用户名: 密码: 验证码:
液体折射率及液相扩散系数的测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体折射率和液相扩散系数是物理、化学、化工、生物等学科的重要基础数据。本博士论文针对目前液体折射率和液相扩散系数测量中存在的一些问题,研究了几种可行的解决方法。利用透明玻璃毛细管测量液体的折射率,解决了传统液体折射率测量过程中样品需求量大的问题,实现了液体折射率的微量测量;设计并制作了一种对称结构液芯变焦柱透镜,提高了液体折射率的测量灵敏度,实现了液体折射率的高精度测量;基于毛细管测量液体折射率的方法,通过标准液体标定测量参数的方式,实现了透明毛细管管壁折射率的无损测量;利用毛细管测量液体折射率特有的空间分辨测量能力,发明了用毛细管成像法测量液相扩散系数的方法,该方法具有可以直接观测液相扩散过程,测量时间短的特点;在对称液芯变焦柱透镜基础之上,设计并制作了非对称结构的液芯变焦柱透镜,使其球差控制在不影响图像判断的范围内,实现了折射率差值较小的溶液之间的扩散系数测量,提高了液相扩散系数的测量精度。论文主要研究内容和结果如下:
     1.用透明玻璃毛细管实现了微量液体折射率的测量。将透明玻璃毛细管视为一个由四个共轴圆柱面构成的光学系统,推导出了此光学系统的焦距和毛细管参数间的解析式。设计了液体折射率的“毛细管焦点测量法”和“毛细管成像测量法”,分别用这两种方法在室温下测量了多种液体的折射率,测量准确度达到千分位;测试液体用量为0.0015ml,是常规仪器(阿贝折射仪)用量的百分之一,实现了液体折射率的微量测量。为了进一步提高测量系统的准确度和测量数据的稳定性,提出了虚实像结合测量法,减小了测量系统晃动引起的误差;分析了测量系统景深和灵敏度的关系,并对毛细管内外径尺寸与测量折射率准确度关系进行了分析。
     2.用对称液芯变焦柱透镜对液体折射率进行了精确测量。设计、加工并制作了一种对称液芯变焦柱透镜,解决了毛细管成像法焦距较短(≤2.35mm)造成折射率灵敏度不高(可分辨最小折射率变化量-0.001)以及光源宽度过窄(限制在毛细管内径范围内)造成的光线会聚角度不足,测距景深过大的问题;保证了折射率测量的准确度,使其折射率的单次测量误差值小于0.0002,提高了测量灵敏度。
     3.用标准液体标定法实现了透明毛细管管壁折射率的无损测量。在“毛细管焦点测量法”的基础上,发明了一种近轴条件下无损测量毛细管管壁折射率的方法。利用两种标准液体样品标定毛细管的管轴位置,对多种管壁材料、以及同种管壁材料不同内外径尺寸的毛细管进行了测量,管壁折射率的测量准确度达到0.005。分析了毛细管内外径对管壁折射率测量的影响,并将近轴条件下的测量方法发展到在非近轴条件下的测量。
     4.用透明玻璃毛细管实现了液相扩散系数的测量。基于Fick第二定律,用高斯误差函数表述了液相扩散系数D的计算解析式。将毛细管既作为成像元器件又作为扩散池,利用其特有的折射率空间分辨测量能力,设计了“等折射率薄层测量法”和“等观测高度测量法”,测量了室温下丙三醇溶液在纯水中的扩散系数。利用所设计的方法测量液相扩散系数具有测量时间短(-lh)和可以直观察扩散过程的特点。
     5.用非对称液芯变焦柱透镜精确测量液相扩散系数。在原有对称液芯变焦柱透镜基础上,设计加工了非对称液芯变焦柱透镜,使其在芯区液体为纯水时球差≤0.02μm,折射率测量准确度达到1.7×10-5RIU。测量了乙二醇溶液在纯水中的扩散系数;验证了在“等折射率薄层测量法”中,折射率薄层的选取与扩散系数的计算是无关的;分析了“等观测高度测量法”中,不同高度选取对扩散计算误差的影响。利用测量不同浓度的乙二醇溶液的扩散系数,通过线性拟合取极限的方法,得出了乙二醇溶液在室温无限稀释条件下的扩散系数为1.069×10-5cm2/s,与文献值比较相对误差为8.6%,这种测量方法为无限稀释情况下溶液扩散系数的测量提供了一种新途径,在保证毛细管测量法优点的同时实现了液相扩散系数更加精确的测量。
The refractive index (RI) and diffusion coefficient (DC) of liquids are the fundamental data in Physics, Chemistry, Chemical Engineering and Biology Engineering. The dissertation aims at the study on the new measurement methods of the RI and DC of liquids. A new method for measuring the RI of micro-quantity liquid by using transparent capillary is elaborated, which is characterized by a micro-quantity liquid and spatial resolution. To measure the RI of liquid more accurately, a symmetric liquid-core-zoom cylindrical lens has been fabricated, with the sensitivity of RI of the measurement system further improving. Based on the method for measuring RI of liquid with a capillary, the approach of measuring the RI of a capillary wall without destruction is introduced by filling a standard liquid in the capillary, of which the accuracy of measurement under paraxial and non-paraxial conditions are analyzed, and which makes up the blank of this field. The spatially resolving ability of the capillary in measuring RI of liquid is utilized to observe and record diffusive process directly, the transparency capillary is used as both diffusive pool and imaging element, a novel method for measuring the DC of liquid is successfully invented. In order to measure the DC more accurately, an asymmetric liquid-core zoom cylindrical lens has been designed and fabricated, in which the spherical aberration can be ignored, and which has been achieved the measurement of DC of liquid with slight range of RI.
     The main research contents and results of the dissertation are consisted of five aspects as following:
     First of all, the measurement of RI of micro-quantity liquid is realized by using a capillary. Based on imaging principle of a coaxial spherical surface optical system, the function between the focal length of optical system and the RI of the liquid is deduced, and two methods, i.e. the focusing method and imaging method of capillary, have been designed to measure the RIs of some kinds of liquid are measured at room temperature. The measurement accuracy of0.001is achieved, and the liquid amount is less than0.0015ml, which is one percent of the amount with the common instrument (Abbe Refractometer). In order to improve the accuracy of the measuring system and the stability of the measured data, virtual-real imaging method is presented, which reduced the errors of the system caused by shaking. The relationship between depth of field and sensitivity and the relationship between radii of capillary and the accuracy of RI are analyzed.
     Secondly, a symmetric liquid-core zoom cylindrical lens has been designed and fabricated to measure RI of liquid more accurately, which solves two problems in capillary imaging method, i.e. the sensitivity of RI is not so higher (the minimum resolved RI~0.001) due to a short focal length (≤2.35mm), and the depth of field is large caused by a narrow light source width (limited in the range of capillary diameter). Due to an improved sensitivity in measuring RI and a short depth of field in the measurement system, a high accuracy in measurement of RI is ensued, which is better than0.0002.
     Thirdly, a method for measuring the RI of transparency capillary without destruction is invented, which calibrated the position of the axis of capillary by using the standard liquid samples. The capillaries with same material and different diameter size have been measured and the influence on measurement accuracy of the size of capillary is analyzed. The measurement accuracy of RI is better than0.005, which can meet the request of general scientific research and experiment. To make the calculative method for RI of capillary tube more convenient and accurate, reduce the effects of the spherical aberration and the depth of field on the measurement results, we developed the method in non-paraxial condition.
     Fourthly, a new technology for measuring the DC of liquid is invented by using a transparent capillary, which is characterized by faster measurement (~1h) and observing diffusion process directly. The analytical solution of DC has been expressed as Gauss error function based on the Fick second law. Two methods, i.e."equivalent the RI of thin layer" and "fixed an observation height" are presented, the diffusion process of pure glycerol in water is investigated by using the two methods.
     Finally, the DC has been measured accurately by using an asymmetric liquid-core zoom cylindrical lens. When water is filled within the core area of the lens, the spherical aberration of the used measurement system is less than0.02jum and the measurement accuracy is1.7×10-5RIU. In the method of "equivalent the RI of thin layer", we get the DC from recording the position of layer with fixed RI as time increases, and verify that the selection of RI of the thin layer is unrelated to the measurement result of DC. In the method of "fixed an observation height", we have discussed the relationship between the height and the calculation error of DC. Through measuring the DC values in different ethylene glycol (EG) concentrations, finding the simulated formula between DC values and EG concentrations, making a limit of the concentration to zero from the formula, the DC value (1.069×10-5cm2/s) of EG at infinite dilution solution at25℃is obtained with the relative error8.6%. This method may open a new way to measure DC of liquid quickly at the condition of infinite dilution solution.
引文
[1]S. D. Taylora, J. Czarneckib, J. Masliyah, Refractive index measurements of diluted bitumen solutions[J], FUEL,2001,80(14):2013-2018
    [2]G. Brenn and F. Durst, Refractive index measurements using the phase-Doppler technique[J],Atom.Spra.,1995,5(6):545-567
    [3]Y. Li, C. Z. Pan and G. H. Li, Refractive index measurement using a stanard compensating method[J], Appl. Opt.1990,29(31):4546-4547
    [4]李大勇,张宏琴,何毓敏.掠面入射法测定液体折射率实验中的光路分析[J].大学物理实验,1998,11(4):33-35.
    [5]S. Singn, Measuring the refractive index of a liquid using a laser [J]. Physics Education,2002,37:152-153.
    [6]S. Singn, Measuring the refractive index of a liquid using a He-Ne laser and a thin cell [J]. Res. J. Chem. Environ,2003,7:6263.
    [7]孙晶华,王明,用光纤杨氏干涉测量液体的折射率[J].大学物理实验,2005,18(1):8-10.
    [8]M. A. Khashan, Nassif A Y. Accurate measurement of the refractive indices of solids and liquids by the double layer interferometer [J]. Applied Optics,2000,39: 5991.
    [9]张全法,郭茂田,杨海彬等.利用CCD测量液体折射率队[J].半导休光电,2002,21(3):229-232.
    [10]I. M. White, H. Oveys, X. D. Fan, Liquid-core optical ring-resonator sensors[J], Opt. Lett.2006,31:1319-1321.
    [11]Y. Z. Sun and X. D. Fan, Analysis of ring resonators for chemical vapor sensor development[J], Opt. Exp.2008,16:10256-10268.
    [12]V. Korpelainen and A. Lassila, Refractive index measurements in the near-IR using an Abbe refractometer[J], Meas.Sci.Technol.1997,8(6):601-605
    [13]花世群,骆英,洪云.基于等厚干涉原理的液体折射率测量方法[J].中国激光,2006,33(11):1542-1546.
    [14]周瑜,贾光明,张贵忠等.用高精度法布里珀罗干涉仪测量液体的折射率[J].中国激光,2006,33(suppl):345-348.
    [15]J. Sun, C. C. Chan and X. Y. Dong, Refractive index measurement using a photonic crystal fiber[J], Opt. Eng.2007,46(1):14402.
    [16]G. T. Purves, G. Jundt, C. S. Adams and I. G. Hughes, Refractive index measurements by probe-beam deflection[J], Eur. Phys. J. D,2004,29(3):433-436.
    [17]S. M. Mian and A. Y. Hamad, Refractive index measurements using a CCD[J], Appl. Opt.1996,35(34):6825.
    [18]C. Yeh, C. Chow, J. Sung, P. Wu, W. Whang, F. Tseng, Measurement of organic chemical refractive indexes using an optical time-domain reflectometer[J], Sensors (Basel).2012,1:481-488.
    [19]Z. Y. Wang, Z. T. Gu, Optical humidity-sensitive mechanism based on refractive index variation[J], Chin. Opt. Lett.2009,7:756-759.
    [20]N. Manohar Reddy, D. Kothandan, S. Chandra Lingam, A. Ahmad, A study on refractive index of plasma of blood of patients suffering from tuberculosis [J], Int. J. Technol. Eng.2012,8:23-25.
    [21]M. Friebel, M. Meinke, Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurement[J], J.Biomed.Opt.2005,10:064019.1-064019.5.
    [22]G N. Jham, R. Velikova, B. N. Damyavova, S. C. Rabelo, J. C. T. Silva, K. A. P. Souza, V. M. M. Valente, P. R. Cecon, Preparative silver ion TLC/RP-HPLC determination of coffee triacylglycerol molecular species[J], Food Res.Int. 2005,38:121-126.
    [23]J. C. Seferis, in:I. Brandrup, E. H. Immergnt (Eds.), Polymer Handbook,3rd ed.[M], Wiley, New York 1989,p.VI/451.
    [24]P. Herve, L. K. J. Vandamme,General relation between refractive index and energy gap in semiconductors[J], Infrared Phys.Technol.1994,35:609-615.
    [25]C. Hsu, S. Chen, Y. Chen, Measuring the refractive index of transparent materials using high precision circular heterodyne interferometry[J],Opt.Laser.Eng. 2012,12:1689-1693.
    [26]H. Arimoto, W. Watanabe, K. Massk, T. Fukuda,Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy[J], Opt. Commun.2012,24:4911-4917.
    [27]D. Kacik, P. Tvarozek, I. Martincek, K. Schuster, Refractive index measurement based on core-cladding mode interferometry in endlessly single mode fiber [J], Optik.2012,19:1746-1749.
    [28]C. Yeh, C. Chow, J. Sung, P. Wu, W. Whang, F. Tseng, Measurement of organic chemical refractive indexes using an optical time-domain reflectometer[J],Sensors(Basel).2012,1:481-488.
    [29]Z. Y. Wang, Z. T. Gu, Optical humidity-sensitive mechanism based on refractive index variation[J], Chin. Opt. Lett.2009,7:756-759.
    [30]N. Manohar Reddy, D. Kothandan, S. Chandra Lingam, A. Ahmad, A study on refractive index of plasma of blood of patients suffering from tuberculosis[J], Int. J. Technol. Eng.2012,8:23-25.
    [31]M. Friebel, M. Meinke, Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements[J], J.Biomed.Opt.2005,10:064019.1-064019.5.
    [32]G. N. Jham, R. Velikova, B. N. Damyavova, S. C. Rabelo, J. C. T. Silva, K. A. P. Souza, V. M. M. Valente, P. R. Cecon, Preparative silver ion TLC/RP-HPLC determination of coffee triacylglycerol molecular species[J], Food Res.Int. 2005,38:121-126.
    [33]P. Herve, L. K. J. Vandamme, General relation between refractive index and energy gap in semiconductors[J], Infrared Phys.Technol.1994,35:609-615.
    [34]C. Hsu, S. Chen, Y. Chen, Measuring the refractive index of transparent materials using high precision circular heterodyne interferometry[J], Opt.Laser.Eng. 2012,12:1689-1693.
    [35]H. Arimoto, W. Watanabe, K. Massk, T. Fukuda, Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy[J], Opt. Commun.2012,24:4911-4917.
    [36]D. Kacik, P. Tvarozek, I. Martincek, K. Schuster, Refractive index measurement based on core-cladding mode interferometry in endlessly single mode fiber[J], Optik.2012,19:1746-1749.
    [37]S. Hua, Y. Luo and Y. Hong, Measurement of refractive index of liquid by the equal thickness interference [J], Chinese J. Lasers 2006,33:1542.
    [38]Y. Zhou, G. Jia, G. Zhong, W. Xiang, G Liu and C. Liu, Using Precision Fabry-Perot interferometer to measure refractive index of aqueous solution[J], Chinese J. Lasers 2006,33:345.
    [39]M. A. Hashan, A. Y. Nassif, Accurate measurement of the refractive indices of solids and liquids by the double layer interferometer [J], Appl.Opt.2000,39:5991.
    [40]S. A. Alexandrov, I. V. Chernyh, Interference method for determination of the refractive index and thickness[J], Opt.Eng.2000,39:2480-2486.
    [41]S. Singh, Diffraction method measures refractive indices of liquids[J], Phy. Edu. 2004,3:235.
    [42]G. Deng, Z. Cai, Y. Zhang, Y. Xu, S. Wu and J. Zhou, Refraction index measurement of transparent material by using diffraction grating and CCD[J], Acta Opt. Sin.2004,24:99.
    [43]Z. Radi, J. Labar and P. Barna, Diffusion coefficient of Al in metastable, amorphous Al-Pt phase [J], Appl. Phys. Lett.1998,73:3220-3223
    [44]C. Angstmann and G. Morriss, An approximate formula for the diffusion coefficient for the periodic Lorentz gas[J], Phys. Lett. A 2012,376:1819-1921
    [45]T. Christopher, C. Stephen and J. Ramsey, Diffusion coefficient measurements in microfluidic devices[J], Talanta.2002,56:365-373.
    [46]J. Wang, Diffusion of tracer amount of sodium ion in aqueous potassium chloride solutions[J], J. Am. Chem. Soc.1952,74:182-186.
    [47]X. Michalet and A. Berglund, Optimal diffusion coefficient estimation in single-particle tracking[J], Phys. Rev. E 2012,85:061916.
    [48]J. Kazem, T. Mohamnad and M. Nastaran, Diffusion coefficient measurement of transparent liquid solutions using Moire deflectometry[J], J. Phys. D:Appl. Phys. 2004,37:1993-1997.
    [49]V. Chhaniwal, A. Anand, S. Girhe, D. Patil, Subrahmanyam N and Narayanamurthy C, New optical techniques for diffusion studies in transparent liquid solutions[J], J. Opt. A:Pure Appl. Opt.2003,5:s329-s337.
    [50]W. Bek and M. Muttzal, Transport Phenomena (Revised 2nd Edition)[M] (New York:Wiley) 2006, p75.
    [51]Y. Kahp and L. Robert, Microstructures of poly (EG) by mole-ling and de-wetting[J], Appl. Phys. Lett.2003,83:1668-1670.
    [52]J. Eastman, S. Choi, S. Li, W. Yu and L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol based nano-fluids containing copper nanoparticles[J], Appl. Phys. Lett.2001,78:718-721.
    [53]T. Johzaki, A. Oda, Y. Nakao and K. Kudo, Accuracy validation of flux limited diffusion models for calculating alpha particle transport in ICF plasmas[J], Nucl. Fusion 1999,39:753.
    [54]S. Singh, Refractive index measurement and its applications[J], Physica Scripta, 2002,65(2):167-180
    [55]邓广安,蔡志刚,张运华等.用衍射光栅和CCD测量透明材料折射率[J],光学学报,2004,24(1):99-103.
    [56]H. L. Ma, X. H. Zhang, J. Lucas,etal. Refractive index measuremnt of the TeX glasses[J], J. Non-Crystalline Solids,1993,161:198-201.
    [57]C. Neipp, A. Belendez and I. Pascial, Refractive index measurement of the glass substrate of holographic plates using reflectivity data[J], Optik, 1999,110(6):295-297.
    [58]孟庆华,向阳.高精度测量光学玻璃折射率的新方法[J].光学精密工程,2008,16(11):2114-2118.
    [59]井淼.“测定玻璃折射率”全攻略[J].物理教学探讨,2009-09:37-40.
    [60]李强,苏光辉,张瑞凯,等.透明毛细管管壁折射率的无损测量[J].光学精密工程,2010,18(6):1264-1270.
    [61]J. Z. Li, Optics handbook[M], Shanxi Science and Technology Press (1986).
    [62]刘成林,用光束位移法测定透明玻璃板的折射率[J].物理实验,2002,22(10),34-35.
    [63]http://www.glassinfo.com.cn/, [OL].
    [64]A. Bjeoumikhov, R. Wedell, S. Bjeoumikhov. Mono-and polycapillary optics-State of the art and applications [J]. Optics and Precision Engineering,2007,15(12): 1932-1943.
    [65]W. Jennings. Gas chromatography with glass capillary columns [M].New York: Second Edition, Academic Press,1980.
    [66]R.D Dandeneau etal. Glass capillary chromatography[C],Third International Symposium (R.E.Kaiser Edition). Institute of Chromatography Bad Durkheim,1979:81.
    [67]张远长.毛细管在光通信技术中的应用[J].光纤与电缆及其应用技术,1991.3:41-43.
    [68]U. Sharma, N. J. Gleason, J. D. Carbeck, Diffusivity of solutes measured in glass capillaries using Taylor's analysis of dispersion and a commercial CE instrument J], Anal. Chem.2005,77(3):806-813.
    [69]R. J. Nunge, T. S. Lin, W. N. Gill, Laminar dispersion in curved tubes and channels[J], J Fluid Mech,1972,51:363-383.
    [70]R. W. Lamb, Hydrodynamics[M],New York:Dover,1965,602-614.
    [71]L. S. Darken, Diffusion,mobility and their interrelation through free energy in binary metallic systems[J], Trans Am Inst Mining,Met Eng,1948,175:184-189.
    [72]L. Miller, P. C. Carman, Self-diffusion in mixtures,Part I,simple binary liquid mixtures[J],Trans Farad Soc,1959,55(443):1831-1837.
    [73]J. C. Shieh, P. A. Lyons,,Transport properities of liquid n-alkanes[J], J Phys Chem 1969,73(10):3258-3261.
    [74]G. Van, A.W. Adamson, Diffusion in liquid hydracarbon mixtures[J], J Phys Chem,1964,68(2):238-246.
    [75]L. Miller, P. C. Carman, Self-Diffusion in mixtures, part 5, heptane+cetane mixtures[J],Trans Farad Soc,1962,58(476):1529-1532.
    [76]R. Mills, Diffusion relationships in the system benzene-diphenyl at 25℃[J], J Phys Chem,1963,67(3):600-605.
    [77]W. Hayduk, H. Laudie, Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions[J], AIChE J,1974,20(5):611-615.
    [78]A. S. Janet, F. M. Sheila, J. D. William, etal, Prediction of aqueous diffusion coefficients for organic compounds at 25[J],Chemosphere,1999,38(10):2381-2406
    [79]白泽生,刘竹琴,用二次成像法测量透明玻璃板的折射率[J].大学物理,2007,26(9),37-39.
    [80]M. Gianluca, Identification of the diffusion coefficient in linear evolution equations in Hibert spaces[J], J. Abstr. Differ. Equ. Appl.,2011,2(1):14-28.
    [81]Y. Takahashi, M. Sakamitsu and M. Tanaka,Diffusion coefficients of arsenate and arsebite in water at various pH[J], Chem.Lett.2011,40(10):1187-1188.
    [82]A. Shit, P. Ghosh, S. Chattopadhyay and J. R. Chaudhuri, Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium enviroment[J], Phys. Rev. E,2011,83(3).
    [83]K. Aoki, B. Wang, J. Y. Chen and T. Nishiumi, Diffusion coefficients in viscous sodium alginate solutions[J], Electrochimica Acta,2012,83:348-353.
    [84]C. F. Riberiro, M. F. Barros, L. P. Verissimo,etal. Diffusion coefficients of paracetamol in aqueous solutions[J], J. Chem. Thermodynamics,2012,54:97-99.
    [85]T. Sami, B. Alexandru, S. Mathieu,etal. Diffusion coefficient and shear viscosity of rigid water models[J], J. Phys:Cond. Matt.2012.24(28):284117-284120.
    [86]R. H. Stokes, An inproved diaphragm-cell for diffusion studies and some tests of the method[J], J.Am. Chem. Soc.1950,72(2):763-767.
    [87]T. Gabler, A. Paschke, G. Schuurmann, Diffusion coefficients of substituted benzenes at high dilution in water[J], J Chem. Eng. Data,1996,41(1):33-36.
    [88]L. M. Onishi, J. M. Prausnitz, J. Newman, Steady-state diffusion coefficients for water in nafion in the absebce of inert gas[J], J Electrochem. Soc.2012,159(6): B754-B760.
    [89]X. Liu, S. K. Schnell, J. M. Simon, D. Bedeaux, S. Kjelstrup, A. Bardow and T. J. H. Vlugt, Fick diffusion coefficient of liquid mixtures directly obtained from equolibrium molecular dynamics[J], J Phys. Chem.B,2012,116(20):6070.
    [90]J. W. Williams, L. C. Cady, Molecular diffusion in solutions[J], ChemRev,1934, 14(1):171-217.
    [91]H. Mouquin, W. H. Catheart, Diffusion coefficients in alcohol-water mixtures[J], J Am Chem Soc,1935,57(10):1791-1794.
    [92]R. H. Stokes, An improved diaphragm-cell for diffusion studies and some tests of the method[J], J Am Chem Soc,1950,72(4):763-770.
    [93]J. H. Hilderbrand, K. Nakanishi, E. M. Voigt, Quantum effect in the diffusion of gases in liquids at 25℃[J], J Chem Phys,1965,42(3):1860-1865.
    [94]J. D. F. Christopher, H. Peter, Use of diaphragm cell at elevated temperatures[J], Ind Eng Chem Fundam,1971,10:305-310.
    [95]A. Yang, W. D. Li, G. Yuan, J. Y. Dong and J. L. Zhang, Measuring the refractive indices of liquids with a capillary tube interferometer [J], Appl. Opt.2006 45(31), 7993-7998.
    [96]H. El-Ghandoor, E. Hegazi, I. Nasser and G M. Behery, Measuring the refractive index of crude oil using a capillary tube interferometer[J], Opt. Laser Technol. 200335,361-367.
    [97]A. C. Bedoya, C. Monat, P. Domachuk, C. Grillet and B. J. Eggleton, Measuring the dispersive properties of liquids using a microinterferometer[J], Appl. Opt. 201150(16),2408-2412.
    [98]Z. Palaty and A. Zakova, Numerical error analysis of diffusivity measurement using a modified capillary method[J], Chem. Eng. Process,2005 44,1063-1067.
    [99]A. I. Corshkov, O. V. Oshurkova, V. B. Konstantinov, Improved sensitivity of refractive interface detection in capillary methods of separation[J], Technical Phys. 2001 46(5),623-626.
    [100]C. Y. Luk, L. Nanis and M. Litt, Improved capillary method for diffusivity measurements[J], Ind. Eng. Chem. Fundam.1975 14(2),92-95.
    [101]E. W. Haycock, B. J. Alder, J. H. Hilderbrand, The diffusion of Iodine in carbon tetrachloride under pressure[J], J Chem Phys,1953,21 (9):1601-1604.
    [102]J. H. Wang, Self-diffusion and structure of liquid water,I measurement of self-diffusion of liquid water with deuterium as tracer[J], J Am Chem Soc, 1951,73(2):510-513.
    [103]J. H. Wang, Tracer-diffusion in liquids,Ⅲ.The self-diffusion of chloride ion in aqueous sodium chloride solutions[J], J Am Chem Soc,1952,74(3):1612-1615.
    [104]J. H. Wang, Tracer-diffusion in liquids,I Diffusion of tracer amount of sodium ion in aqueous potassium chloride solutions [J], J Am Chem Soc,1952, 74(3):1182-1186
    [105]J. H. Wang, Tracer-diffusion in liquids,V self-diffusion isoelectric glycine in aqueous glycine solutions[J], J Am Chem Soc,1953,75(6):2777-2778.
    [106]V. I. Volkov, V. D. Skirda, E. N. Vasina, et al,Self-diffusion of water-ethanol mixture in chitosan membranes obtained by pulsed-field gradient nuclear magnetic resonance technique[J], J. Membrane Science,1998,138:221-225.
    [107]N. Bochner and J. Pipman, A simple method of determining diffusion constants by holographic interferometry[J], J. Phys. D:Appl. Phys.1976,9:1825-1830.
    [108]F. R. Bevia, A. C. Mallol, C. S. Garcia and J. F. Sempere, Liquid diffusion measurement by holographic interferometry[J], J. Chem. Eng. Canada,1985,63: 765-771.
    [109]L. G. Gray and H. Fanichel, Holographic interferometric study of liquid diffusion[J], Appl. Opt.1979,18:343-345.
    [110]J. Szydlowska and B. Janowska, Holographic measurement of diffusion coefficients[J], J. Phys.D:Appl. Phys.1983,15:1385-1393.
    [111]G S. Spagnolo, D. Ambrosini, A. Ponticiello and D. Paoletti, A simple method for determining diffusion coefiicient by digital laser speckle correlation[J], J. Physique III,1996,6:1117-1125.
    [112]A. Anand, V. K. Chhaniwal, S. Mukherjee and C. S. Narayanamurthy, Diffusion studies in liquids by multiple beam interferometer [J], Opt. Laser Technol. 2002,34:45-49.
    [113]J. W. Mullin and T. P. Cook, Diffusion coefficient of ammonium dihydrogen phosphate in water[J], J. Appl. Chem.1963,13:423-429.
    [114]D. D. Kong, T. F. Kosear, S. R. Dugan,et al. Diffusion of proteins and nonionic micelles in agarose gels by holographic interferometry[J], A IC hE J, 1997,43:25-32.
    [115]赵长伟,马沛生,何明霞,液相扩散系数测定方法的近期研究进展[J],化学工业与工程,2002,19(5):374-379.
    [116]赵长伟,药物类水溶液扩散系数及相关热力学性质的测定与研究[D]:[博士学位论文],天津:天津大学,2003.
    [117]W. P. Wuelfing, A. C. Templeton, J. F. Hicks,etal. Taylor dispersion measurements of monolayer protected clusters:A physicochemocal determination of nanoparticle size[J], Anal. Chem.1999,71(18):4069-4074.
    [118]M. S. Bello, R. Rezzonico, P. G. Righetti, Use of Taylor-Aris disersion for measurement of a solute diffusion coefficient in thin capillaries, Science[J], 1994,266:773-776.
    [119]E. L. Cussler, Diffusion-Mass Transfer in Fluid Systems[M]. Cambridge: Cambridge University Press,1997.
    [120]M. Zuo, Y. L. Han, L. Qi, Y. Chen. Fast and accurate measurement of diffusion coefficient by Taylor's dispersion analysis[J], Chinese Science Bulletin,2007, 52(24):3325-3332.
    [121]C. T. Culbertson, S. C. Jacobson and J. M. Ramsey, Diffusion coefficient measurements in microfluidic devices[J], Talanta.2002,56:365-373.
    [122]E. L. Cussler, Diffusion:Mass transfer in fluid systems (3rd Ed.)[M], Cambridge University Press,2007.
    [123]C. Angstmann and G. P. Morriss, An approximate formula for the diffusion coefficient for the periodic Lorentz gas[J], Phys. Lett.2012,376:1819-1822.
    [124]L. He and B. Niemeyer, A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration[J], Biotechnol Prog.2003, 19(2):544-548.
    [125]A. K. Gaigalas, J. B. Hubbard, M. Mccurley,etal. Diffusion of bovinesorum albumin in aqueous solutions[J], J. Phys. Chem.1992,96(5):1355-1359.
    [126]马友光,朱春英,何明霞,明宏伟,必磊.氨基酸在水溶液中扩散系数的实验研究[J],激光技术,2005,29(2):145-147.
    [127]赵长伟,马沛生,何明霞.液相扩散系数测定方法的近期研究进展[J],化学工业与工程,2002,19(5):374-378.
    [128]Y. Cheng, L. Wei, W. Chi. Laser Light-Scattering Study of Solution Dynamics of Water/Cycloether Mixtures[J]. J. Phys. Chem. B,2004,108:11866-11870.
    [129]T. C. Christopher, C. J. Stephen, J. Michael R. Diffusion coefficient measurements in microfluidic devices[J]. Talanta,2002,56:365-373.
    [130]WANG J H.Diffusion of tracer amount of sodium ion in aqueous potassium chloride solutions[J]. J. Am. Chem. Soc.1952,74 (1) 182-186.
    [131]J. G. Kazem, T. T. Mohammad, M. Nastaran.Diffusion coefficient measurements of transparent liquid solutions using Moire deflectometry[J]. J. Phys. D:Appl. Phys.2004,37:1993-1997.
    [132]K. C. Vani, A. Arun, G. Sanjay, P. Dhiraj, N. Subrahmanyam, C. S. Narayanamurthy. New optical techniques for diffusion studies in transparent liquid solutions[J]. J. Opt. A:Pure Appl. Opt.2003,5, S329-S337.
    [133]W. R. Bowen, Y. Liang, P. M. Williams, Gradient diffusion coefficients-theory and experiment[J],Chem Eng Sc,2000,55:2359-2377.
    [134]潘金生,仝健民,田民波,材料科学基础[M],北京:清华大学出版社,2011,434-484.
    [135]田兴时,林南英,姚裕昌等编.光学[M],昆明,云南大学出版社1995.5.
    [136]王武义主编.误差原理与数据处理[M],哈尔滨,哈尔滨工业大学出版社, 2001.10.
    [137]安连生主编.应用光学(第三版)[M],北京,北京理工大学出版社,2004.11:100-102.
    [138]郁道银,谈恒英主编.工程光学(第二版)[M],北京,机械工业出版社,2007.2:67-72.
    [139]M. Born and E. Wolf, Principles of Optics[M], Cambridge University Press, 1997,p.207.
    [140]A. Ghatak, Optics:Chapter 6[M], Tata McGraw-Hill Publishing Company Limited 2009.
    [141]李强,韩广辉,邢曼男,普小云,用毛细管焦点法精确测量微量液体折射率[J],光学学报,2009,29(9):2468-2472.
    [142]K. Iizuka, Engineering Optics (Springer series in optical sciences,3rd Ed.)[M], Springer Science+Business Media, LLC,2008.
    [143]普小云,白然,邢曼男等.用玻璃毛细管精确测量微量液体的折射率[P].国家发明专利.专利号:ZL2007100660162.
    [144]邢曼男,白然,普小云.精确测量微量液体折射率的新方法[J].光学精密工程,2008,16(7):1196-1201.
    [145]2WA-J型阿贝折射仪使用说明书,上海光学仪器五厂生产.
    [146]Seongsik Chang, Lasing Characteristics of Deformed Micro cavities[D], December 1998:74-77 (A Dissertation Presented to Faculty of Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy)
    [147]Couzin, Dennis, Depths of Field[J], SMPE Journal,1982,11:1096-1098.
    [148]孙杰,袁跃辉,王传永.数字图像处理自动图像聚焦算法的分析和比较[J].光学学报,2007,27(1):35-39.
    [149]曾光宇,张志伟,张存林等编.光电检测技术[M],北京,清华大学出版社,北京交通大学出版社,2006.5:145-153.
    [150]R.G. Wenzel, G.P. Arnold. Measurement of refractive index of small liquid specimens in capillaries[J]. Rev.Sci.Instr.1969,40(10):1355.
    [151]S. W. Yang, X. Q. Zhang, C. P. Zhang, et al. Analysis of capillary interferometry for measuring refractive indices of minute samples[J]. Appl.Opt. 2004,43(03):530-536.
    [152]M. I. Zibaii, O. Frazao, H. Latifi and P. A. S. Jorge, Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror[J], IEEE Photon. Thchnol. Lett.2011.23(17):1219-1221.
    [153]J. P. Hou, T. Ning, S. L. Gai,etal.Sensitivity analysis of refractive index measurement based on internodal interference in photonic crystal fiber[J], Acta. Phys. Sinica,2010,59(7):4732-4737.
    [154]李强,韩广辉,邢曼男等.一种精确测量微量液体折射率的仪器[P].国家实用新型发明专利.专利号:ZL200820081301.1
    [155]E. X. Meng, E. D. Cao, The error of experimentation and disposal of data[M], Shanghai:Shanghai Science and Technology Press,1988,1:66-70.
    [156]http://www.freepatentsonline.com/7169470.html[OL], Aluminosilicate glass.
    [157]李强,普小云.毛细管成像法测量液相扩散系数——等折射率薄层测量法[J],物理学报,2013,62(9):094206.
    [158]C. Chen, W. Z. Li, Y. C. Song, L. D. Weng and N. Zhang, Effects of glycerol concentrations on self-dissusion coefficients of glycerol in glycerol-water-sodium chloride ternary solutions[J], Acta.ChimicaSinica.2012,70(8):1043-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700