数字集成电路测试生成算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的快速发展,数字集成电路已经被广泛应用于各行各业,于此同时数字集成电路的测试问题也就越来越受到人们的重视。数字集成电路设计、生产、应用的各个必要阶段都离不开测试,设计者为了验证其设计的正确性要进行测试;生产者为了保证产品的合格率要进行测试;用户为了实现正确的功能要进行测试。因此数字集成电路测试生成方法的研究在科技迅速发展的今天具有十分重要的意义。
     尽管国内外学者不断提出各种数字集成电路的测试生成方法,但测试耗费在电路生产过程中仍占很大比重。从现有关于测试生成的研究来看,测试生成的主要困难在于难测故障的测试、得到的测试集尺寸较大、时序电路在测试前需要进行初始化。为此,本文在并行故障模拟的基础上,研究了基于模拟的数字集成电路测试生成方法,将新型的智能优化算法应用于电路的测试生成、测试集优化和时序电路初始化,降低了测试复杂度,减少了需要的存储空间,提高了测试效率。
     首先,针对组合电路测试生成方法的研究现状,提出利用粒子群优化算法、混沌粒子群算法和文化粒子群算法实现组合电路的测试生成。整个测试算法由两部分组成:以易测故障为目标的多故障测试和以难测故障为目标的单故障测试,定义了新的适应度函数。同时提出采用半随机产生初始群体、反矢量故障模拟、逻辑相关的故障分组和排序等加速方法。分别实现了粒子群优化算法、混沌粒子群算法、文化粒子群算法在采用加速方法和不采用加速方法时ISCAS'85组合电路的测试生成。实验结果表明,这3种算法都能得到文献最好水平的故障覆盖率,同时加速方法大大提高了测试效率,其中基于加速方法的文化粒子群算法得到了最好结果。
     其次,针对时序电路在测试前必须进行初始化使触发器到达确定的状态,提出利用粒子群优化算法、混沌粒子群算法和文化粒子群算法实现时序电路的逻辑初始化。并在初始化的基础上实现时序电路的测试生成,定义了新的适应度函数。以ISCAS'89时序电路为实验电路进行仿真,实验结果表明,这3种算法能生成较短的初始化序列、达到较高的故障覆盖率,其中混沌粒子群算法的故障覆盖率最高。
     再次,针对常规测试方法得到的测试集尺寸较大问题,提出利用粒子群算法、混沌粒子群算法和文化粒子群算法实现电路测试集的静态优化。先对测试集进行预处理,如果测试集含有冗余矢量,则进行测试集优化。算法实现时可以采用两种编码方式:针对测试矢量编码和针对故障编码,相应地有两种适应度函数定义形式,并提出利用混沌搜索产生初始群体、对测试集进行倒序排列模拟。利用这3种算法针对不同电路进行了3个仿真实验。仿真结果表明,这3种算法均能不同程度地减小完备测试集的尺寸,其中基于故障编码的文化粒子群算法能得到最小尺寸的完备测试集。
     最后,针对现有的可测性设计方法需要施加额外硬件问题,研究只需已知电路逻辑表达式、不需要施加额外硬件的基于多元症候群的组合电路可测性设计,指出它不适用于具有对于所有原始输入都对称的逻辑函数的电路。提出故障值直接前向进行逻辑运算来识别时序电路的冗余故障。利用实例证明了它们的可行性。
     综上所述,本论文研究了基于智能优化算法的数字集成电路的测试矢量生成、测试集优化和可测性设计。主要采用粒子群优化算法、混沌粒子群算法和文化粒子群算法,并提出了几种加速方法。仿真实验证实,本文所应用的算法和提出的加速方法能够获得很好的效果。
With the rapid improvement of modern science and technology, digital integrated circuits have been applied in various fields broadly, and at the same time, the test generation (TG) problem of digital integrated circuits was considered more and more important by people. Digital integrated circuits can not depart from test in design, production, and application essential stages. Designers test them to confirm their correctness, producers test them to guarantee product eligibility, and users test them to carry out their right function. So researches on TG method of digital integrated circuits are significant in science and technology rapid development today.
     Although domestic and foreign scholars have presented many different TG methods constantly, test spending still took up a large proportion in the circuit production process. From existent researches on TG, we can know that the difficulty of TG lies in testing difficult-detected faults, the size of test set being large and the sequential circuits having to be initialized in advance. So this paper studied on simulation-based test pattern generation (STPG) for digital integrated circuits, applied new intelligent optimization algorithms to TG、test set compaction and initialization for sequential circuits, which reduced test complexity, moreover decreased required storage space, and improved test efficiency.
     Firstly, in view of the actuality of TG methods, new TG methods based on particle swarm optimization (PSO), chaotic particle swarm optimization (CHPSO) and cultural particle swarm optimization (CUPSO) for combinational circuits were proposed. The whole algorithm was mainly constructed of two parts: multiple faults test pattern generation regarding easy-detected faults as goal and single fault test pattern generation regarding a difficult-detected fault as goal, and a new fitness function was defined. Besides, several speedup methods were put forward that the initial population was produced half-randomly, introduced inverse test vector fault simulation, and adopted logical correlative fault grouping and ordering. TG for ISCAS'85 combinational circuits based on PSO, CHPSO and CUPSO algorithms when adopting these speedup methods and not adopting these speedup methods have been implemented. The experimental results indicated that these three algorithms attained the same fault coverage as the best results in references and the speedup methods improved test efficiency greatly, and CUPSO with speedup methods attained the best result.
     Secondly, in view of sequential circuits having to be initialized before TG to set flip-flops to certain states, the logical initialization methods based on PSO, CHPSO and CUPSO were presented. On the base of initialization, TG for sequential circuits was carried out, and new fitness function was defined. Considering ISCAS'89 sequential circuits as object, the experimental results indicated that these three algorithms generated minimal-length initialization sequence and higher fault coverage, and CHPSO attained the highest fault coverage.
     Thirdly, in view of test set from usual TG methods being larger, minimizing test set statically based on PSO, CHPSO and CUPSO was brought forward. Pretreated test set, and if the test set included redundant test vectors, we optimized the test set to attain minimal complete one. Test-vector-coding or fault-coding can be adopted, and two kinds of fitness function definitions can be adopted accordingly. And initializing population with chaotic optimization, and inversing test vectors in test set to simulate have been put forward. Three experiments have been done to different circuits with PSO, CHPSO and CUPSO. The experimental results indicated that they shortened size of complete test set to different extent, and CUPSO with fault-coding attained the minimal size complete test set.
     Finally, in view of design for testability (DFT) of circuits needing extra components, combinational circuits DFT based on high-order syndrome was studied who implemented test generation depending on logical function, not needing to put extra components. That the method is not applicable in the circuit whose logical function is symmetrical to its all primitive inputs have been pointed out. Identifying redundant faults for sequential circuits by fault-value logical simulating forward was proposed. They have been proved feasible by examples.
     In conclusion, on the base of intelligent optimization algorithm, this paper have researched on test pattern generation, test set optimization, and DFT for digital integrated circuits. PSO, CHPSO and CUPSO have been applied, at the same time several speedup methods have been applied too. Experimental results indicated that the adopted intelligent optimization algorithms and the proposed speedup methods could attain good results.
引文
[1]Jinno C,Inoue M,Fujiwara H.Intemally balanced structure with hold and switching functions.Transactions of the Institute of Electronics,Information and Communication Engineers D-I.2003,J86D-I(9):682-690P
    [2]Roth J P,Bouricius W G,Schneider P R.Programmed algorithms to computer tests to detect and distinguish between failures in logic circuits.IEEE Transactions on Electronic Computers,1967,EC-16:567-580P
    [3]杨士元.数字系统的故障诊断与可测性设计.第二版.北京:清华大学出版社,2000:39-49页
    [4]Goel P.An implicit enumeration algorithm to generation test for combinational circuits.IEEE Transactions on Computers.1981,C-30(3):215-222P
    [5]Fujiwara H.FAN:a fanout-oriented test pattern generation algorithm.1985International Symposium on Circuits and Systems,Kyoto,Japan,1985,2:671-674P
    [6]Schulz M H,Trischler E,Sarfert T M.SOCRATES:A highly efficient automatic test pattern generation system.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.1988,7(1):126-136P
    [7]Hamzaoglu I,Patel J H.New techniques for deterministic test pattern generation.Proceedings 16~(th) IEEE VLSI Test Symposium,Monterey,CA,USA,1999,15(1):63-73P
    [8]Gizdarski E,Fujiwara H.SPIRIT:A highly robust combinational test generation algorithm.IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems.2002,21(12):1446-1458P
    [9]Tafertshofer P,Ganz A,Henftling M.A sat-based implication enging for efficient ATPG,equivalence checking,and optimization of netlists.Proceedings of the International Conference on Computer-Aided Design, 1997:648-655P
    [10]Hayashi T,Kita H,Hatayama K.A genetic approach to test generation for logic circuits.Proceedings of the Third Asian Test Symposium,Nara,Japan,1994:101-106P
    [11]Long Wangning,Yang Shiyuan,Min Yinghua,et al.Level-oriented GA-based test generation of logic circuits.Proceedings of the IEEE International Conference on Intelligent Processing Systems,Beijing,China,1998,1:563-567P
    [12]Kwok T,Smith K A.Experimental anlysis of chaotic neural network models for combinational optimization under a unifying framework.Neural Networks.2000,13(7):731-744P
    [13]潘中良,张光昭.数字电路多故障测试生成的神经网络方法研究.仪器仪表学报.1999,20(3):232-234页
    [14]刘小东,孙圣和.基于神经网络的组合电路测试生成算法.哈尔滨工业大学学报.2002,4:255-257页
    [15]徐建斌,李智.神经网络在组合电路故障模拟测试生成算法中的应用.电路与系统学报.2001,6(4):109-110页
    [16]Gupta P,Rui Zhang,Jha N K.An automatic test pattem generation framework for combinational threshold logic networks.Proceedings of IEEE International Conference on Computer Design:VLSI in Computers and Processors,San Jose,CA,USA,2004:540-543P
    [17]Cibakova T,Fischerova M,Gramatova E,et al.Hierarchical test generation for combinational circuits with real defects coverage.Microelectronics Reliability.2002,42(7):1141-1149P
    [18]Liu Xiaodong,Sun Shenghe.Neural networks based on test generation algorithm for combinational logic circuits.Journal of the Harbin Institute of Technology.2002,34(2):255-257P
    [19]Meng Anbo,Ye Luqing,Roy D,et al.Genetic algorithm based on multi-agent system applied to test generation.Computers and Education.2007,49(4):1205-1223P
    [20] Xu Chuanpei, Li Zhi, Mo Wei. Test generation of sequential circuits based on ant algorithm and genetic algorithm. Journal of Electronics and Information Technology. 2005,27(7): 1157-1161P
    [21] Skobtsov Y A, Ivanov D E, Skobtsov V Y, et al. Genetic algorithm in test generation for digital circuits. Proceedings of the 8~(th) Biennial Baltic Electronics Conference, Tallinn, Estonia, 2002: 291-294P
    [22] Sharad S A. COGGENT: Compressing and compacting genetic algorithms and neural networks based automatic test generator. Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, Binghamton, NY, USA, 2003: 103-107P
    [23] El-Maleh A H, Sait S M, Shazli S Z. Evolutionary algorithms for state justification in sequential automatic test pattern generation. Engneering Intelligient Systems for Engineering and Communications. 2005, 13(1):15-21P
    [24] Muth P. A nine-valued circuit model for test generation. IEEE Transactions on Computers. 1976, C-25(6): 630-636P
    [25] M.T.Schule, E.Auth. ESSENTIAL: An efficient self-learning test pattern generation algorithm for sequential circuit. International Test Conference,Washington, DC, USA, 1989: 27-36P
    [26] Cheng W T. The BACK algorithm for sequential test generation.Proceedings of the 1988 IEEE International Confernece on Computer Design, Rye Brook, NY, USA, 1988: 66-69P
    [27] Parkes S, Baneriee P, Patel J. ProperHITEC: a portable, parallel,object-oriented approach to sequential test generation. 31~(st) Design Automation Conference, San Diego, CA, USA, 1994: 717-721P
    [28] Kelsey T P, Saluja K K, Lee S Y. An efficient algorithm for sequential circuit test generation. IEEE Transactions on Computers. 1993, 42(11):1361-1371P
    [29] Sheng Shou, Hsiao M S. Efficient sequential test generation based on logic simulation. IEEE Design and Test of Computers. 2002, 19(5): 56-64P
    [30] Ubar R. Brik M. Hierarchical concurrent test generation for synchronous sequential circuits. Proceedings of the 7~(th) International Conference Mixed Design of Integrated Circuits and Systems, Gdynia, Poland, 2000:533-538P
    
    [31] Niermann T M, Wu-Ting Cheng, Patel J H. PROOFS: A fast,memory-efficient sequential circuit fault simulator. IEEE Transactions on Computer-Aided Design of the Integrated Circuits and Systems. 1992,11(2): 198-207P
    
    [32] Parkes S, Banerjee P, Patel J. A parallel algorithm for fault simulation based on PROOFS. Proceedings of Internatinal Conference on Computer Design:VLSI in Computer & Processor, Austin, TX, USA, 1995: 616-621P
    
    [33] Wu-Tung Cheng, Patel J H. PROOFS: A super fast simulator for sequential circuits. Proceedings of the European Design Automation Conference,Glasgow, UK, 1990: 475-479P
    
    [34] Lee H K, Ha D S. HOPE: An efficient parallel fault simulator for synchronous sequential circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1996,15(9): 1048-1058P
    
    [35] Das S R, Ramamoorthy C V, Assaf M H, et al. Fault simulation and response compaction in full scan circuits using HOPE. IEEE Transcation on Instrumentation and Measurement. 2005, 54(6): 2310-2328P
    
    [36] Rudnick E M, Patel J H, Greenstein G S, et al. A genetic algorithm framework for test generation. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems. 1997,16(9): 1034-1044P
    
    [37] Saab D G, Saab Y G, Abraham J A. CRIS: A test cultivation program for sequential VLSI circuits. 1992 IEEE/ACM International Conference on Computer-Aided Design, Santa Clara, CA, USA, 1992: 216-219P
    
    [38] Rudnick E M, Patel J H, Greenstein G S, et al. Sequential circuit test generation in a genetic algorithm framework. 31~(st) Design Automation Conference, San Diego, CA, USA, 1994: 698-704P
    
    [39] Corno F, Prinetto P, Rebaudengo M, et al. GATTO: A genetic algorithm for automatic test pattem generation for large synchronous sequential circuits.IEEE Transactions on Computer-Aided Design of Interated Circuits and Systems.1996,15(8):991-1000P
    [40]Corno F,Prinetto P,Rebaudengo M,et al.Advanced techniques for GA-based sequential ATPGs.Proceedings of European Design and Test Conference,Paris,France,1996:375-379P
    [41]Como F,Prinetto P,Rebaudengo M,et al.A parallel genetic algorithm for automatic generation of test sequences for digital circuits.High-Performance Computing and Networking.Intemational Conference and Exhibition HPCN Europe,Brussels,Belgium,1996:454-459P
    [42]Krishnaswamy D,Hsiao M S,Banerijee P,et al.PSTRAT:a parallel genetic algorithm with global decision making for sequential circuit test pattern generation.6~(th) World Multiconference on Systemics,Cybemetics and Informatics,Orlando,FL,USA,2002,11:235-240P
    [43]Chattopadhyay S,Choudhary N.Genetic algorithm based approach for low power combinational circuit testing.Proceedings of the 16~(th) International Conference on VLSI Design concurrently with the 2~(nd) Intemational Conference Systems Design,New Delhi,India,2003:552-557P
    [44]Skobtsov Y A,El-khatib A I,Ivanov D E.Distributed genetic algorithm of test generation for digital circuits.International Biennial Baltic Electronics Conference,Tallinn,Estonia,2006:195-198P
    [45]Rahaman H,Das D K,Bhattacharya B B.Testing of stuck-open faults in generalized Reed-Muller and EXOR sum-of-products CMOS circuits.IEE Proceedings of Computers and Digital Techniques.2004,151(1):83-91
    [46]Kalay U,Hall D V,Perkowski M A.A minimal universal test set for self-test of EXOR-sum-of-products circuits.IEEE Transactions on Computers.2000,49(3):267-276P
    [47]潘中良.基于逻辑函数的电路可测性设计及多故障测试.应用科学学报.2002,20(20):111-115页
    [48]Markowsky G.Syndrome testability can be achieved by circuit modification.IEEE Transactions on Computers.1981,C-30:604-606P
    [49]Savir J.Syndrome-testable design of combinational circuits.IEEE Transactions on Computers.1980,C-29(6):442-451P
    [50]Barlilai Z,Savir J,Markowsky G;et al.The weighted syndrome sums approach to VLSI testing.IEEE Transactions on Computers.1981,C-30(12):996-1000P
    [51]杜俊,赵元富.VLSI可测性设计研究.微电子学与计算机.2004,21(10):189-192页
    [52]Arora V,Senqupta I.A unified approach to partial scan design using genetic algorithm.Proceedings of 14~(th) Asian Test Symposium,Calcutta,India,2006:414-421P
    [53]Yang Hong,Xu Chaoqiang,Hou Huamin.Design for testability of digital integrated circuits based on boundary scan technology.Journal of Chongqing University of Posts and Telecommunication.2006,18(6):686-723P
    [54]丁琳,李璞.逻辑内建自测试技术.高性能计算技术,2007,184(1):52-55页
    [55]Tanha J,Asqary R.An intelligent BIST mechanism for MEMS fault detection.Proceedings of the Ninth IASTED International Conference on Control and Applications,Montreal,Que,Canada,2007:226-229P
    [56]Xie Yongle,Sun Xiubin,Wang Yuwen,et al.A mixed mode BIST approach of digital integrated circuits.Chinese Journal of Scientific Instrument.2006,27(3):367-370P
    [57]成立,王振宇,高平,祝俊.VLSI电路可测性设计技术及其应用综述.半导体技术.2004,29(5):20-24页
    [58]Chakradhar S T,Bushnell M L,Agrawal V D.Automatic test generation using neural networks.IEEE International Conference on Computer-Aided Design,Santa Clara,CA,USA,1988:416-419P
    [59]Sihn W,Graupner T D,Asal M.Parallel evolutionary algorithms.16~(th)European Simulation Multiconference 2002,Darmstadt,Germany,2002: 172-175P
    [60]Ochlak E,Forouraghi B.A particle swarm algorithm for multiobjective design optimization.2006 18~(th) IEEE International Conference on Tools with Artificial Intelligence,Arlington,VA,USA,2006:765-772P
    [61]Cong Lin,Sha Yuheng,Jiao Licheng.Numerical optimization using organizational particle swarm algorithm.6~(th) International Conference on Simulated Evolution and Learning,Hefei,China,2006:150-157P
    [62]Yang Guangyou.A modified particle swarm optimizer algorithm.8~(th)International Conference on Electronic Measurement and Instruments,Xi'an,China,2007:675-679P
    [63]Wang Hui,Liu Yong,Li Changhe,et al.A hybrid particle swarm algorithm with Cauchy mutation.2007 IEEE Swarm Intelligence Symposiun,Piscataway,NJ,USA,2007:356-360P
    [64]Higasshi N,Iba H.Particle swarm optimization with Gaussian mutation.Proceedings of the 2003 IEEE Swarm Intelligence Symposium,Indianapolis,IN,USA,2003:72-79P
    [65]曾建潮,介婧,崔志华.微粒群算法.第一版.北京:科学出版社,2004:41-45页
    [66]Fei Chunguo,Han Zhengzhi.Improved chaotic optimization algorithm.Control Theory and Applications.2006,23(3):471-474P
    [67]Yuan Xiaofang,Wang Yaonan,Wu Lianghong.Parallel chaotic optimization algorithm based on competitive-cooperative inter-communication.Control and Decision.2007,22(9):1027-1031P
    [68]邹恩,李祥飞,张泰山.混沌与混沌理论.计算机工程与应用.2002,38(11):53-55页
    [69]邹恩,李祥飞,陈建国.混沌控制及其优化应用.长沙:国防科技大学出版社,2002:3-20页.
    [70]张国平,王正欧,袁国林.求解一类组合优化问题的混沌搜索法.系统工程理论与实践.2001,21(5):102-105页
    [71]李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用.1997,14(4): 613-615页
    [72]Cortes R D,Landa B R,Coello C A.Cultural algorithm,an alternative heuristic to solve the job shop scheduling problem.Engineering Optimization.2007,39(1):69-85P
    [73]杜琼,周一届.新的进化算法—文化算法.计算机科学.2005,32(9):142-144页.
    [74]Reynold R G,Whallon R,Ali M Z,et al.Agent-based modeling of early cultural evolution.2006 IEEE Congress on Evolutionary Computation,Vancouver,BC,Canada,2006:1135-1142P
    [75]Xue Zhenggui,Guo Yinan.Improved cultural algorithm based on genetic algorithm.Proceedings of the 2007 IEEE International Conference on Integration Technology,Shenzhen,China,2007:117-122P
    [76]Liu Sheng,Wang Xingyu,You Xiaoming.Cultural based adaptive mutation particle swarm optimization algorithm for numerical optimization problems.Journal of Jilin University.2007,37:100-104P
    [77]Soza C,Landa R,Riff M C,et al.A cultural algorithm with operator parameters control for solving timetabling problems.Proceedings of 12~(th)International Fuzzy Systems Association World Congress,Cancun,Mexico,2007:810-819P
    [78]Reynolds R G,Bin Peng,Brewster J.Cultural swarms Ⅱ:virtual algorithm emergence.2003 Congress on Evolutionary Computation,Canberra,ACT,Australia,2003,3:1972-1979P
    [79]Arpaia P,Lucariello G,Zanesco A.Automatic fault isolation by cultural algorithms with differential influence.IEEE Transactions on Instrumentation and Measurement.2007,56(5):1573-1582P
    [80]Li Nana,Gu Junhua,Liu Boying.A new genetic algorithm based on negative selection.Proceedings of the 2006 International Conference on Machine Learning and Cybernetics,Dalian,China,2006:215-217P
    [81]任庆生,叶中行等.遗传算法中常用算子的分析.电子学报.2000(5):113-114页
    [82]韩生廉,武晓今,倪萌.组合优化问题中遗传算法的局限性及其改进模 式.控制与决策.2002,17(2):219-222页
    [83]Damavandi N,Safavi-Naeini S.A hybrid evolutionary programming method for circuit optimization.IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications.2005,52(5):902-910P
    [84]王向军,向东,蒋涛等.一种双种群进化规划算法.计算机学报.2006,29(5):835-840页
    [85]Zhu L,Chen G,Szymanski B K,et al.Parallel logic simulation of million-gate VLSI circuits.13~(th) IEEE International Symposium on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems,Atlanta,GA,USA,2005:521-524P
    [86]Shi F,Makris Y.Fault simulation and random test generation for speed-independent circuits.Proceedingd of the ACM Great Lakes Symposium on VLSI,Boston,MA,United States,2004:127-130P
    [87]Riahi,P A,Navabi,Z,Lombardi F.A VPI-based combinational IP core module-based mixed level serial fault simulation and test generation methodology.Proceedings of the 12~(th) Asian Test Symposium,Boston,MA,USA,2003:274-277P
    [88]Mojtahedi M,Geisselhardt W.New methods for parallel pattern fast fault simulation for synchronous sequential circuits.Proceedings of 1993International Conference on Computer-Aided Design,Los Alamitos,CA,USA,1993:2-5P
    [89]Varshney A K,Vinnakota B,Skuldt E,et al.High performance parallel fault simulation.Proceedings of 2001 International Conference on Computer Design,Austin,TX,USA,2001:308-313P
    [90]Hahanova A,Chuqurov L,Parfentiy A.Model of deductive-parallel fault analysis.Proceedings of the International Conference TCSET'2004,Lviv-Slavsko,Ukraine,2004:598-601P
    [91]Agrawal V D,Doshi A S.Concurrent test generation.Proceedings of 14~(th)Asian Test Symposium,Calcutta,India,2005:294-297P
    [92]Ubar R.Mapping faults in hierarchical testing of digital systems.International Conference on Computer Communication and Control Technologies,Orlando,FL,USA,2003,1:14-19P
    [93]Gizdarski E,Fujiwara H.SPIRIT:a highly robust combinational test generation algorithm.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.2002,21(12):1446-1458P
    [94]Hamzaoglu I,Patel J H.New techniques for deterministic test pattern generation.Journal of Electronic Testing:Theory and Applications.1999,15:63-73P
    [95]Corno F,Prinetto P,Rebaudengo M,et al.Comparing topological,symbolic and GA-based ATPGs:an experimental approach.Proceedings of International Test Conference 1996:Test and Design Validity,Altoona,PA,USA,1996:39-47P
    [96]Bhuvaneswari M C,Sivanandam N.New crossover operators for GA-based synchronous sequential circuit testing.Indian Journal of Engineering and Materials Sciences.2003,10(1):21-26P
    [97]李智.基于蚂蚁算法的时序电路测试生成研究.电子科技大学博士学位论文.2002:58-72页
    [98]Wehbeh J A,Saab D F.Hierarchical simulation of MOS circuited using extracted functional models.IEEE 1991 International Conference on Computer Design:VLSI in Computers and Processors,Cambridge,MA,USA,1992:512-515P
    [99]Rho J k,Somenzi F,Pixley C.Minimum length synchronizing sequences of finite state machines.Proceedings of DAC'93:30~(th) ACM/IEEE-CS Design Automation Conference,Dallas,TX,USA.1993:463-468P
    [100]王仲,魏道政.时序电路逻辑初始化研究.电子测量与仪器学报.1999,13(2):21-23页
    [101]Keim M,Becker B,Stenner B.On the(non-) resetability of synchronous sequential circuits.Proceedings of 14th IEEE VLSI Test Symposium,Princeton,NJ,USA,1996:240-245P
    [102]Corno F,Prinetto P,Rebaudengo M,et al.A genetic algorithm for the computation of initialization sequences for synchronous sequential circuits.Sixth Asian Test Symposium Proceedings,Akita,Japan,1997:56-61P
    [103]Corno F,Prinetto P,Rebaudengo M,et al.A new approach for initialization sequences computation for synchronous sequential circuits.Proceedings of International Conference on Computer Design:VLSI in Computers and Processors,Austin,TX,USA,1997:381-386P
    [104]李智,许川佩,陈光(禹).基于蚂蚁算法的同步时序电路初始化研究.电子测量与仪器学报.2002,16(4):33-37页
    [105]Wahbeh J A,Saab D G.On the initialization of sequential circuits,Proceedings of International Test Conference,Washington,DC,USA,1994:233-239P
    [106]Corno F,Prinetto R,Rebaudengo M,et al.Initializability analysis of synchronous sequential circuits.ACM Transactions on Design Automation of Electronic Systems.2002,7(2):249-264P
    [107]Raahemifar K,Ahmadi M.A new initialization technique for asynchronous circuits.Proceedings of the 2003 IEEE International Symposium on Circuits and Systems,Bangkok,Thailand,2003,5:581-584P
    [108]Xiang D,Xu Y.Partial reset for synchronous sequential circuits using almost independent reset signals.Proceedings of the IEEE VLSI Test Symposium,Marina del Rey,CA,2001:82-87P
    [109]Hutton M D,Rose J S,Corneil D G.Automatic generation of synthetic sequential benchmark circuits.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.2002,21(8):928-940P
    [110]Fujiwara H.The complexity of fault detection problems for combinational logic circuits.Transactions of the Information Processing Society of Japan.1986,27(8):768-773P
    [111]Hamzaoglu I,Patel J H.Test set compaction algorithms for combinational circuits.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.2000,19(8):957-963P
    [112]Lu Changhua,Zhang Qibo,Jiang Weiwei.A global optimization algorithm for the minimum test set of circuits.IEEE International Conference on Robotics,Intelligent Systems and Signal Proceeding,Changsha,Hunan,China,2003,2:1203-1207P
    [113]Sanchez E,Reorda M S,Squillero G.Efficient techniques for automatic verification-oriented test set optimization.International Journal of Parallel Programming.2006,34(1):93-109P
    [114]Qiao Jia-Qing,Fu Ping,Yin Hong-Tao.Test set optimization based on genetic reordering.Tieh Tzu Hsueh Pao.2007,35(12):2335-2338P
    [115]Santoso Y,Merten M,Rudnick E M,et al.FreezeFrame:Compact test generation using a frozen clock strategy.Design,Automation and Test in Europe Conference and Exhibition,Munich,Germany,1999:747-752P
    [116]Dimopoulos M,Linardis P.Efficient static compaction of test sequences sets through the application of set covering techniques.Proceedings of Design,Automation and Test in Europe Conference and Exhibition,Paris,France,2004:194-199P
    [117]Islam S Z,Ali M A M.Test pattern optimization using proper seed selection in mixed-mode technique.Proceedings of Third IEEE International Workshop on Electronic Design,Test and Application,Kuala Lumpur,Malaysia,2006:105-109P
    [118]Fukunaga M,Kajihara S,Xiaoqing Wen,et al.A dynamic test compaction procedure for high-quality path delay testing.Proceedings of Asia and South Pacific Design Automation Conference,Yokohama,Japan,2006:348-353P
    [119]Hsiao M S,Rudnick E M,Patel J H.Fast static compaction algorithm for sequential circuit test vectors.IEEE Transactions on Computers.1999,48(3):188-195P
    [120]康波,吕炳朝,陈光(禹).基于混沌搜索的故障测试集最小化方法.微电子与计算机.2003:63-65页
    [121]Chang J S,Lin C S.Test Set Compaction for Combinational Circuits.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.1995,14(11):1370-1378P
    [122]Pomeranz I,Reddy S M.On the compaction of test sets produced by genetic optimization.Proceedings of Sixth Asian Test Symposium,Akita,Japan,1997:4-9P
    [123]Hamzaoglu I,Patel J H.Test set compaction algorithms for combinational circuits.IEEE Transactions on Computer-Aided Design of Circuits and Systems.2000,19(8):957-963P
    [124]王小港.遗传算法在VLSI设计自动化中的应用研究.中国科学院博士学位论文.2001:91-115页
    [125]雷绍充,邵志标,梁峰.第一版.VLSI测试方法学和可测性设计.北京:电子工业出版社,2005:99-116页
    [126]刘峰,梁勇强.大规模集成电路可测性设计及其应用策略.玉林师范学院学报.2005,26(5):29-34页
    [127]Ravikumar C P,Joshi H.SCOAP-based testability analysis from hierarchical netlists.VLSI Design.1998:7(2):131-141P
    [128]陈光(禹),潘中良.可测性设计技术.第一版.北京:电子工业出版社,1997:2-9页
    [129]Xu Shiyi.High-order syndrome testing for VLSI circuits.Proceedings.11~(th)Pacific Rim International Symposium on Dependable Computing,Hunan,China,2005:101-108P
    [130]王仲.时序电路测试产生中的一些关键技术的研究.中国科学院计算技术研究所博士学位论文.1999:52-60页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700