电力电缆线路故障测距方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电缆应用成本的下降和城市电网改造工作的开展,电缆获得了越来越广泛的应用,但是,到目前为止,电力电缆故障测距仍然缺少有效的方法。本文在现有的电缆故障测距方法的基础上,通过在原理和方法上进行深入研究,提出了三种在原理上更精确、工程上更实用的电缆故障测距新方法。基于小波重构的电缆故障测距方法采用脉冲电源作用下故障相与健全相的电流差作为测量信号,利用小波变换对其作多尺度分解,然后对信号在高频下进行单支重构。与传统的行波测距方法相比,这种方法不受电缆分支接头或其他阻抗不匹配点反射波的干扰,不受故障类型的影响,在近区也不存在无法识别反射波的问题,同时也减少了波速不确定性对测距精度的影响。第二种方法将小波变换与模式变换理论结合起来,采用的是暂态行波信号,首先将三相信号转换成模式分量,零模分量的小波变换系数用于判别故障的大致位置,然后利用线模分量的小波变换系数来确定行波到达时间。这种方法由于采用了模式变换,避免了传统行波方法中存在的受故障起始角的影响的问题。第三种方法采用电缆线路的分布参数线路模型,根据功率平衡原理推导出故障测距方程,并通过搜索迭代方法解之。这种方法仅采用线路的单端数据,不受故障过渡电阻的影响,无需求解复杂的长线方程。本文利用EMTP和MATLAB程序对上述方法进行了数值仿真,结果表明:
    (1) 在本文所提出的基于小波重构的电缆故障测距方法中,利用健全相和故障相的电流差信号进行故障定位,能消除故障点之外其他阻抗不匹配点的反射波的影响。通过对信号进行小波变换,可解决行波到达时间的确定和死区方面的问题。
    (2) 通过对电流进行小波变换并在高频下进行单支重构,可以减小行波波速不确定性对测距的影响。
    (3) 利用线模电流的小波变换系数进行测距,不仅不受故障电阻的影响,也不受故障起始角的影响。
    (4) 利用功率平衡理论进行故障测距能够在原理上克服传统阻抗法普遍存在的受故障电阻影响的缺陷。
    (5) 本文所提出的方法有很高的测距精度,方法是可行的。
With application costs decreasing of power cable and rebuilding of power network, power cable is being widely used. But, until now, there have not efficient methods on power cable fault location. Through research on principle and approach, this paper puts forward three new methods in power cable fault location. The first method is based on wavelet reconstruction, and the measured signal which is the difference between the faulty and sound phase current under the high voltage pulse excitation, is transformed using wavelet, and the high frequency component is reconstructed at single scale. Compared with conventional methods, the proposed method is not disturbed by reflected waves from tee joints or other resistance discontinuities, and is not influenced by fault type, and can recognize the reflected wave from the fault point even when the fault point is near to the measuring terminal (so-called dead-zone), and simultaneously, the method reduces the influence of wave speed uncertainty. In the second method, wavelet transform is combined with modal transform, and transient travelling-wave signal is used. After three phase signals are decomposed into their modal components, the wavelet transform coefficient of ground mode can be used to identify approximate position of fault, and the wavelet transform coefficient of aerial mode is used for identifying arrival time of traveling-wave. Because the method utilizes modal transform, the problem of fault inception angle can be avoided , which occurs in almost all conventional methods. The last proposed method is based on the distributed parameter model, the algorithm utilizes searching and iteration methods to locate the fault point. Only using data of single-terminal, the algorithm can eliminate the influences of the fault resistances and it needn't resolve the complicated equation of long line. The methods above have been simulated using EMTP and MATLAB, and the simulation results indicate that,
    (1) In the fault location method based on wavelet reconstruction, the influences of reflected waves from tee joints or resistance discontinuities except the fault point can be eliminated when the current difference between faulty phase and sound phase is used in fault location. And the problem of wave arrival time and dead-zone can be resolved through wavelet transform of current signal.
    (2) The influences of wave propagation speed uncertainty can be reduced when the measured current is decomposed using wavelet transform, and the high frequency
    
    component is reconstructed at single scale.
    (3) The location result is not influenced by fault resistance and inception angle when wavelet transform coefficient of aerial mode current is used in fault location.
    (4) The location results are always affected by fault resistance in almost all conventional impedance methods in fault location, but the application of power balance theory can overcome the shortcoming.
    (5) The proposed methods have high accuracy in fault location, and the methods are feasible.
引文
[1] 刘明生 电力电缆故障的测寻,北京,冶金工业出版社,1985,10
    [2] 徐丙垠,李胜祥,陈宗军,电力电缆故障探测技术,北京,机械工业出版社,1999,4
    [3] 成永红,电力设备绝缘检测与诊断,北京,中国电力出版社,2001
    [4] 郑肇骥,王昆明,高压电缆线路,北京,水利电力出版社,1983
    [5] Sathe B.L.,Shitole V.S.,Fault location in underground cables, Journal of the institution of engineers(India),Jun 1988,Vol.68(6):220-223
    [6] Matthew S.,Mashikian Bansal,Robert B.Northrop,Location and characterization of partial discharge sites in shieded power cables,IEEE trans.on Power Delivery, 1990,Vol.5(2):833-839
    [7] Charles H.Knapp,Rajeev Bansal,Matthew S.,Robert B.Northrop,Signal processing techniques for partial discharges site location in shieded cables,IEEE Trans. On Power Deoivery,1990,Vol.5(2):859-864
    [8] S.Navaneethan, J.J.Soraghan, W.H.Siew, F.Mcpherson, P.F.Gale, Automatic fault location for underground low voltage distribution networks, IEEE Trans. On Power Delivery, 2001,Vol.16(2):346-351
    [9] J.P.Steiner W.L.Weeks H.W.Ng, An automated fault locating system, IEEE Trans. On Power Deoivery,1992,Vol.7(2):967-978
    [10] 李友军,王俊生,郑玉平等,几种测距算法的比较,电力系统自动化,2001,Vol.25(14):36-39
    [11] 陈平,葛耀中,索南加乐等,基于故障开断暂态行波信息的输电线路故障测距研究,中国电机工程学报,2000,Vol.20(8):56-64
    [12] 董新洲,葛耀中,徐丙垠等,利用GPS的输电线路行波故障测距研究,电力系统自动化,1996,Vol.20(12):36-39
    [13] W.L.Weeks, J.P.Steiner, Instrumentation for the detection and location of incipient faults on power cables, IEEE Transactions. on Power Apparatus and System, 1982., Vol.PAS-101(7): 2328-2335
    [14] William E.Anderson,Jhon D.Ramboz,Arthur R.Ondrejka,The detection of incipient faults in transmission cables using time domain reflectometry techniques: technical:challenges, IEEE Transactions on Power Apparatus and System, 1982, Vol.PAS-101(7):1928-1934
    [15] 覃剑,陈详训,基于小波变换技术的新型输电线路故障测距系统,中国电力,4,2001:31-35
    [16] 董新洲,贺家李,葛耀中,小波变换在行波故障检测中的应用,继电器,1998,Vol.26(5):1-4
    
    
    [17] 向铁元,胡海安,吴红青,基于DSP的行波故障测距方法的研究,武汉大学学报(工学版),Aug.2002,Vol.35(4):72-74
    [18] Mitsuharu Komoda,Mitsugu Aihara,Takao Kawashima,etc, Development of a current detection type cable fault locator,IEEE Transactions on Power Delivery, April 1991,Vol.6(2):541-545
    [19] C.M.Wiggins,D.E.Thomas,T.M.Salas,etc,A novel concept for URD cable fault location, IEEE Transations on Power Delivery, 1994,Vol.9(1):591-597
    [20] N.Inoue, T.Tsunekage, S.Sakai, On-line fault location system for 66KV underground cables with fast O/E and fast A/D technique,IEEE Transactions on Power Delivery, 1994,Vol.9(1):579-584
    [21] 董新洲,葛耀中,徐丙垠,输电线路暂态电流行波的故障特征及其小波分析,电工技术学报,Feb.1999,Vol.14(1):59-62
    [22] 束洪春,王平才,司大军等,小波变换应用于输电线路行波故障测距(1),云南水力发电,2002,Vol.18(2):10-15
    [23] Thompson Adu, A new transmission line fault locating system, IEEE Transactions on Power Delivery, Oct.2001,Vol.16(4):498-503
    [24] 胡帆,刘沛,程时杰,高压输电线路故障测距算法仿真研究,中国电机工程学报,Jan.1995,Vol.15(1)67-72
    [25] 毛鹏,张兆宁,苗友忠等,基于双端电气量的输电线路故障测距的新方法,继电器,Fri.2000,Vol.28(5):24-27
    [26] 卢继平,叶一麟,适用于任何具体结构的输电线路精确故障定位,电力系统自动化,Nov.1998,Vol.22(11):40-43
    [27] 刘劲,孙扬声,罗毅,一种基于时间域的实用单侧电量故障测距方法,电力系统自动化,Fri.1994,Vol.18(5):52-56
    [28] 束洪春,司大军,葛耀中等,高压输电线路电弧故障单端定位时域法新解,中国电机工程学报,Nov. 2000,Vol.20(11):25-29
    [29] Yousself OAS,A new technique for location of transmission line faults using single-terminal voltage and current data, Electrical Power System Research, Dec.1992,Vol.27(23):74-79
    [30] 卢斌先,孙曰生,王泽忠等,基于故障传输线分布参数节点导纳方程的故障测距法,现代电力,Oct.2002,Vol.19(5):36-38
    [31] 陈铮,苏进喜,吴欣荣等,基于分布参数模型的高压输电线路故障测距算法,电网技术,Nov.2000,Vol.21(11):31-33
    [32] 滕林,刘万顺,李营等,一种实用的新型高压输电线路故障双端测距精确算法,电力系统自动化,Sept.2001,Vol.25(18):24-27
    
    
    [33] 毛鹏,孙雅明,张兆宁,具有冗余神经元神经网络模型系统的输电线路故障测距的研究,中国电机工程学报,Jul.2000,Vol.20(7):28-33
    [34] 全玉生,杨敏中,王晓蓉等,高压架空输电线路的故障测距方法,电网技术,Apr.2000,Vol.24(4):27-33
    [35] 王玮,蔡伟,张元芳等,基于阻抗法的电力电缆高阻故障定位理论及试验,电网技术,Nov.2001,Vol.25(11):38-41
    [36] T. Kawai, N. Takinami, T. Chino, etc, A new approach to cable fault location using fiber optic technology(Part 1),IEEE Transactions on Power Delivery, Jan. 1995,Vol.10(1):85-91
    [37] Kazuo Watanabe,Naoki Takinashi,Takashi Chino, Development of the cable fault location method using the fiber optic distributed temperature sensor, The Transactions of The institute of Electrical Engineers of Japan A Publication of Power and Energy Society, 2000.Vol.120-b(2):286-294
    [38] W.L Weeks Yi Min Diao, Wave propagation characteristics in underground power cable, IEEE Transactions on Power Apparatus System, 1984, Vol.PAS-103(10): 2816-2826
    [39] E.W.Greenfield, Pullman,WA. Transient behavior of short and long cables, IEEE Transactions on Power Apparatus System, 1984,Vol.PAS-103(11):3193-3203
    [40] 胡昌华,张军波,夏军等,基于MATLAB的系统分析与设计--小波分析,西安,西安电子科技大学出版社,1999,12
    [41] 李建平,唐远炎,小波分析方法的应用,重庆,重庆大学出版社,1999,10
    [42] [美]崔景泰,程正兴,小波分析导论,西安,西安交通大学出版社,1995,1
    [43] Agrez.D.,Cable fault location using regression functions applied to a reflectogram, Journal of the International Measurement Confederation, Sept. 2001,Vol.30(2):85-93
    [44] Fernando H. Mognago, Ali Abur, Fault location using wavelets, IEEE Transactions on Power Delivery, Oct. 1998,Vol.13(4):1475-1480
    [45] David C.Robertson,Octavia I.Camps,Jeffrey S.Mayer,etc.,Wavelets and electromagnetic power system transients,IEEE Transactions on Power Delivery, 1996,Vol.11(2):1050-1058
    [46] 董新洲,耿中行,葛耀中等,小波变换应用于电力系统故障信号分析初探,中国电机工程学报,Nov.1997,Vol.17(6):421-424
    [47] 葛耀中,徐丙垠,陈平,利用暂态行波测距的研究,西安交通大学学报, Mar.1995,Vol.29(3):70-75
    [48] 葛耀中,新型继电保护与故障测距原理与技术,西安,西安交通大学出版社,1996.1:217-315
    [49] J Liang, S Elangovan, J B X Devotta,A wavelet multiresolution analysis approach to fault detection and classification in transmission lines, Electrical Power&Energy
    
    Systems,1998,Vol.20(5):327-332
    [50] W.Zhao,Y.H.Song,Y.Min,Wavelet anaysis based scheme for fault detection in underground power cable systems,Electric Power systems Research ,2000(53):23-30
    [51] K.巴伯,电力电缆的发展趋势,水利水电快报,Feb.2001,Vol.22(4):6-7
    [52] H.W.Dommel,电力系统电磁暂态计算理论,北京,水利电力出版社,1988
    [53] 杨大地,涂光裕,数值分析,重庆,重庆大学出版社,1998.1
    [54] 卢继平,超高压输电线故障精确定位方法研究,重庆:重庆大学博士学位论文,2000,4
    [55] 束洪春,许承斌,陈学允,基于模分量解耦解法的树型配电线路故障测距算法,电工技术学报,Oct.1997,Vol.12(5):61-64
    [56] 梁军,孟昭勇,车仁飞等,精确双端故障测距新算法,电力系统自动化,Sep.1997,Vol.21(9):24-27
    [57] 葛耀中,董新洲,董杏丽,测距式行波距离保护的研究(一)——理论与实现技术,电力系统自动化,Mar.2002,Vol.26(3):34-40
    
    
    Systems,1998,Vol.20(5):327-332
    [50] W.Zhao,Y.H.Song,Y.Min,Wavelet anaysis based scheme for fault detection in underground power cable systems,Electric Power systems Research ,2000(53):23-30
    [51] K.巴伯,电力电缆的发展趋势,水利水电快报,Feb.2001,Vol.22(4):6-7
    [52] H.W.Dommel,电力系统电磁暂态计算理论,北京,水利电力出版社,1988
    [53] 杨大地,涂光裕,数值分析,重庆,重庆大学出版社,1998.1
    [54] 卢继平,超高压输电线故障精确定位方法研究,重庆:重庆大学博士学位论文,2000,4
    [55] 束洪春,许承斌,陈学允,基于模分量解耦解法的树型配电线路故障测距算法,电工技术学报,Oct.1997,Vol.12(5):61-64
    [56] 梁军,孟昭勇,车仁飞等,精确双端故障测距新算法,电力系统自动化,Sep.1997,Vol.21(9):24-27
    [57] 葛耀中,董新洲,董杏丽,测距式行波距离保护的研究(一)——理论与实现技术,电力系统自动化,Mar.2002,Vol.26(3):34-40
    

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700