利用双端不同步数据的架空线路故障测距装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压输电线路发生故障时,及时准确地测量出故障位置有利于快速排除故障、恢复供电,因此,故障测距对电力系统安全可靠运行有重要意义。
    本文进行了高压架空线路故障测距装置的研究,设计制作了一台故障测距装置,设计了信号的传感器和数据采集部分,采用工控机控制数据采集卡进行数据采集和分析。分析比较了现有的各类测距算法,给出了一种新的不需要数据同步的双端测距算法,利用故障前数据校正故障后两端数据的不同步角差。同时为了满足某些需要,测距装置也提供单端测距功能。通过ATP仿真,算法有很好的测距精度。分析了现有的一些保护滤波算法,改进了现有故障录波和测距装置的故障录波启动和测距基波提取采用单一算法的方法。故障录波启动采用全波傅立叶差分算法,以满足启动实时性要求,测距所需基波的提取采用最小二乘法,适应其精度要求高而实时性无要求的特点。采用Delphi 5.0环境编程,完成工控机对数据采集卡的控制,实时监测、显示电压电流波形,故障时启动录波,进行故障测距,建立了故障数据库,使测距装置成为一个完整系统。
When faults occur in the transmission line, locating the fault accurately and timely is propitious to eliminate the fault and resupply power. The exact fault location of the transmission line is fundamental to ensure a proper operation of the system.
    The main contributions to the investigation of the device for fault location are as follows: A set of device for fault location of the transmission line is developed, which consists of the signal sensor and the data acquisition system. The data acquisition and calculation are controlled by industrial controlling computer. Various algorithms are discussed completely in this paper. A new algorithm of two-terminal fault location using asynchronous data at both ends is used in the device, which use the data pre-fault to remove the angular difference caused by the asynchrony of the two terminals. In order to satisfy some requirement, the device can locate the fault using single-terminal data. Lots of simulation results show that the algorithms used in this device can locate the fault site precisely. Some protective algorithms are discussed in this paper. Most of device for fault location use single algorithm in both record star-up and the extraction of fundamental frequency component in location. This way has been improved in this paper. Whole-cycle Fourier differential algorithm is adopted in record start-up to satisfy the Real-time requirement. The least squares method is applied to extract the fundamental frequency component in location which has low computing speed but high precision. The software of the device is developed using Delphi 5.0 environment, which can control the data acquisition, monitor signals and show the Real-time waveform. The software start recording data in fault and calculate the fault site then, which has built database and make the device a rounded system.
引文
1. B. M. Weedy. Enviromental Aspects of Route Selection for Overhead Lines in the U.S.A. Electric Power Systems Reseach. 1989, 16:217~226
    2. 全玉生. 高压架空输电线路的故障测距方法. 电网技术. 2000, 24(4):27~33
    3. 沈根才. 论电网结构. 中国电力. 1996, 29(12):3~8
    4. C. Lee. Ground-Fault-Location Indicator. AIEE Trans. Power Apparatus and System. Feb, 1958:1370~1372
    5. AIEE Committee Report. Bibliography and Summary of Fault Location Methods. AIEE Trans. Trans. Power Apparatus and System. Feb 1956:1423~1428.
    6. T. W. Stringfield, D. J. Marihart, R. f. Stevens. Fault location methods for overhead lines. AIEE Trans. Power Apparatus and System, Aug. 1957:518~513.
    7. 刘沛, 程实杰. 架空输电线路故障测距方法综述. 电力系统自动化. 1993, 17(8):46~56
    8. T. Johns, S. Jamali. Accurate Fault Location Technique for Power Transmission Lines. IEE Proc 1990, 137(6):395~402.
    9. A. T. Johns, P. J. Moore, R. Whittard. New Technique for the Accurate Location of Earth Faults on Transmission System. IEE Proc-Gener. Transm. Distrib. 1995, 142(1):119~127.
    10. 赵自刚. 国产故障录波器现状分析及新型录波器展望. 电网技术. 1999, 23(3):44~47
    11. 贺家李. 电力系统继电保护技术的现状与发展. 中国电力. 1999,32(10): 38~40
    12. 全玉生. 高压架空输电线路故障测距新算法的研究. [博士论文]. 西安:西安交通大学. 1999.
    13. 葛耀中. 新型继电保护与故障测距原理与技术. 西安:西安交通大学出版社,1996.
    14. B. Gustavsen, A. Semlyen. Combined Phase and Model Domain Calculation of Transmission Line Transient Based on Vector Fitting. IEEE Trans. Power Delivery. 1998, 13(2):596~604.
    15. Harry Lee, A. M. Mousa. GPS Traveling Wave Fault Locator Systems: Investigation INTO The Anomalous Measurements Related to Lightning Strikes. IEEE Trans. Power Delivery. 1996, 11(3):1214~1223
    16. Z Q Bo, G Weller, F Jiang, Q X Yang. Application of GPS Based Fault Location Scheme for Distribution System. 1998 Intenational Conference on Power System Technology Proceedings. 1998, Beijing, 53~57
    17. Qin Jian, Chen Xiangxun, Zheng Jiangchao. Travelling Wave Fault Location of Transmission Line Using Wavelet Transform. 1998 Intenational Conference on Power System Technology Proceedings. 1998, Beijing, 533~537
    18. A. S. Al-Fuhaid, M. M. Saied. A Method for Computation of Fault Transients in Transmission Lines. IEEE Trans. Power Delivery. Vol.3, No.1, 1988:288~297
    19. qqFernando H. Magnago, Ali Abur. Fault Location Using Wavelets. IEEE Trans. Power Delivery, 1998, 13(4):1475~1480.
    20. 束洪春,高峰,李卫东. 利用单端工频量的高压输电线路故障测距实用方法研究. 电工技术学报. 1998, 13(5):9~15.
    21. 龚建平. 高压线路故障测距实用方法. 继电器. 1993, (6):15~21
    22. M. B. Djurie, Z. M. Radojevic, V. V. Terzija. Distance Protection and Fault Location Utilizing Only Phase Current Phasors. IEEE Trans. Power Delivery. 1998, 13(4):1214~1223.
    23. 胡帆, 刘沛, 程时杰. 高压输电线路故障测距算法仿真研究. 中国电机工程学报. 1995, 15(1):67~72.
    24. 张哲,陈德叔. 高压输电线路故障测距中的伪根问题及其改进方法. 中国电机工程学报. 1992, 12(6) :11~17.
    25. 毛晓明. 利用单侧电量的高压输电线路故障测距算法研究. 电网技术. 1998, 22(11):15~18
    26. R. K. Aggarwal, Y. Aslan, A. T. Johns. New Concept in Fault Location for Overhead Distribution Systems Using Superimposed Components. IEE Proc.-Gener. Transm. Distrib. 1997, 144(3):309~316.
    27. A. T. Johns, S. Jamali. Accurate Fault Location Technique for Power Transmission Lines. IEE Proc 1990, 137(6):395~402.
    28. R. K. Aggarwal, D. V. Coury, A. T. Johns, A. Kalam. A Practical Approach to Accurate Fault Location on Extra High Voltage teed Feeders. IEEE Trans. Power Delivery. 1993, 8(3):874~883.
    29. A. T. Johns, P. J. Moore, R. Whittard. New Technique for the Accurate Location of Earth Faults on Transmission System. IEE Proc-Gener. Transm. Distrib. 1995, 142(1):119~127.
    30. 毛鹏. 具有冗余神经元神经网络模型系统的输电线路故障测距的研究. 中国电机工程学报. 2000, 20(7) :28~33.
    31. D. L. Wailar, S. Elangovan, A. C. Liew. Fault Impedance Estimation Algorithm for Digital Distance Relaying. IEEE Trans. Power Delivery. 1994, 9(3):1375~1383.
    32. 冯载生. 利用零序电流比值分布区线确定接地故障点的方法. 电力系统自动化. 1988, 12(4):3~8.
    33. 苏进喜. 利用双端电气量的高压长线故障测距算法. 清华大学学报 (自然科学版 ). 2000, 40(4):27~30
    34. B. Jeyasurya, M. A. Rahman. An Accurate Algorithm for Transmission Line Fault Location Using Digital Relay Measurements. Electic Machines and Power Systems. 1989, (16),:25~34
    35. 彭敏放. 一种不受故障类型限制的高压线路故障测距方法. 华北电力技术. 1999,2:43~45
    36. M. S. Sachdev, R. Agarwal. A Technique for Estimation Transmission Line Fault Locations from Digital Impedance Relay Measurement. IEEE Trans. Power Delivery. 1988, 3(1):121~129.
    37. A. A. Girgis, David G. Hart, William L. Peterson. A New Fault Location Technique for Two-and Three-Terminal Lines. IEEE Trans. Power Delevery. 1992, 7(1):98~107
    38. Masayuki A., Nobuo Otsuzuki, Tokuo Bmura, Masayasu Takeuchi. Development of a New Fault Location System for Multi-Terminal Signal Transmission Lines. IEEE Trans. Power Delivery. 1995, 10(1):159~168
    39. 周大敏. 一种输电线路故障测距算法. 继电器. 1994, (3):9~13
    40. D. Novosel, David G. Hart, Eric Udren, Jim Garitty. Unsynchronized Two-Terminal Fault Location Estimation. IEEE Trans. Power Delivery. 1996, 11(1):130~138
    41. 董新洲, 葛耀中. 一种使用两端电气量的高压输电线路故障测距算法. 电力系统自动化. 1997, 19(8):47~53.
    42. 王安定,葛耀中. 模量变换技术在反应故障分量的微机保护中的应用研究. 电力系统自动化. 1988, 12(3):15~25.
    43. 束洪春 ,陈学允 ,徐贤敏 ,等 .多导体传输线链参数解析表示. 通信学报. 1996 ,1 7(5) :114~220.
    44. 毛鹏. 基于双端电气量的输电线路故障测距的新方法. 继电器. 2000,28(5):24~28
    45. 吴欣容. 基于单端电气量的故障定位算法研究. 中国电力. 2000, 33(6):48~50
    46. 王毅非. 最小二乘算法的研究与改进. 继电器. 2000,28(3):5~8
    47. 周大敏,龙燕. 一种不受衰减非周期分量影响的最小二乘滤波算法. 电网技术. 1999,23(3):31~34
    48. 束洪春. 利用双端不同步数据的高压输电线路故障测距实用算法及其实现. 电网技术. 2000, 24(2):45~49
    49. 魏孝铭, 凌俊银, 张利东, 贺仁睦. 故障测距方法及现场实测结果分析. 电网技术. 1994, 18(3):49~54
    50. 陈腊声,孙淑信. 探测平行双回线路故障距离的一种计算方法. 电力系统自动化. 1990, 14(1):26~38.
    51. V. Taylor, M. Faulkner, A. Kalam, J. Haydon. Digital Simulation of Fault Location on EHV Lines Using Wideband Spread Spectrum Techniques. IEEE Proc. 1995, 142(1):73~80.
    52. R. K. Aggarwal, Y. Aslan, A. T. Johns. New Concept in Fault Location for Overhead Distribution Systems Using Superimposed Components. IEE Proc.-Gener. Transm. Distrib. 1997, 144(3):309~316.
    53. B. Gustavsen, A. Semlyen. Combined Phase and Model Domain Calculation of Transmission Line Transient Based on Vector Fitting. IEEE Trans. Power Delivery. 1998, 13(2):596~604.
    54. Zamora, J. F. Minzmbres, A. J. Mazon, R. Alvarez-Isasi, J. Lazaro. Fault Location on Two-terminal Transmission Lines Based on Voltages. IEE Proc-Gener. Transm. Distrib. 1996, 143(1):1~6.
    55. J. F. Minzmbres, I. Zamora, A. J. Mazon, M. A. Zorrozua, R. Alvarez-Isasi. A New Technique Based on Voltages, for Fault Location on Three-terminal Transmission Lines. Electic Power System Research 37(1996):143~151.
    56. Z Q Bo, R K Aggarwal, A T Johns et al. A New Approach to Phase Selection Using Fault Generated High Frequency Noise and Neural Networks. IEEE Trans. Power Delivery, 1997, 12(1):106~115
    57. V. Taylor, M. Faulkner. Line Monitoring and Fault Location Using Spread Spectrum on Power Line Carrier. IEE Proc.-Gener. Transm. Distrib. 1996, 143(5):427~434.
    58. L. L Dvorak, L. Romero. Evaluation of grounding methods used for maintenance of transmission lines. IEEE Transactions on Power delivery, 1997, 12(3) July:1379~1384.
    59. Zhu Shengshi, Xing Yibao, Sui Fenghai. Fault component reactance relay. IEEE Transactions on Power delivery, 1996, 11(3):1292~1300.
    60. 陈腊声,孙淑信. 探测平行双回线路故障距离的一种计算方法. 电力系统自动化. 1990, 14(1):26~38.
    61. M. Kezunovic, J. Mrkic. An Accurate Fault Location Algorithm Using Synchronized Sampling. Electric Power Systems Reseach. 1994, 29:161~169
    62. I. Zamora, J. F. Minzmbres, A. J. Mazon, R. Alvarez-Isasi, J. Lazaro. Fault Location on Two-terminal Transmission Lines Based on Voltages. IEE Proc-Gener. Transm. Distrib. 1996, 143(1):1~6.
    63. 贺家李. 电力系统继电保护原理. 中国电力出版社. 1994.
    64. 杨奇逊. 微型机继电保护基础. 水利电力出版社. 1987.
    65. 黄守盟. 电力系统继电保护信号处理. 水利电力出版社. 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700