M. Leibovitch, E. Fefer, Y. Shapira, S. Gorer, and G. Hodes,"SurfaceStates and Photovoltaic Effects in CdSe Quantum Dot Films", Journal of the ElectrochemicalSociety,145(1998)1748.
    [27] S. R. Morrison,"Electron capture by ions at the ZnO/solution interface ", Surface Science,15(1969)363.
    [28] F. Cardon and W. P. Gomes,"Experiments on the zinc oxide/electrolyte interface during anodicoxidation reactions under pulsed illumination", Surface Science,27(1971)286.
    [29] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner,"Photovoltaic Technology: TheCase for Thin-Film Solar Cells", Science,285(1999)692.
    [30] L. Y. Han, N. Koide, Y. Chiba, and T. Mitate,"Modeling of an equivalent circuit fordye-sensitized solar cells ", Applied Physics Letters,84(2004)2433.
    [31] S. Ruhle and D. Cahen,"Electron Tunneling at the TiO2/Substrate Interface Can DetermineDye-Sensitized Solar Cell Performance", Journal of Physics and Chemistry B,108(2004)17946.
    [32]李文欣,胡林华,戴松元,"染料敏化太阳能电池研究进展",中国材料进展,28(2009)20.
    [33]张维,崔晓莉,江志裕,"多壁碳纳米管/TiO2纳米复合薄膜的光电性能研究",化学学报,66(2008)867.
    [34] V. Gonzalez and C. M. Lira,"Vertically-aligned nanostructures of ZnO for excitonic solar cells:a review", Energy&Environmental Science,2(2009)19.
    [35] J. B. Xia, M. Naruhiko, K. J. Jiang, and Y. Shozo,"Fabrication and characterization of thinNb2O5blocking layers for ionic liquid-based dye-sensitized solar cells", Journal ofphotochemistry and photobiology. A: Chemistry,188(2007)120.
    [36] U. Bjorksten, J. Moser, and M. Gratzel,"Photoelectrochemical Studies on NanocrystallineHemmatite Films", Chemistry of Materials,6(1994)858.
    [37] S. Barazzouk, S. Hotchandani, K. Vinodgopal, and P. V. Kamat,"Single-Wall CarbonNanotube Films for Photocurrent Generation.A Prompt Response to Visible-Light Irradiation",Journal of Physics and Chemistry B,108(2004)17015.
    [38] F. Nuesch, J. E. Moser, V. Shklover, and M. Gratzel,"Merocyanine Aggregation inMesoporous Network", Journal of American Chemical Society,118(1996)5420.
    [39] T. A. Heimer, S. T. D'Arcangelis, F. Farzad, J. M. Stipkala, and G. J. Meyer,"AnAcetylacetonate-Based Semiconductor-Sensitizer Linkage", Inorganic Chemistry,35(1996)5319.
    [40] M. K. Wu, T. Ling, Y. Xie, X. G. Huang, and X. W. Du,"Performance comparison ofdye-sensitized solar cells with different ZnO photoanodes", Semiconductor Science andTechnology,26(2011)105001.
    [41] M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, and J. P. Ahn,"TiO2single-crystalline nanorodelectrode for quasi-solid-state dye-sensitized solar cells", Applied Physics Letters,87(2005)113113.
    [42] A. D. Pasquier, H. Chen, and Y. Lu,"Dye sensitized solar cells using well-aligned zinc oxidenanotip arrays", Applied Physics Letters,89(2006)253513.
    [43] P. J. Cameron and L. M. Peter,"Characterization of Titanium Dioxide Blocking Layers inDye-Sensitized Nanocrystalline Solar Cells", Journal of Physics and Chemistry B,107(2003)14394.
    [44] H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, and G. Will,"High-Performance TiO2Photoanodewith an Efficient Electron Transport Network for Dye-Sensitized Solar Cells", Journal ofPhysics and Chemistry B,113(2009)16277.
    [45] L. Vesce, R. Riccitelli, G. Soscia, T. M. Brown, A. Di Carlo, and A. Reale,"Optimization ofnanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation ofTiCl4treatment", Journal of Non-Crystalline Solids,356(2010)1958.
    [46] X. Y. Jin, Z. Y. Liu, Y. M. Lu, X. Q. Wang, C. B. Cai, L. H. Hu, and S. Y. Dai,"Enhancedconversion efficiency in dye-sensitized solar cells with nanocomposite photoanode", Journalof Physics D: Applied Physics,44(2011)255103.
    [47]金晓艳,"染料敏化氧化钛纳米晶薄膜光电子传输及人工调制",上海大学,硕士学位论文,2011.
    [48] G. Chaji, A. Nathan, and Q. Pankhurst,"Merged phototransistor pixel with enhanced nearinfrared response and flicker noise reduction for biomolecular imaging", Applied PhysicsLetters,93(2008)203504.
    [49] C. K. Chia, J. R. Dong, and B. K. Ng,"Anisotropic optical response of InAs/InP quantum dotavalanche photodiodes", Applied Physics Letters,94(2009)053512.
    [50] H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, and X. Zhao,"Zero-biasednear-ultraviolet and visible photodetector based on ZnO nanorods/n-Si heterojunction ",Applied Physics Letters,94(2009)063512.
    [51] K. S. Narayan and N. Kumar,"Light responsive polymer field-effect transistor ", AppliedPhysics Letters,79(2001)1891.
    [52] Y. Y. Noh, D. Y. Kim, Y. Yoshida, K. Yase, B. J. Jung, E. Lim, and H.-K. Shim,"High-photosensitivity p-channel organic phototransistors based on a biphenyl end-cappedfused bithiophene oligomer ", Applied Physics Letters,86(2005)043501.
    [53] C. C. Chen, M. Y. Chiu, J. T. Sheu, and K. H. Wei,"Photoresponses and memory effects inorganic thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots ",Applied Physics Letters,92(2008)143105.
    [54] Y. Hu, G. F. Dong, C. Liu, L. D. Wang, and Y. Qiu,"Dependency of organic phototransistorproperties on the dielectric layers", Applied Physics Letters,89(2006)072108.
    [55] Y. Liang, G. F. Dong, Y. Hu, L. D. Wang, and Y. Qiu,"Low-voltage pentacene thin-filmtransistors with Ta2O5gate insulators and their reversible light-induced threshold voltage shift", Applied Physics Letters,86(2005)132101.
    [56] Q. X. Tang, L. Q. Li, Y. B. Song, Y. L. Liu, H. X. Li, W. Xu, Y. Q. Liu, W. P. Hu, and D. B.Zhu,"Photoswitches and Phototransistors from Organic Single-CrystallineSub-micro/nanometer Ribbons", Advanced Materials,19(2007)2624.
    [57] J. H. Gao, R. J. Li, L. Q. Li, Q. Meng, H. Jiang, H. X. Li, and W. P. Hu,"High-PerformanceField-Effect Transistor Based on Dibenzo[d,d′]thieno[3,2-b;4,5-b′]dithiophene, an EasilySynthesized Semiconductor with High Ionization Potential", Advanced Materials,19(2007)3008.
    [58] J. H. Sch n and C. Kloc,"Organic metal–semiconductor field-effect phototransistors ",Applied Physics Letters,78(2001)3538.
    [59] T. P. I. Saragi, R. Pudzich, T. Fuhrmann, and J. Salbeck,"Organic phototransistor based onintramolecular charge transfer in a bifunctional spiro compound", Applied Physics Letters,84(2004)2334.
    [60] Y. F. Xu, P. R. Berger, J. N. Wilson, and U. H. F. Bunz,"Photoresponsivity of polymerthin-film transistors based on polyphenyleneethynylene derivative with improved holeinjection", Applied Physics Letters,85(2004)4219.
    [61] S. M. Cho, S. H. Han, J. H. Kim, J. Jang, and M. H. Oh,"Photoleakage currents in organicthin-film transistors", Applied Physics Letters,88(2006)071106.
    [62] T. W. Hickmott,"Low-Frequency Negative Resistance in Thin Anodic Oxide Films", Journalof Applied Physics,33(1962)2669.
    [63] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura,"Current switching of resistivestates inmagnetoresistive manganites", Nature,388(1997)50.
    [64] R. Waser and M. Aono,"Nanoionics-based resistive switching memories", Nature Materials,6(2007)833.
    [65] T. Fujii, M. Kawasaki, A. Sawa, H. Akon, Y. Kawazoe, and Y. Tokura,"Hystereticcurrent–voltage characteristics and resistance switching at an epitaxial oxide Schottky junctionSrRuO3/SrTi0.99Nb0.01O3", Applied Physics Letters,86(2007)012107.
    [66] A. Sawa,"Resistive switching in transition metal oxides", Materials Today,11(2008)28.
    [67] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura,"Interface resistance switching at a fewnanometer thick perovskite manganite active layers ", Applied Physics Letters,88(2006)232112.
    [68] T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura,"Electrical propertiesand colossal electroresistance of heteroepitaxial SrRuO3/SrTi1-xNbxO3(0.0002x0.02) Schottkyjunctions", Physical Review B,75(2007)165101.
    [69] S. X. Wu, L. M. Xu, X. J. Xing, S. M. Chen, Y. B. Yuan, Y. J. Liu, Y. P. Yu, X. Y. Li, and S. W.Li,"Reverse-bias-induced bipolar resistance switching in Pt/TiO2/SrTi0.99Nb0.01O3/Ptdevices ", Applied Physics Letters,93(2008)043502.
    [70] H. Y. Jeong, J. Y. Lee, S. Y. Choi, and J. W. Kim,"Microscopic origin of bipolar resistiveswitching of nanoscale titanium oxide thin films", Applied Physics Letters,95(2009)162108.
    [71] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen,"Electronic memory effects in diodes froma zinc oxide nanoparticle-polystyrene hybrid material", Applied Physics Letters,89(1991)102103.
    [72] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen,"Electronic Memory Effects in aSexithiophene-Poly(ethylene oxide) Block Copolymer Doped with NaCl. Combined Diodeand Resistive Switching Behavior", Chemistry of Materials,18(2006)2707.
    [73] J. F. Scott,"Ferroelectric Memories", Berlin: Springer,2000.
    [74] W. We nic and M. Wuttig,"Reversible switching in phase-change materials", Materials Today,11(2008)20.
    [75] T. Yamamoto, H. Kano, Y. Higo, K. Ohba, T. Mizuguchi, M. Hosomi, K. Bessho, M. Hashimot,H. Ohmori, T. Sonne, K. Endo, S. Kubo, H. Narisawa, W. Otsuka, N. Okazaki, and M.Motoyoshi,"Magnetoresistive random access memory operation error by thermally activatedreversal", Journal of Applied Physics,97(2005)503.
    [76] G. I. Meijer,"Who wins the Nonvolatile Memory Race", Science,319(2008)1625.
    [77] J. Y. Son and Y. H. Shin,"Direct observation of conducting filaments on resistive switching ofNiO thin films", Applied Physics Letters,90(2008)222106.
    [78] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza,"Switching characteristics ofCu2O metal-insulator-metal resistive memory", Applied Physics Letters,91(2007)123517.
    [79] K. M. Kim and C. S. Hwang,"The conical shape filament growth model in unipolar resistanceswitching of TiO2thin film", Applied Physics Letters,94(2009)122109.
    [80] C. Y. Lin, D. Y. Lee, and S. Y. Wang,"Effect of thermal treatment on resistive switchingcharacteristics in Pt/Ti/Al2O3/Pt devices", Surface&Coatings Technology,203(2008)628.
    [81] R. Fors, S. I. Khartsev, and A. M. Grishin,"Giant resistance switching inmetal-insulator-manganite junctions:Evidence for Mott transition", Physical Review B,71(2005)045305.
    [82] H. Shima, F. Takano, and H. Muramatsu,"Voltage polarity dependent low-power andhigh-speed resistance switching in CoO resistance random access memory with Ta electrode",Applied Physics Letters,93(2008)113504.
    [83] D. S. Shang, L. Shi, J. R. Sun, and B. G. Shen,"Improvement of reproducible resistanceswitching in polycrystalline tungsten oxide films by in situ oxygen annealing", Applied PhysicsLetters,96(2010)072103.
    [84] H. J. Sim, D. Choi, and D. S. Lee,"Resistance-Switching Characteristics of PolycrystallineNb2O5for Nonvolatile Memory Application", IEEE Electron Device Letters,26(2005)292.
    [85] R. Müller, R. Naulaerts, J. Billen, J. Genoe, and P. Heremans,"CuTCNQ resistive nonvolatilememories with a noble metal bottom Electrode", Applied Physics Letters,90(2007)063503.
    [86] R. Müller, J. Genoe, and P. HeremanS,"Nonvolatile Cu/CuTCNQ/Al memory prepared bycurrent controlled oxidation of a Cu anode in LiTCNQ saturated acetonitrile", Applied PhysicsLetters,88(2006)242105.
    [87] C. A. Mills, D. M. Taylor, A. Riul, and A. P. Lee,"Effects of space charge at the conjugatedpolymer/electrode interface", Journal of Applied Physics,91(2002)5182.
    [88] L. P. Ma, Q. F. Xu, and Y. Yang,"Organic nonvolatile memory by controlling the dynamiccopper-ion concentration within organic layer", Applied Physics Letters,84(2004)4908.
    [89] T. W. Kim, S. H. Oh, and H. Choi,"Reversible switching characteristics ofpolyfluorene-derivative single layer film for nonvolatile memory devices", Applied PhysicsLetters,92(2008)253308.
    [90] D. S. Shang, L. D. Chen, Q. Wang, W. Q. Zhang, Z. H. Wu, and X. M. Li,"Temperaturedependence of current-voltage characteristics of Ag-La0.7Ca0.3MnO3-Pt heterostructures",Applied Physics Letters,88(2006)172102.
    [91] R. Oligschlaegera, R. Waser, R. Meyer, S. Karthauser, and R. Dittmann,"Resistive switchingand data reliability of epitaxial(Ba,Sr)TiO3thin films", Applied Physics Letters,88(2006)042901.
    [92] J. Y. Son, Y. H. Shin, and C. S. Park,"Bistable resistive states of amorphous SrRuO3thinfilms", Applied Physics Letters,92(2008)133510.
    [93] K. Szot, W. Speier, G. Bihlmayer, and R. Waser,"Switching the electrical resistance ofindividual dislocations in single-crystalline SrTiO3", Nature Materials,5(2006)312.
    [94] K. Terabe, T. Hasagawa, T. Nakayame, and M.Aono,"Quantized conductance atomic switch",Nature,433(2005)47.
    [95] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,"The missing memristor found",Nature,453(2008)80.
    [96] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura,"Hysteretic current–voltage characteristics andresistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3interface", Applied Physics Letters,85(2004)4073.
    [97] T. Fujii, M. Kawasaki, and A. Sawa,"Hyteretic current-voltage characteristics and resistanceswitching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3", Applied PhysicsLetters,86(2005)012107.
    [98] F. T. Sawa A., Kawasaki M.,"Interface transport properties and resistance switching inperovskite-oxide heterojunctions", Proc. SPIE (2005)5932.
    [99] Y. Xia, W. He, and L. Chen,"Field-induced resistive switching based on space-charge-limitedcurrent", Applied Physics Letters,90(2007)022907.
    [100] M. Hasan, R. Dong, and H.J.Choi,"Uniform resistive switching with a thin reactive metalinterface layer in metal-La0.7Ca0.3MnO3-metal heterostructures", Applied Physics Letters,92(2008)202102.
    [101] M. J. Rozenberg, M. J. Sánchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy,"Mechanism for bipolar resistive switching in transition-metal oxides", Physical Review B,81(2010)115101.
    [102] X. Guo, C. Schindler, and S. Menzel,"Understanding the switching-off mechanism in Ag+migration based resistively switching model systems", Applied Physics Letters,91(2007)133513.
    [103] Y. C. Yang, F. Pan, and Q. Liu,"Fully Room-Temperature-Fabricated Nonvolatile ResistiveMemory for Ultrafast and High-Density Memory Application", Nano Letters,9(2009)1636.
    [104] D. H. Kwon, K. M. Kim, and J. H. Jang,"Atomic structure of conducting nanofilaments inTiO2resistive switching memory,nature nanotechnology", Nature Nanotechnology,5(2010)148.
    [105] N. Xu, L. F. Liu, and X. Sun,"Characteristics and mechanism of conduction set process inTiN/ZnO/Pt resistance switching random-access memories", Applied Physics Letters,92(2008)232112.
    [106] I. H. Inoue, M. J. Rozenberg, and S. Yasuda,"Strong electron correlation effects in non-volatileelectronic memory devices", Non-Volatile Memory Technology Symposium, Proceedings(2005)131.
    [107] T. C. Li, M. S. Goes, F. F-Santiago, J. Bisquert, P. R. Bueno, C. Prasittichai, J. T. Hupp, and T.J. Marks.,"Surface Passivation of Nanoporous TiO2via Atomic Layer Deposition of ZrO2forSolid-State Dye-Sensitized Solar Cell Applications", Journal of Physics and Chemistry C,113(2009)18385.
    [108] E. Ehrenfreund, C. Lungenschmied, G. Dennler, H. Neugebauer, and N. S. Sariciftci,"Negativecapacitance in organic semiconductor devices: Bipolar injection and charge recombinationmechanism ", Applied Physics Letters,91(2007)012112.
    [109] C. Lungenschmied, E. Ehrenfreund, and N. S. Sariciftci,"Negative capacitance and itsphoto-inhibition in organic bulk heterojunction devices", Organic Electronics,10(2009)115.
    [110] W. B. Huang, J. B. Peng, L. Wang, J. Wang, and Y. Cao,"Impedance spectroscopyinvestigation of electron transport in solar cells based on blend film of polymer andnanocrystals", Applied Physics Letters,92(2008)013308.
    [111] S. D. Lin, V. V. Ilchenko, V. V. Marin, K. Y. Panarin, A. A. Buyanin, and O. V. Tretyak,"Frequency dependence of negative differential capacitance in Schottkydiodes with InAs quantum dots", Applied Physics Letters,93(2008)103103.
    [112] A. Takshia and J. D. Madden,"Large apparent inductance in organic Schottky diodes at lowfrequency ", Journal of Applied Physics,99(2006)084503.
    [113] R. T. Morgane, G. Vizdrik, B. Martin, and H. Kliem,"Observation of negative capacitances inAl/P(VDF-TrFE)/SiO2/nSi structures", Journal of Applied Physics,109(2011)014501.
    [114] A. K. Jonscher,"The physical origin of negative capacitance", Journal of the Chemical Society,Faraday Transactions2: Molecular and Chemical Physics,82(1986)75.
    [115] J. Bisquert, G. G. Belmonte, A. Pitarch, and H. J. Bolink,"Negative capacitance caused byelectron injection through interfacial states in organic light-emitting diodes", Chemical PhysicsLetters,422(2006)184.
    [116] C. C. Wang, G. Z. Liu, M. He, and H. B. Lu,"Low-frequency negative capacitance inLa0.8Sr0.2MnO3/Nb-doped SrTiO3heterojunction ", Applied Physics Letters,92(2008)052905.
    [117] F. Lemmi and N. M. Johnson,"Negative capacitance in forward biased hydrogenatedamorphous silicon p+-i-n+diodes ", Applied Physics Letters,74(1999)251.
    [118] D. V. Khramtchenkov, V. I. Arkhipov, and H. B ssler,"Charge carrier recombination in organicbilayer electroluminescent diodes. I. Theory ", Journal of Applied Physics,81(1997)6954.
    [119] L. S. C. Pingree, B. J. Scott, M. T. Russell, T. J. Marks, and M. C. Hersam,"Negativecapacitance in organic light-emitting diodes", Applied Physics Letters,86(2005)
    [120] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bassler,"Charge injection intolight-emitting diodes: Theory and experiment ", Journal of Applied Physics,84(1998)848.
    [121] M. A. Baldo and S. R. Forrest,"limited injection in amorphous organic semiconductors",Physical Review B,64(2001)085201.
    [122] J. Bisquert, G. G. Belmonte, and J. G. Canadas,"Effects of the Gaussian energy dispersion onthe statistics of polarons and bipolarons in conducting polymers", Journal of Chemical Physics,120(2004)6726.
    [123] M. Turrion, B. Macht, H. Tributsch, and P. Salvador,"Potential Distribution and PhotovoltageOrigin in Nanostructured TiO2Sensitization Solar Cells: An Interference Reflection Study",Journal of Physics and Chemistry B,105(2001)9732.
    [124]王艳芳,"染料敏化纳米晶TiO2光阳极的修饰及光电复合效应的研究",上海大学硕士论文,2010.
    [125] X. Q. Wang, C. B. Cai, Y. F. Wang, W. Q. Zhou, Y. M. Lu, Z. Y. Liu, L. H. Hu, and S. Y. Dai,"Transistorlike behavior in photoconductor based on dye-sensitized solar cell", AppliedPhysics Letters,95(2009)011112.
    [126] T. Hiraoka,"The simple spot-welding apparatus", Review of Scientific Instruments,69(1998)2808.
    [127] B.-C. Kim, J.-H. Lee, J.-J. Kim, and T. Ikegami,"Rapid rate sintering of nanocrystallineindium tin oxide ceramics: particle size effect", Materials Letters,52(2002)114.
    [128]王磊,陶梅,"精通LabVIEW8.0=National instrument LabVIEW ",北京:电子工业出版社,2007.
    [129]李江全,刘恩博,胡蓉,"LabVIEW虚拟仪器数据采集与串口通信测控应用实战",北京:人民邮电出版社,2010.
    [130]刘其和,李云明,"LabVIEW虚拟仪器程序设计与应用",北京:化学工业出版社,2011.
    [131]彭勇,潘晓烨,谢龙汉,"LabVIEW虚拟仪器设计及分析",北京:清华大学出版社,2011.
    [132]张朝晖,"ANSYS12.0热分析工程应用实战手册",北京:中国铁道出版社,2010.
    [133]邓凡平,"ANSYS12有限元分析自学手册",北京:人民邮电出版社,2011.
    [134]胡仁喜,徐东升,李亚东,"ANSYS13.0机械与结构有限元分析从入门到精通",北京:机械工业出版社,2011.
    [135] Y. Guo, C. Du, C.-a. Di, J. Zheng, X. Sun, Y. Wen, L. Zhang, W. Wu, G. Yu, and Y. Liu,"Fielddependent and high light sensitive organic phototransistors based on linear asymmetric organicsemiconductor", Applied Physics Letters,94(2009)143303.
    [136] Q. Tang, L. Li, Y. Song, Y. Liu, H. Li, W. Xu, Y. Liu, W. Hu, and D. Zhu,"Photoswitches andPhototransistors from Organic Single-Crystalline Sub-micro/nanometer Ribbons", AdvancedMaterials,19(2007)2624.
    [137] V. Podzorov, V. M. Pudalov, and M. E. Gershenson,"Light-induced switching in back-gatedorganic transistors with built-in conduction channel", Applied Physics Letters,85(2004)6039.
    [138] Y. Guo, C. Du, C.-a. Di, J. Zheng, X. Sun, Y. Wen, L. Zhang, W. Wu, G. Yu, and Y. Liu,"Fielddependent and high light sensitive organic phototransistors based on linear asymmetric organicsemiconductor", Applied Physics Letters,94(2009)143303.
    [139] R. M. Meixner, H. Gobel, F. A. Yildirim, W. Bauhofer, and W. Krautschneider,"Wavelength-selective organic field-effect phototransistors based on dye-dopedpoly-3-hexylthiophene", Applied Physics Letters,89(2006)092110.
    [140] Y.-Y. Noh, D.-Y. Kim, Y. Yoshida, K. Yase, B.-J. Jung, E. Lim, and H.-K. Shim,"High-photosensitivity p-channel organic phototransistors based on a biphenyl end-cappedfused bithiophene oligomer", Applied Physics Letters,86(2005)043501.
    [141] T. B. Singh, K. Robert, S. S. Niyazi, M. Mauro, and J. B. Christoph,"You have full text accessto this contentMonitoring the Channel Formation in Organic Field-Effect Transistors viaPhotoinduced Charge Transfer", Advanced Functional Materials,19(2009)789.
    [142] P. H. M. Mas-Torrent, N. Crivillers, J. Veciana and C. Rovira,"Large Photoresponsivity inHigh-Mobility Single Crystal Organic Field-Effect Phototransistors", Journal of ChemicalPhysics and Physical Chemistry,7(2006)86.
    [143] V. Yong, S.-T. Ho, and R. P. H. Chang,"Modeling and simulation for dye-sensitized solarcells", Applied Physics Letters,92(2008)143506.
    [144] N. Koide, A. Islam, Y. Chiba, and L. Y. Han,"Improvement of efficiency of dye-sensitizedsolar cells based on analysis of equivalent circuit", Journal of Photochemistry andPhotobiology A: Chemistry,182(2006)296.
    [145] J. Xia, N. Masaki, K. Jiang, and S. Yanagida,"Sputtered Nb2O5as a Novel Blocking Layer atConducting Glass/TiO2Interfaces in Dye-Sensitized Ionic Liquid Solar Cells", Journal ofPhysics and Chemistry C,111(2007)8092.
    [146] Q. Wang, J. E. Moser, and M. Gratzel,"Electrochemical Impedance Spectroscopic Analysis ofDye-Sensitized Solar Cells", Journal of Physics and Chemistry B,109(2005)14945.
    [147] J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Sero,"Determination of Rate Constants forCharge Transfer and the Distribution of Semiconductor and Electrolyte Electronic EnergyLevels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method", Journalof the American Chemical Society,126(2004)13550.
    [148] S. Rühle and D. Cahen,"Electron Tunneling at the TiO2/Substrate Interface Can DetermineDye-Sensitized Solar Cell Performance", The Journal of Physical Chemistry B,108(2004)17946.
    [149] M. Turrión, J. Bisquert, and P. Salvador,"Flatband Potential of F:SnO2in a TiO2Dye-Sensitized Solar Cell: An Interference Reflection Study", The Journal of PhysicalChemistry B,107(2003)9397.
    [150] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen,"Electronic Memory Effects in aSexithiophene Poly(ethylene oxide) Block Copolymer Doped with NaCl. Combined Diodeand Resistive Switching Behavior", Chemistry of Materials,18(2006)2707.
    [151] F. Verbakel, S. C. J. Meskers, D. M. deLeeuw, and R. A. J. Janssen,"Resistive Switching inOrganic Memories with a Spin-Coated Metal Oxide Nanoparticle Layer", Journal of PhysicalChemistry C,112(2008)5254.
    [152] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen,"Electronic memory effects in diodes ofzinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene)", Journal ofApplied Physics,102(2007)083701.
    [153] F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, M. Co lle, M. Bu chel, and D. M.de Leeuw,"Reproducible resistive switching in nonvolatile organic memories", AppliedPhysics Letters,91(2007)192103.
    [154] F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, A. J. M. van den Biggelaar, and D.M. de Leeuw,"Switching dynamics in non-volatile polymer memories", Organic Electronics,9(2008)829.
    [155] S.-M. Yang, C.-H. Chien, J.-J. Huang, T.-F. Lei, M.-J. Tsai, and L.-S. Lee,"Cerium oxidenanocrystals for nonvolatile memory applications", Applied Physics Letters,91(2007)262104.
    [156] A. Andersson, N. Johansson, P. Br ms, N. Yu, D. Lupo, and W. R. Salaneck,"Fluorine TinOxide as an Alternative to Indium Tin Oxide in Polymer LEDs", Advanced Materials,10(1998)859.
    [157] M. Janousch, G. I. Meijer, and U. Staub,"Role of Oxygen Vacancies in Cr-Doped SrTiO3forResistance-Change Memory", Advanced Materials,19(2007)2232.
    [158] K. Haeri, K. Dong-Wook, and P. Soo-Hyon,"Transport behaviours and nanoscopic resistanceprofiles of electrically stressed Pt/TiO2/Ti planar junctions", Journal of Physics D: AppliedPhysics,43(2010)505305.
    [159] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. P. Wang, R. Degraeve, B. Govoreanu, M.Jurczak, D. J. Wouters, and L. Altimime,"Evidences of oxygen-mediated resistive-switchingmechanism in TiN\HfO[sub2]\Pt cells", Applied Physics Letters,97(2010)243509.
    [160] Y. H. Do, J. S. Kwak, Y. C. Bae, K. Jung, H. Im, and J. P. Hong,"Hysteretic bipolar resistiveswitching characteristics in TiO[sub2]/TiO[sub2x] multilayer homojunctions", AppliedPhysics Letters,95(2009)093507.
    [161] H. Y. Jeong, J. Y. Lee, S.-Y. Choi, and J. W. Kim,"Microscopic origin of bipolar resistiveswitching of nanoscale titanium oxide thin films", Applied Physics Letters,95(2009)162108.
    [162] G. R. Rao and H. R. Sahu,"XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2solidsolutions synthesized by combustion method", Proceedings of The Indian Academy of Sciences(Chem. Sci.),113(2001)651.
    [163] S. R. Morrison,"The Chemical Physics of Surfaces", Plenum Press, New York,1977.
    [164] K.Tanabe,"Solid Acids and Bases", Academic Press, New York,1970.
    [165] A. Y. Anderson, P. R. F. Barnes, J. R. Durrant, and B. C. O’Regan,"Quantifying Regenerationin Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C,115(2011)2439.
    [166] G. Boschloo and A. Hagfeldt,"Characteristics of the Iodide/Triiodide Redox Mediator inDye-Sensitized Solar Cells", Accounts of Chemical Research,42(2009)1819.
    [167] J. Rowley and G. J. Meyer,"Reduction of I2/I3by Titanium Dioxide", The Journal ofPhysical Chemistry C,113(2009)18444.
    [168] A. Azens, L. Kullman, D. D. Ragan, and C. G. Granqvist,"Optically passive counter electrodesfor electrochromic devices: transition metal-cerium oxide thin films", Solar Energy Materialsand Solar Cells,54(1998)85.
    [169] A. Verma, S. B. Samanta, A. K. Bakhshi, and S. A. Agnihotry,"Optimization of CeO2-TiO2composition for fast switching kinetics and improved Li ion storage capacity", Solid StateIonics,171(2004)81.
    [170] S. Mihaiu, L. Marta, and M. Zaharescu,"SnO2and CeO2-doped SnO2materials obtained bysol-gel alkoxide route", Journal of the European Ceramic Society,27(2007)551.
    [171] C. O. Avellaneda, L. O. S. Bulhoes, and A. Pawlicka,"The CeO2-TiO2-ZrO2sol-gel film: acounter-electrode for electrochromic devices", Thin Solid Films,471(2004)100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700