微纳热功能粉体材料传热及蓄热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了用于微纳粉体材料传热及蓄热特性的谐波探测方法,测量了微纳热功能粉体材料的有效热导率、热扩散率及吸热系数等参数,分析探讨了密度、尺度、温度及材料种类对样品传/蓄热特性的影响。揭示了相应的传热、蓄热机理,为微纳尺度热功能材料的研发、工艺优化及应用提供了科学理论依据。
     根据谐波探测技术中热波穿透深度随测量频率的变化关系,分析了探测器长/径比、样品热物性参数等与热波穿透深度的耦合关系。给出了可忽略探测器自身热容及端部热损失对测量结果影响的频率范围。采用标准样品校正,验证了推导的简化一维斜率比较法可用于测量微纳粉体等低热导率材料的有效热导率及热扩散率。
     利用校准的谐波探测系统测量了不同粒径、温度及密度的纳米siO2粉末样品有效热导率及热扩散率。在忽略气体对流的情况下,计算分析了纳米SiO2粉末样品中固相导热、气相传热及辐射传热的耦合隔热机理。结果表明,在测量范围内,SiO2粉末的有效热导率及热扩散率随温度升高而增大,随颗粒直径增大而减小。受到纳米孔隙对气相传热的抑制,SiO2粉末存在最佳密度,在此密度下,有效热导率最小,热扩散率最大,且最佳密度随颗粒直径的减小而减小。
     测量了以切片石蜡为芯材、脲醛树脂聚合物为壳材,采用原位聚合法制备的不同壳/芯比、温度、密度的相变微胶囊粉体的有效热导率。结合理论计算分析了样品壳/芯比、密度及温度等对相变微胶囊导热性能的影响规律。给出了用于该类复合材料有效热导率计算的理论模型,确定了当计算误差小于10%时,模型中无量纲数ζ的取值范围为4.8到6,ζ与样品中纵波声速有关,由材料比热、密度、杨氏模量(弹性模量)决定。
     采用面热源谐波探测技术,测量了相变微胶囊粉体材料的有效吸热系数。结果表明,材料的相变芯材性能及其包覆量是衡量其蓄热能力(包括速度大小与容量大小)的关键。芯材含量越高,其有效吸热系数越大,蓄热能力越强。芯材潜热越大、相变时的有效热导率越大,其有效吸热系数越大,与其周围环境热交换能力越强。
The harmonic detection method for characterizing the heat transportation and heat storage performances of micro-and nano-scale powder is proposed in this thesis. The effective thermal conductivity, thermal diffusivity and thermal effusivity of micro-and nano-scale thermal functional powders are measured. The effects of density, size, temperature and materials type on the heat transportation and heat storage performance are discussed. The relevant heat transportation and heat storage mechanism are revealed, which provides scientific theory basis for the development, process optimization and application of micro-and nano-scale thermal functional materials.
     According to the relationship between the heat penetration depth and the measured frequency in harmonic detection technology, the coupling relation between ratio of length to radius of the sensor and the heat penetration depth and that between the thermophysical properties of the specimen and the heat penetration depth are analyzed. The frequency range in which the heat capacity of the sensor and the heat loss of the sensor ends can be neglected is presented. A simplified one-dimensional (1D) slope comparison method is obtained, which is verified by using the standard specimens. The1D slope comparison method can be used to measure the effective thermal conductivity and thermal diffusivity of lowly thermal-conductive materials, such as micro-and nano-scale powders.
     The effective thermal conductivity and thermal diffusivity of SiO2powders with different particle sizes and different densities at different temperatures are measured by using the calibrated harmonic detection systems. When the gas convection can be neglected, the coupling insulation mechanisms of the solid conduction, gas conduction and heat radiation for nano-scale SiO2powders are calculated and analyzed. The results show in the measured range, both the effective thermal conductivity and thermal diffusivity of SiO2powders increase with the increasing temperatures, and decrease with the increasing particle size. As the gas conduction is inhibited by the nano-scale pores, there exists an optimum density at which the effective thermal conductivity reaches the minimum; the thermal diffusivity reaches the maximum. The optimum density decreases with the decreasing particle diameter.
     The effective thermal conductivity of phase change microcapsules with different shell-core rations, temperatures, densities is measured. The phase change microcapsules with paraffin wax as core materials and urea-formaldehyde resin polymers as shell materials are produced by in-situ polymerization process. Based on the theoretical calculations, the influence laws of shell-core rations, density and temperature on the heat conduction performance of phase change microcapsules are analyzed. The theoretical model for the calculation of the effective thermal conductivity of such complex materials is presented. It is believed that when the dimensionless parameter (?)(?) relates to the longitudinal sound velocity in the material and determined by the specific heat, density and Young's modulus or called elastic modulus) ranges from4.8to6.0, the error is within10%.
     By using the planar source harmonic detection technology, the effective thermal effusivity of phase change microcapsules is measured. The results show the phase change core materials properties and its covering amount of the materials is the key to evaluate the heat storage capacity of the materials. The effective thermal effusivity increases with the increasing core materials content and so does the heat storage ability. The effective thermal conductivity increases with the increasing latent heat of the core materials during the phase change process, and so does the effective thermal effusivity, which suggests the increasing its heat transfer ability with the surrounding environment.
引文
[1]《节约能源法》:http://www.gov.cn/flfg/2007-10/28/content_788493.htm
    [2]《中国节能技术政策大纲》:http://www.ndrc.gov.cn/xwfb/t20070214116931.htm
    [3]Schaefer D, Keefer K. Structure of random porous materials-silica aerogel [J]. Physics Review Letters.,1986,56:2199-2202.
    [4]Hrubesh L. Aerogel applications [J]. Journal of Non-Crystalline Solids,1998,225: 335-342.
    [5]Ferey G. Hybrid porous solids:past, present, future [J]. Chemical Society Reviews,2008, 37:191-214.
    [6]周大伟,许晨阳,李晋,等.镁合金激光表面改性研究新进展[J].轻金属,2007,(4):39-42.
    [7]王鹏,姜龙,张宝云,等.相变储能材料的研究进展[J].化学工程与装备,2010,(1):155-157.
    [8]Feldman D, Shapiro M M, Banu D, et al. Fatty acids and their mixtures as phase-change materials for thermal energy storage [J]. Solar Energy Materials and Solar Cells.1989,18: 333-334.
    [9]Guo Y Q, Liang X H. The miscibility of cellulose-polyethylene glycol blends [J]. Journal of Macromolecular Science-Physics.1999, B38 (4):439-447.
    [10]Ahmet S. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage:preparation and thermal properties [J]. Energy Conversion and Management,2004,45 (13-14):2033-2042.
    [11]栗劲苍,刘朋生.新型聚氨酯储能材料的研究[J].中国塑料.2006,20(2):21-24.
    [12]Zhang Z G, Fang X M. Study on Paraffin/explanded graphite composite phase change thermal energy storage material [J]. Energy Conversion and Management.2006, (47): 303-310.
    [13]马荣,童跃进,关怀民.Si02气凝胶的研究现状与应用[J].材料导报A:综述篇.2011,25(1):58-64.
    [14]Schultz J M, Jensen K I. Evacuated aerogel glazings [J]. Vacuum,2008,82:723-729.
    [15]Schultz J M, Jensen K I, Kristiansen F H. Super insulating aerogel glazing [J]. Solar Energy Materials & Solar Cells,2005(89):275-285.
    [16]Bahaj A S, James P A B, Jentsch M F. Potential of emerging glazing technologies for highly glazed buildings in hot arid climates [J]. Energy and Buildings,2008,40:720-731.
    [17]斯蒂芬F鲁阿尼特,戴维J斯佩尔曼.制备含气凝胶的绝缘制品的方法:中国,02828225.6[P].2005-05-25
    [18]Martin J, Hosticka B, Lattimer C, et al. Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels [J]. Journal Non-Cryst Solids,2001, 285(1-3):222-229.
    [19]Smirnova I, Suttiruengwong S, Arlt W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems [J]. Journal of Non-Cryst Solids,2004,350: 54-56.
    [20]任洪波,万小波,张林,等.种子法制备金掺杂二氧化硅气凝胶[J].强激光与粒子束,2006,18(5):822.
    [21]Hong J P, Pietrzyk S, Khodakov A Y, et al. TAP investigation of hydrogen and carbon monoxide adsorption on a silica-supported cobalt catalyst [J]. Applied Catalysis A,2010, 375(1):116.
    [22]于宝刚,卢林刚,高维英,等,PP/纳米SiO2复合材料的阻燃性能研究[J],中国塑料,2009,23(10):27-30.
    [23]Reim M, Korner W, Manara J, et al. Silica aerogel granulate material for thermal insulation and day lighting [J]. Solar Energy,2005(79):131-139.
    [24]Fesmire J E. Aerogel insulation systems for space launch applications [J]. Cryogenics, 2006,46:111.
    [25]曾淼,刘敬肖,史非.二氧化硅气凝胶对硫酸庆大霉素的吸附和释放[J].硅酸盐学 报,2007,35(8):1081.
    [26]Kim C Y, Lee J K, Kim B I. Synthesis and pore analysis of aerogel glass fiber composites by ambient drying method [J]. Colloids and Surfaces:A,2008,179:313-314.
    [27]Lu S, Chun W, Yu J, et al. Preparation and characterization of the mesoporous SiO2-TiO2 /epoxy resin hybrid materials [J]. Journal of Applied Polymer Science,2008,109(4): 2095-2102.
    [28]王欢,吴会军,丁云飞.气凝胶透光隔热材料在建筑节能玻璃中的研究及应用进展[J].建筑节能.2010,38(4):35-37.
    [29]Kistler S S. Coherent expanded aerogels and jellies [J]. Nature,1931,127:741.
    [30]刘涛,王慧,曾令可,等.Si02纳米孔超级绝热材料的研究现状.陶瓷,2007,7:45.
    [31]Hwang S W, Jung H H, Hyun S H, et al. Effective preparation of crack-free silica aerogels via ambient drying [J]. Journal of Sol-Gel Science Technology,2007,41(2): 139.
    [32]杨海龙,倪文,陈德平,等.制备工艺条件对SiO2气凝胶微球粒径及其均匀性的影响[J].材料导报,2008,22(10):146.
    [33]Zheng X H, Qiu L, Su G P, et al. Thermal conductivity and thermal diffusivity of SiO2 nano-powder [J]. Journal of Nanopartilce Research,2011,13(12):6887-6893.
    [34]Kim G S, Hyun S H. Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying [J]. Thin Solid Films,2004,460:190.
    [35]Thomas M T, Foster K G, Reynolds J G. Fluorine induced hydrophobicity in silica aerogels [J]. Journal of Non-Crystalline Solids,2004,350:202-208.
    [36]Venkateswara A R, Manish M K, Sharad D B. Transport of liquids using superhydrophobic aerogels [J]. Journal of Colloid and Interface Science,2005,285: 413-418.
    [37]同小刚.常压下二氧化硅气凝胶薄膜的制备与研究[J].西安:陕西科技大学,2006.
    [38]Sarawade P B, Kim J K, Kim H K. High specific surface area TEOS-based aerogels with lagepore volume prepared at an ambient pressure [J]. Applied Surface Science,2007, 254(2):574.
    [39]Lee S, Cha Y C. The effect of pH on the physicochemical properties of silica aerogels prepared by an ambient pressure drying method [J]. Materials Letters,2007,155:3130.
    [40]Christelle A, Pirard R, Lecloux A J, et al. Preparation of low density xerogels through additives to TEOS-based alcogels [J]. Journal of Non-Crystalline Solids,1999,246: 216-228.
    [41]Einarsrud M A, Nilsen E, Rigacci A. Strengthening of silica gels aerogels by washing and aging processes [J]. Journal of Non-Crystalline Solids,2001,285:1-7.
    [42]赵大方,陈一民,洪晓斌,等.疏水Si02气凝胶的低成本制备[J].硅酸盐学报,2004,32(5):548-552.
    [43]Sales D, Costa N F, Vasconcelos V C, et al. Optical characteristics of sol-gel silica containing copper [J]. Material Science Engineering: A,2005,408:121-124.
    [44]林高用,张栋,卢斌.非超临界干燥法制备块状Si02气凝胶[J].中南大学学报(自然科学版).2006,37(6):1117-1121.
    [45]Zhu J J, Xie J M, Lu X M, et al. Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by solgel method at ambient pressure [J]. Colloids Surf, A Physicochem Eng Aspects,2009,342:97-101.
    [46]Garcia-Sanchez M A, Campero A, Aviles M L. Decomposition of metal tetrasulphophthalo-cyanines incorporated in SiO2 gels [J]. J Non-Cryst Solids,2005,351: 962-969.
    [47]李贵安,朱庭良,邓仲勋,等.复合气凝胶的常压干燥制备及制备条件对其结构的影响[J].科学通报,2010,55(8):733-738.
    [48]Rao A V, Nilsen E, Einarsrud M A. Effect of precursors, methylation agents and solvents on the physico chemical properties of silica aerogels prepared by atmospheric pressure drying method [J]. Journal of Non-Crystalline Solids,2001,296:165-171.
    [49]Rao A P, Rao A V. Micro structural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures [J]. Journal of Non-Crystalline Solids,2008,354:10-18.
    [50]廖云丹,吴会军,丁云飞.Si02气凝胶力学性能的影响因素及改善方法[J].功能材料,2010,增刊Ⅱ(41):201-203.
    [51]殷帅,吴会军,丁云飞,等.疏水Si02气凝胶的常压制备及应用进展[J].材料导报A:综述篇.2011,25(2):33-35.
    [52]杨海龙,倪文,陈德平,等.制备工艺条件对Si02气凝胶微球粒径及其均匀性的影响[J].材料导报.2008,22(10):146-149.
    [53]王冬冬,丁书强,王自强,等.常压干燥法制备Si02气凝胶粉体[J].耐火材料,2011,45(2):96-99.
    [54]Rettelbach T, Sauberlich J, Korder S, et al., Thermal conductivity of silica aerogel powders at temperatures form 10 to 275 K [J]. Journal of Non-Crystalline Solids,1995, 186:278-284.
    [55]Lu X, Caps R., Fricke J, et al. Correlation between structure and thermal conductivity aerogels of organic [J]. Journal of Non-Crystalline Solids,1995,188:226-234.
    [56]Zeng S Q, Hunt A, Greif R. Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel [J]. ASME Journal of Heat Transfer,1995,117(4):1055-1058.
    [57]魏高升,张欣欣,于帆.描述微纳米多孔复合绝热材料的单元体传热模型[J].北京科技大学学报.2008,30(7):781-785.
    [58]周祥发,冯坚,肖汉宁,等.二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模[J].国防科技大学学报.2009,31(2):36-40.
    [59]曾令可,曹建新,刘世明.Si02气凝胶-硅酸钙复合纳米孔超级绝热材料热导率的测定及绝热机理分析[J].材料工程,2009,增刊1:27-31.
    [60]张欣欣,乐恺,刘育松,等.二氧化硅气凝胶的有效热导率理论[J].宇航材料工艺,2010,2:15-19.
    [61]乔冬平,张福承.Si02气凝胶热导率与密度的关系探讨[J].材料开发与应用,2010,25(1):38-40.
    [62]夏新林,施一长,韩亚芬.纳米隔热材料导热机理与特性研究[J].宇航材料工艺,2011,1:24-28.
    [63]郭雨含,刘向东,王燕,等.SiO2气凝胶导热机理的分子动力学模拟研究[J].工程热物理学报,2011,32(1):107-110.
    [64]Wei G S, Liu Y S, Zhang X X, et al., Thermal conductivities study on silica aerogel and its composite insulation Materials [J]. International Journal of Heat and Mass Transfer, 2011,54:2355-2366.
    [65]金承黎,张洪彪,张蓉艳,等.一种常压干燥制备二氧化硅气凝胶复合材料的方法[P].中国专利:200810062792.X,2008-12-10.
    [66]何方,赵海雷,张秀华,等.一种多孔粉体掺杂的硅石气凝胶隔热材料的制备方法[P].中国专利:200510012154.3,2006-02-08.
    [67]李讳彧,于航,刘淑娟相变材料微胶囊国内外研究现状[J],能源技术,2007,28(1):4-10.
    [68]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [69]杨骁博,袁伟星,姜军.不同温区相变微胶囊的制备及研究进展[J].制冷,2009,28(4):49-57..
    [70]姜勇,丁恩勇,黎国康.一种新型的相变储能功能高分子材料[J].高分子材料与科学,2001,17(3):73-175.
    [71]王艳秋,金万祥,缪伟伟,等.聚乙二醇/涤纶接枝共聚固口固相转变贮热材料[J].应用化工,2009,38(1):28-31.
    [72]王继芬,谢华清,辛忠,黎阳.辛醇接枝碳纳米管复合相变材料的导热性能研究[J].上海第二工业大学学报,2010,127(3):203-206.
    [73]Cabeza L F, Castellon C, Nogues M, et al. Use of micro-encapsulated PCM in concrete walls for energy savings [J]. Energy Buildings.2007, (39):113-119.
    [74]Alkan C, Sari A, Karaipekli A, et al, Preparation characterization and thermal properties of microencapsulated phase change material for thermal energy storage [J]. Solar Energy Materials and Solar Cells,2009,93:143-147.
    [75]Alkan C, Sari A, Karaipekli, A, Preparation thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage [J]. Energy Conversion and Management,2011,52:687-692.
    [76]Taguchi Y, Yokoyama H, Kado H, et al. Preparation of PCM microcapsules by using oil absorbable polymer particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1):41-47.
    [77]Sanchez L, Sanchez P, Lucas A D, et al. Microencapsulation of PCMs with a polystyrene shell [J]. Colloid and Polymer Science,2007,285:1377-1385.
    [78]曹同玉.聚合物乳液合成原理性能及应用[J].化学工业出版社,2007:258-259.
    [79]Luo Y W, Zhou X D. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2004, 42:2145-2154.
    [80]Park S J, Kim K S, Hong S K. Preparation and thermal properties of polystyrene nanoparticles containing phase change materials as t hermal storage medium [J]. Journal of Polymer Korea,2005,29 (1):8213.
    [81]方玉堂,匡胜严,张正国.纳米胶囊相变材料的制备[J].化工学报,2007,58(3):771-775.
    [82]樊耀峰,张兴祥,王学晨等.热处理对相变材料纳米胶囊性能的影响[J].材料工程,2004,4:11.19
    [83]Zhang X X, Fan Y F, Tao X M. Crystallization and prevention of supercooling of microencapsulated n-alkanes [J]. Journal of Colloid and Interface Science,2005,281: 299-306.
    [84]Li W, Wang J P, Wang X C. Effect s of ammonium chloride and heat treatment on residual formaldehyde content s of melamine formaldehyde microcapsules [J]. Colloid and Polymer Science,2007,285(15):1691-1697.
    [85]Su J F, Huang Z, Ren L. High compact melamineformaldehyde micro PCMs containing noctadecane fabricated by a two step coacervation met hod [J]. Colloid and Polymer Science,2007,285(14):1581-1591.
    [86]Su J F, Wang L X, Ren L. Mechanical properties and thermal stability of double shell thermal energy storage microcapsules [J]. Journal of Applied Polymer Science,2007,103 (2):1295-1302.
    [87]时雨荃,蔡明健.纳米复合膜相变微胶囊的制备及性质[J].化学工业与工程,2006,23(3):224-227.
    [88]Choi J K, Lee J G, Kim J H, et al. Micro encapsulation of Octadecane as a phase change material by interfacial polymerization in an emulsion system [J]. Journal of Industrial and Engineering Chemistry,2001,7(6):358-362.
    [89]王立新,苏峻峰,任丽.相变储热微胶囊的研制[J].高分子材料科学与工程,2005,21(1):276-279.
    [90]徐伟箭,陈海明,熊远钦,卢彦兵,娄闯.相变物质正十八烷微胶囊的制备和表征[J].湖南大学学报(自然科学版),2005,32(1):69-72.
    [91]杨丽,付中玉,裴广玲,郭凤芝.相变调温微胶囊的制备[J].化学研究,2008,19(1):15-17.
    [92]樊耀峰,张兴祥,王学晨,牛建津,蔡利海.相变材料纳米胶囊的制备与性能[J].高分子材料科学与工程,2005,21(1):288-292.
    [93]Fang G Y, Li H, Yang F, et al. ShuangmaoWu. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage [J]. Chemical Engineering Journal,2009,153:217-221.
    [94]Jin Z G, Wang Y D, Liu J G, et al. Synthesis and properties of paraffin capsules as phase change materials [J]. Polymer,2008,49:2903-2910.
    [95]Kim J, Cho G. Thermal storage/release durability, and temperature sensing properties of thermostatic fabrics treated wit h octadecane-containing microcapsules [J]. Textile Research Journal,2002,72(12):1093-1098.
    [96]Su J F, Wang L X, Ren L. Synthesis of polyurethane MicroPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene2maleic anhydride as a surfactant [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007, 299(123):268-275.
    [97]Zou G L, Lan X Z, Tan Z C, et al. Microencapsulation of nhexadecane as a phase change material in polyurea [J]. Acta Physico-Chimica Sinca,2004,20(1):90-93.
    [98]邢琳,方贵银,杨帆,微胶囊相变蓄冷材料的制备及其性能研究[J].真空与低温,2006,5(4):283-287.
    [99]Chen H Y, Zhao Y, Song Y L, et al. One-Step Multicomponent Encapsulation by Compound-Fluidic Electrospray [J]. Journal of American Chemical Society,2008, 130(25):7801.
    [100]Zhao Y, Cao X Y, Song Y L, et al. Bio-mimic Multichannel Microtubes by a Facile Method [J]. Journal of American Chemical Society,2007,129:764.
    [101]Wang N, Chen H Y, Lin L, et al. Multicomponent Phase Change Microfibers Prepared by Temperature Control Multifluidic Electrospinning [J]. Macromolecular Rapid Communications.,2010,31:1622-1627.
    [102]Hawlader M N, Uddin M S, Zhu H J. Preparation and evaluation of a novel solar storage material:microencapsulated paraffin [J]. International Journal of Solar Energy,2000,20: 227-238.
    [103]Hawlader M N, Uddin M S, Khin M M. Microencapsulated PCM thermal2energy storage system [J]. Applied Energy,2003,74:195-202.
    [104]Mulligan J C, Colvin D P, Bryan Y G. Microencapsulated phase change material suspensions for heat transfer in spacecraft thermal systems [J]. Journal of Spacecraft Rockets 1996,33(2):278-284.
    [105]Colvin D P. Thermal management of electronic systems using diamond heat spreaders and microencapsulated PCM coolants[C]. National Heat Transfer Conference, Baltimore, MD, 1997, AIAA 97-3888:1-6.
    [106]Inaba H, Kim M J, Horibe A.. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters [J]. Journal of Heat Transfer,2004,126:558-565.
    [107]王利,赵兵全,赵镇南.微胶囊相变悬浮液传热特性的实验研究[J].煤气与热力,2006,26(12):66-70.
    [108]Alvarado J L, Marsh C, Sohn C, et al. Thermal performance of microencapsulated phase change material slurries in turbulent flow under constant heat flux [J]. Internantional journal of heat and mass transfer,2007,50(9-10):1938-1952.
    [109]Schossig P. Micro-encapsulated phase-change materials integrated into const ruction materials [J]. Solar Energy Materials & Solar Cells,2005,89:297-306.
    [110]Luisa F, Cabeza. Use of microencapsulated PCM in concrete walls for energy savings [J]. Energy and Buildings,2007,39 (2):113-119.
    [111]苏峻峰,任丽.相变储热微胶囊储热调温效果的研究[J].太阳能学报,2005,26(3):327-331.
    [112]吴子钊,梁金生.自调温功能材料[J].新型建筑材料,2003,(4):44-47.
    [113]Tyagi V V, Kaushik S C, Tyagi S K, et al. Development of phase change materials based microencapsulated technology for buildings:A review [J]. Renew Sustain Energy Rev, 2011,15(2):1373-1391.
    [114]Kang K. The application of microencapsulated phase change materials to nylon fabric using direct dual coating method [J]. Journal of Applied Polymer Science,2008,108: 2337.
    [115]Shin Y S, Yoo D, Son K. Development of thennoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules [J]. Journal of Applied Polymer Science,2005, 97:910.
    [116]张兴祥,王学晨.蓄热调温纤维的纺制及其性能研究[J].天津工业大学学报,2005,24(2):1-5.
    [117]展义臻,朱平,张建波,等.相变调温海藻纤维的制备与性能研究[J].印染助剂,2006,12(23):20-23.
    [118]鄢瑛,张会平,刘剑.微胶囊相变材料的制备与特性研究[J].材料导报,2009,23(2):49-54.
    [119]Barbara P. Development of heat and cold insulating membrane st ructures with phase change material [J]. Journal of Coated Fabric,1995. (7):59-68.
    [120]Ying B. Assessing the performance of textiles incorporating phase change materials [J]. Polymer Testing,2004, (23):541-549.
    [121]Veerappan M, Kalaiselvam S, Iniyan S, et al. Phase change characteristic study of spherical PCMs in solar energy storage [J]. Solar Energy,2009,83:1245-1252.
    [122]刘向,魏菊.工业余热回收用石蜡相变微胶囊的制备与表征[J].化工新型材料,2010,38(5):128-130.
    [123]李伟,刘彩凤,张兴祥.相变材料微/纳胶囊的研制及其在红外隐身中的应用[J].化工新型材料,2010,35(5):31-44.
    [124]刘剑虹,夏春华,蓄热变色涂层的制备[J].齐齐哈尔大学学报,2010,126(6):33-36.
    [125]Zhang P, Ma Z W, Wang R Z. An overview of phase change material slurries:MPCS and CHS [J]. Renewable and Sustainable Energy Reviews,2010,14:598-614.
    [126]王全杰,高龙.阻燃微胶囊的研究进展及其在制革中的应用[J].皮革与化工,2010,37(3):18-21.
    [127]Zhang S, Niu J L. Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities [J], Solar Energy Materials & Solar Cells,2010,94:1038-1048.
    [128]Wang Z L, Tang D W, Liu S, et al. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport [J]. International Journal of Thermophysics,2007,28:1255-1268.
    [129]唐大伟,荒木信幸.应用激光闪光法测量薄膜材料的热扩散率[J].锦州师范学院学报(自然科学版),2002,23(1):1-7.
    [130]Wang H D, Ma W G, Zhang X, et al. Measurement of the thermal wave in metal films using femtosecond laser thermoreflectance system [J]. Acta Physics Sinica,2010,59(6): 3856-3862.
    [131]布文峰,郑兴华,唐大伟,等.光热反射技术测量表面下微尺度热结构[J].工程热物理学报,2009,30(1):118-120.
    [132]邓建兵,张金涛,舒水明,等.保护热板法测量参考物质热导率的研究[J].计量学报,2009,1:16-20.
    [133]Hammerschmidt U. A new pulse hot strip sensor for measuring thermal conductivity and thermal diffusivity of solids [J]. International Journal of Thermophysics,2003,24(3): 675-682.
    [134]He Y. Rapid thermal conductivity measurement with a hot disk sensor: part 1. Theoretical considerations [J]. Thermochimica Acta,2005,436:122-129.
    [135]Zhang X, Fujiwara S, Fujii M. Short-hot-wire method for measurement of the thermal conductivity of a fine fiber [J]. High Temp-High Press,2000,32:493-500.
    [136]Cahill D G, Fischer H E, Klitsner T, et al. Thermal conductivity of thin films: measurement and understanding [J]. Journal of Vacuum Scientific & Technology,1989, 7(3):1259-1266.
    [137]Zhu J, Tang D W, Wang W, et al. Kristopher W. Holub and Ronggui Yang, Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films [J]. Journal of Applied Physics.2010,108:094315.
    [138]Zhang X, Zhang Q G, Cao B Y, et al. Experimental studies on thermal and electrical properties of platinum nanofilms [J]. Chinese Physics Letters,2006,23(4):936-938.
    [139]Salmon D. Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference material [J]. Measurement Science and Technology,2001,12(12):89-98.
    [140]Kading O W, Skurk H, Goodson K E. Thermal conduction in metalized silicon dioxide layers on silicon [J]. Applied Physics letter,1994,65:1629-1631.
    [141]Zhao Y M, Zhu C L, Wang S G, et al. Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films [J]. Journal of Applied Physics,2004,96(8):4563-4568.
    [142]Bu W F, Tang D W, Wang Z L, et al. Modulated photothermal reflectance technique for measuring thermal conductivity of nano film on substrate and thermal boundary resistance [J]. Thin Solid Films,2008, (516):8359-8362.
    [143]Parker W J, Jenkins R J, Butler C P, et al. Flash Method of determining thermal diffusivity, heat capacity, and thermal conductivity [J]. Journal of Applied Physics,1961,32(9): 1679-1684.
    [144]Balageas D L. Thermal diffusivity measurement by pulsed methods [J]. High Temp-High Press,1989,21:85-96.
    [145]Akoshima M, Baba T. Thermal diffusivity measurements of candidate reference materials by the laser flash method [J]. International Journal of Thermal Sciences,2005,26(1): 151-163.
    [146]孙建平,刘建庆,邱萍等.激光闪光法测量材料热扩散率的漏热修正[J].计量技术,2008,19(1):23-25.
    [147]Stalhane P. Method for bestamming av varmeledings coefficienter [J]. Teknisk Tidskrift, 1931,61:389.
    [148]Sassi L, Mzali F, Jemni A, et al. Nasrallah. Hot-wire method for measuring effective thermal conductivity of porous media [J]. Journal of Porous Media,2005,8(2):97-113.
    [149]孙国会,战东平,何毅,等.冶金粉料热导率的测定[J].黄金学报,2001,3(4):23-30.
    [150]Kulkarni S P, Vipulanandan C. Hot wire method to characterize the thermal conductivity of particle-filled polymer grouts used in pipe-in-pipe application [J]. Journal of Testing and Evaluation,2006,34(3):224-231.
    [151]Bilek J, Atkinson J K, Wakeham W A. Repeatability and refinement of a transient hot-wire instrument for measuring the thermal conductivity of high-temperature melts [J]. International Journal of Thermophysics,2006,27(6):1626-1637.
    [152]Woodfield P L, Fukai J, Fujii M, et al. Determining thermal conductivity and thermal diffusivity of low-density gases using the transient short-hot-wire method [J]. International Journal of Thermophysics,2008,29(4):1299-1320.
    [153]王补宣,虞维平.热线法同时测定含湿多孔介质热导率和导温系数的实验技术[J].工程热物理学报,1986,7(4):381-386.
    [154]于帆,张欣欣,高光宁.热线法测量半透明固体材料的热导率[J].计量学报,1998,19(2):112-118.
    [155]Healy J J, Groot J D, Kestin J. The theory of the transient hot-wire method for measuring thermal conductivity [J], Physica,1976, (82):393-408.
    [156]Gustafsson S E, Karawacki E, Kahn M N. Transient hot-stripe method for simultaneously measuring thermal Cconductivity and thermal diffusivity of solids and fluids [J]. Journal of Physics D:Applied Physics.,1979, (12):1411-1421.
    [157]于帆,张欣欣,何小瓦.材料热物理性能非稳态测量方法综述.宇航计测技术[J].2006,26(4):23-30.
    [158]Gustafsson S E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurement of solid materials [J]. Rev. Sci. Instrum.,1991,62(3):797-804.
    [159]Gustavsson M, Gustafsson S E. Thermal conductivity as an indicator of fat content in milk [J]. Thermochimica Acta,2006,442:1-5.
    [160]何小瓦.瞬态平面热源法热物理性能测量准确度和适用范围的标定——常温下标准材料奥氏体不锈钢的热物理性能对比测试[J].宇航计测技术,2007,27(6):95-98.
    [161]Cahill D G. Thermal conductivity measurement from 30 to 750 K:the 3ω method [J]. Review of Scientific Instruments,1990,61(2):802-808.
    [162]Moon I K, Jeong Y H, Kwun S I. The 3ω technique for measuring dynamic specific heat and thermal conductivity of a liquid or solid [J]. Review of Scientific Instruments,1996, 67(1):29-35.
    [163]Lee S M, Cahill D G. Heat transport in thin dielectric films [J]. Journal of Applied Physics, 1997,81(6):2590-2595.
    [164]Wang Z L, Tang D W, Li X B, et al. Length-dependent thermal conductivity of an individual single-wall carbon nanotube [J]. Applied Physics Letters,2007,91(12): 123119.
    [165]王照亮,唐大伟,陈焕倬.用3ω法测量非线性KTP晶体各向异性热导率[J].强激光与粒子束,2006,18(7):1071-1075.
    [166]Yusibani E, Woodfield P L, Kohno M, et al. End effects in the three-omega method to measure gas thermal conductivity [J]. International Journal of Thermophysics,2009,30: 833-850.
    [167]Choi S R, Kim J, Kim D.3ω method to measure thermal properties of electrically conducting small-volume liquid [J]. Review of Scientific Instruments,2007,78(8): 084902.
    [168]Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical Review Letters,2005,95:065502.
    [169]Olson B W, Graham S, Chen K. A practical extension of the 3ω method to multilayer structures [J]. Review of Scientific Instruments,2005,76(5):1-6.
    [170]Lu L, Yi W, Zhang D L.3ω method for specific heat and thermal conductivity measurements [J]. Review of Scientific Instruments,2001,72(7):2996-3003
    [171]Zhang X, Fujiwara S, Fujii M. Measurement of thermal conductivity and electrical conductivity of a single carbon fiber [J], International Journal of Thermophysics,2000, 21(4):493-500.
    [172]王建立.微纳米线热物性测量方法及其应用[D].北京:清华大学,2010
    [173]Paddock C A, Eeslay G L. Transient thermoreflectance from thin metal films [J], Journal of Applied Physicw,1986,60:285.
    [174]Qiu T Q and Tian C L, Heat Transfer Mechanisms during Short-pulse Laser Heating of Metals [J]. ASME Journal of Heat Transfer,1993,115:835-841.
    [175]Hopkins P E, klopf J M, Norris P M.Influence of interband transitions on coupling measurements in Ni films [J]. Applied Optics,2007,46:2076-2083.
    [176]韩鹏,唐大伟,程光华,祝捷,赵卫.,金属纳米薄膜微尺度热输运过程实验研究[J].工程热物理学报.2008,29(2):297-300.
    [177]马维刚,王海东,张兴,等.飞秒脉冲激光加热金属薄膜的理论和实验研究[J].物理学报,2011,60:064401.
    [178]Cahill D Q Katiyar M, Abelson J R. Thermal conductivity of a-Si:Thin films [J]. Physics Review B,1994,50(9):6077-6081.
    [179]Ju Y S, Kurabayashi K, Goodson K E. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating [J]. Thin Solid Films,1999,339:160-164.
    [180]Jacquot A, Lenoir B, Dauscher A. Numerical simulation of the 3ω method for measuring the thermal conductivity [J]. Journal of Applied Physics,2002,91(7):4733-4738.
    [181]Raudzis C E, Schatz F, Wharam D, et al. Extending the 3ω method for thin film analysis to high frequencies [J]. Journal of Applied Physics,2004,95(10):6051-6055.
    [182]Shi L, Li D, Yu C, et al. Measuring thermal and thermoelectric properties of on-dimensional nanostructures using a micro fabricated device [J]. ASME Journal of Heat Transfer,2003,125:881-888.
    [183]Chen F, Shulman J, Xue Y, et al. Thermal conductivity measurement under hydrostatic pressure using the 3co method [J]. Review of Scientific Instruments,2004,75(11): 4578-4584.
    [184]Dames C, Chen G. 1ω,2ω, and 3ω methods for measurements of thermal properties [J]. Review of Scientific Instruments,2005,76(12):124902.
    [185]Tong T, Majumdar. Reexamining the 3-omega technique for thin film thermal characterization [J]. Review of Scientific Instruments,2006,77(10):104902.
    [186]Hu X J, Padilla A A, Xu J, et al.3-omega measurement of vertically oriented carbon nanotubes on silicon [J]. ASME Journal of Heat Transfer,2006,128:1109-1113.
    [187]Battaglia J L, Wiemer C, Fanciulli M. An accurate low-frequency model for the 3ω method [J]. Journal of Applied Physics,2007,101(10):104510.
    [188]Wang Z L, Tang D W, Zhang W G. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber [J]. Journal of Physics D:Applied Physics,2007,40(15):4686-4690.
    [189]Chirtoc M, Gibkes J, Wernhard R, et al. Temperature-dependent quantitative 3ω scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition [J]. Review of Scientific Instruments,2008,79(9): 093703.
    [190]Wang H N, Sen M H. Analysis of the 3-omega method for thermal conductivity measurement [J]. International Journal of Heat and Mass Transfer,2009,52:2102-2109.
    [191]王照亮,梁金国,唐大伟.多层纳米薄膜结构热物性重构[J].工程热物理学报,2009,30(3):453-455.
    [192]Kakac S, Yener Y. Heat Conduction [M],2nd edn. Washington, DC:Hemisphere Pub. Corp,1985:267.
    [193]Griesinger A, Heidemann W, Hahne E. Investigation on measurement accuracy of the periodic hot-wire method by means of numerical temperature field calculations [J]. International Communications in Heat and Mass Transfer,1999,26(4):451-465.
    [194]Yusibani E, Woodfield P L, Fujii M, et al. Application of the Three-Omega Method to Measurement of Thermal Conductivity and Thermal Diffusivity of Hydrogen Gas [J]. International journal of thermophys,2009,30:397-415.
    [195]http://www.rmhot.com/
    [196]胡芃,陈则韶.量热技术和热物性测定[M].安徽:中国科学技术大学出版社,2005.
    [197]吕崇德.热工参数测量与处理[M].北京:清华大学出版社,2005.
    [198]沙定国.误差分析与测量不确定度评定[M].北京:中国计量出版社,2003.
    [199]Forest L, Gibiat V, Hooley A. Impedance matching and acoustic absorption in granular layers of silica aerogels [J]. Journal of Non-Crystalline Solids,2001,285:230-235.
    [200]张利伟.硅气凝胶的制备、标准及其性能研究[D].湖南:中南大学,2006.
    [201]Parvathy R A, Venkateswara R A, Pajo G. M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents [J]. Applied Surface Science,2007,253:6032-6040.
    [202]Yoti J, Gurav L, Venkateswara R A, et al. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor [J]. Journal of Alloys and Compounds, 2009,471:296-302.
    [203]王寅生.纳米孔超级绝热材料基础研究[D].北京:北京科技大学,200
    [204]Rao A V, Kuldarni M M, Amalnerkar D P, et al. Super hydrophobic silica aerogels based on methyltrimethoxysilane Precursor [J]. Journal of Non-Crystalline Solids,2003, 330:187-192.
    [205]Rao A V, Kuldarni D P, Seth T. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes [J]. APPlied Surfaee Seienee,2003,206:262-270.
    [206]陈龙武,甘礼华,侯秀红.气凝胶的非超临界干燥法制备及其形成过程[J].物理化学学报,2003,19(9):819-823.
    [207]Tamon H, Ishizaka H, Yamamoto T. Preparation of mesoporous carbon by freeze drying [J]. Carbon,1999,37:2049-2055.
    [208]李伟,王霞瑜,张平等.溶胶一凝胶法制备疏水型SiO2气凝胶[J].材料科学与工程,2002,20(1):58-60.
    [209]Uehida N, Ishiyama N, Kato Z, et al. Chemical effects of DCCA to the sol-gel Process [J]. Journal of Materials Sciences,1994,29:5188-5192.
    [210]Fang C L, Song D S. Synthesis of Xonotlite-type calcium silicate insulation product by konilite [J]. Non-Metal Mines,2000,23(2):28-29.
    [211]Lu X, Caps R, Fricke J, et al. Correlation between structure and thermal conductivity of organic aerogels [J]. Journal of Non-Crystalline Solids,1995,188(3):226-234.
    [212]Wu H J, Fan J, Du N. Thermal energy transport within porous polymer materials:Effects of fiber characteristics [J]. Journal of Applied Polymer Science,2007,106(1):576-583.
    [213]Wu H J, Fan J, Du N. Porous materials with thin interlayers for optimal thermal insulation [J]. International Journal of Nonlinear Sciences and Numerical Simulation,2009,10(3): 291-300.
    [214]Yu F, Wei G S, Zhang X X, et al. Two Effective Thermal Conductivity Models for Porous Media with Hollow Spherical Agglomerates [J]. International Journal of Thermophysics, 2006,27(1):293-303.
    [215]张欣欣,乐恺,刘育松等.二氧化硅气凝胶的等效热导率理论[J].宇航材料工艺.2010,2:15-19.
    [216]Wei G S, Liu Y S, Zhang X X, et al. Thermal conductivities study on silica aerogel and its composite insulation materials [J]. International Journal of Heat and Mass Transfer.2011, 54:2355-2365.
    [217]Fricke J, Hummer E, Morper H J, et al, In Revue de Physique Apliquee, R. Vacher, J. Phalippou, J. Pelous, and T. Woignier (Proc.2nd Int. Symp. Aerogels 24, C4, Les Editions de Physique, Les Ulis Cedex,1989,87.
    [218]Samsonov G V, The Oxide Handbook. New York, Plenum,1973.
    [219]Gross J and Fricke J. Ultrasonic velocity measurements in silica, carbon and organic aerogels [J]. Journal of Non-Crystalline Solids.1992,145:217-222.
    [220]Fricke J, Lu X, Wang P, et al. Optimization of monolithic silica aerogel insulants [J], International Journal of Heat and Mass Transferr,1992,35:2305-2309.
    [221]Kaviany M. Principles of Heat Transfer in Porous Media. Springer-Verlag, New York, 1991,333.
    [222]Caps R and Fricke J. In Aerogels, Springer Proc. In Physics, J. Fricke, Springer-Verlag, Heidelberg, Germany,1986,6:110.
    [223]Zalba B, Marin J M, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications [J], Applied Thermal Engineering 2003,23:251-283.
    [224]Osemeahon, S A and Barminas J T. Study of some physical properties of urea formaldehyde and urea proparaldehyde copolymer composite for emulsion paint formulation [J]. International Journal of Physical Sciences,2007,2 (7):169-177.
    [225]Suleiman B M. The transient plane source technique for measurement of thermal properties of olycrystalline ceramics including high superconductors [D]. Physics Department, Chalmers University of Technology, Gothenburg, Sweden,1994.
    [226]张月莲,郑丹星.石蜡相变材料在同心环隙管内的基本传热行为[J],北京化工大学学报,2006,33(2):5-8.
    [227]Guyer E C and Brownell D L. Handbook of Applied Thermal Design [M]. University of Miami, New York,1999.
    [228]Araki N, Tang D. W, Makino A, et al., Transient Characteristics of Thermal Conduction in Dispersed Composites [J]. International Journal of Thermophysics,1998,19(4): 1239-1251.
    [229]Ramadoss P and Buvaneswari N, Thermal Properties of Some Organic Liquids Using Ultrasonic Velocity Measurements [J]. E-Journal of Chemistry,2011,8(3):1246-1249.
    [230]Gross J, Fricke J, Hrubesh L W, Sound propagation in SiO2 aerogels [J]. Journal of the Acoustical Society of America,1992,91(4):2004-2006.
    [231]Uvarani R and Punitha S, Theoretical Prediction of Ultrasonic Velocity in Organic Liquid Mixtures [J]. E-Journal of Chemistry,2009,6(S1):S235-S238.
    [232]Frank R, Drach V, Fricke J, Determination of thermal conductivity and specific heat by a combined 3ω/decay technique [J]. Review of Scientific Instruments,1993,64(3): 760-765.
    [233]Wang J L, Gu M, Zhang X, et al., Measurements of thermal effusivity of a fine wire and contact resistance of a junction using a T type probe [J], Review of Scientific Instruments, 2009,80:076107-1-076107-3.
    [234]Karawacki E, Suleiman B M, Dynamic Plane-Source Technique for the Study of the Thermal Transport Properties of Solids [J]. High Temperatures—High Pressures,1991, 23(2):215-223.
    [235]Mathis Tci.Pdf, http://www.polymer.cn/PY10460/product_detail_17595.html.
    [236]张金涛,原遵东,邱萍等.高精密自动绝热量热计[J].计量学报,2005,26(4):320-325.
    [237]Touloukian Y S, Bufco E H. Thermophysical properties of Matter, Volume 5, Specific Heat, Nonmetallic Solids. New York-Washington:IFI/Plenum Press,1970.
    [238]Georg H, Monika A-K, Makoto Matsui, Kimya Komurasaki. Enthalphy measurement in inductively heated plasma generator flow by laser absorption spectroscopy [J], AIAA Journal Matsuietal.2005,43(9):2060-2064.
    [239]Karawacki E, Gustafsson S E. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors [J]. Review of Scientific Instrume,1994,65(12):3856-3859.
    [240]Norrnan O, Birge, Paul K et al., Narayanan Menon. Specific heat spectroscopy: Origins, status and applications of the 3w method [J], Thermochimica Acta,1997,304-305(3): 51-66.
    [241]Yi W, Lu L, Zhang D L, et al., Linear specific heat of carbon nanotubes [J], Physical Review B,1999,59(4):9015-9018.
    [242]Qiu L, Zheng X H, Zhu J, et al., Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique [J]. Review of Scientific Instruments,2011,82 (8):086110.
    [243]Lide D R. CRC handbook of chemistry and physics [M]. 81st ed. Boca Raton: CRC Press, 2000:6-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700