西藏班戈绒山羊高海拔环境适应性的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原哺乳类动物的高海拔环境适应性分子机制一直是各国科研工作者热衷研究的课题之一,其对于优良畜禽资源的保护和利用、发展高原畜牧养殖事业及高原疾病的诊治和预防等都具有重要的意义。西藏班戈绒山羊是在高海拔地区经过长期自然选择和人工驯养的我国特有地方品种,对高海拔地区低压、低氧、严寒等恶劣气候环境有良好的适应能力,已形成在高海拔环境下稳定遗传的能力,而其高海拔环境适应性的分子机制尚不明确。本文分别从不同海拔地区山羊血液生理特性分析、转录组研究、低氧诱导因子HIF1A基因特性分析及山羊外显子捕获等方面研究探讨西藏班戈绒山羊的高海拔环境适应性分子遗传机制,主要研究内容如下:
     通过对不同海拔地区的西藏班戈绒山羊和辽宁绒山羊的血液生理生化指标的测定,发现西藏班戈绒山羊的平均血红蛋白含量(MCH)、血清白蛋白(ALB)、尿氮素(BUN)和谷草转氨酶(AST)与辽宁绒山羊的相应指标差异极显著(P<0.01);白细胞(WBC)和平均血红蛋白浓度(MCHC)与辽宁绒山羊的相应指标差异显著(P<0.05)。这些血液指标的表型特征反映了西藏班戈绒山羊通过调节血液中多种成分含量来适应高海拔环境。这些表型特征的差异必然与基因组适应性进化相关,为从分子进化角度揭示西藏班戈绒山羊适应高海拔环境的分子机制研究提供基础。
     利用转录组测序技术(RNA sequencing, RNA-Seq),在Illumina Hiseq2000测序平台上对西藏班戈绒山羊和辽宁绒山羊的大脑皮层、呼吸道、皮肤毛囊、心脏、肺、肝、胆囊、脾、肾、骨髓、骨骼肌11个不同组织转录组进行混池测序,筛选品种内和品种间SNP位点。在与山羊基因组比对后,共筛选出53,800个班戈绒山羊品种内转录组SNPs位点,60,738个辽宁绒山羊品种内转录组SNP位点以及5,391个品种间转录组SNPs位点。此外,以de novo拼接方式组装转录组,将转录组测序结果中未与山羊基因组比对上的reads与之比对,挖掘出可能由于可变剪切的存在而被过滤的有效的8,178和7,727品种内转录组SNP位点。经GO分类和KEGG分析,筛选出包括FGF12、FGF14、BMPR-IA、MTR、MT2、BMP2K、GHR、GH2等与山羊绒生长相关的基因和EPAS1、PTEN、CDH13、GNPAT、FOXO1、HLA-DRA和RHOB等与高海拔环境适应性相关的基因以及在HIF-1信号通路中的11个基因(HIF1A、EGLN1、PTEN、PIK3CA、PIK3C2A、PIK3CB、PIK3CG、PIK3R1、CPKC、CAMK2和IL6R)。
     西藏班戈绒山羊HIF1A基因与山羊基因组中该基因比较发现,存在4个同义突变(G1074A,T1467C, C1738T和G1989A)和2个引起155和793位氨基酸改变的突变(A463G和G2377A)。其中A793T突变没有影响到蛋白质空间结构的改变。而I155V突变处在PAS结构域中,该突变不但引起西藏班戈绒山羊HIF1A二级结构改变,更使79位和155位、80位和158位氨基酸的空间距离变大(26.583→31.205、17.396→23.566),推测这种改变使其更容易与HIF1B相结合,从而在低氧条件下,促进一系列与氧运输、生长和新陈代谢相关基因的转录。
     在以上研究基础上,选取其它4个生活在不同海拔地区和生态环境中的绒山羊群体:西藏日土白绒山羊(海拔4750米)、柴达木山羊(海拔2980米)、新疆南疆绒山羊(海拔1700米)、内蒙古绒山羊(海拔1500米),利用外显子捕获和DNA池测序技术,进行基因组编码区大量SNP位点的扫描,在西藏班戈绒山羊、日土白绒山羊、柴达木山羊、新疆南疆绒山羊、内蒙古绒山羊中和辽宁绒山羊中分别筛选到45470、46501、53971、48704、57444和39180个有效SNPs位点;经中性检验分析,共检测得到1260个西藏班戈绒山羊特有的基因,这些基因显著富集于多细胞组织进程(GO:0032501)、感知光刺激(GO:0050953)、离子转运(GO:0006811)、氧自由基反应(GO:0000305)、铁离子平衡(GO:0055072)和核因子-κB调控(GO:0043122和GO:0043123)的GO分类中。结果表明,在自然选择和人工选择压力下,西藏班戈绒山羊为了应对低氧环境和高原强紫外线照射在基因组上产生了适应性变化,这些基因发生适应性突变以提高其对环境的适应能力。
Molecular mechanism of high altitude adaptation for plateau mammals has been one of the hotresearch topics for researchers all over the world. It is of significant importance in the protection andutilization of the excellent livestock and poultry resources, the development of livestock farming, andthe diagnosis and treatment of plateau diseases. Bange Cashmere goat (BG) is the unique local varietiesat high altitudes after long-term natural selection and artificial domestication, having the good ability toadapt to low pressure, low oxygen, and cold weather in high altitude area, also forming a stable geneticability in high altitude environments. However, the molecular mechanism for high altitude adaptation isunclear. This study investigated the molecular genetic mechanism for high altitude adaptation of BangeCashmere goat from several aspects, the blood physiological characteristics of the goats from differentaltitudes, the transcriptome research, HIF-1gene characteristics, and exons capture research of the goats.The main content is as follows:
     Blood physiological and biochemical values from Bange Cashmere goat and Liaoning Cashmere goatat different altitudes were determined. The results showed that the mean corpuscular hemoglobin(MCH), serum albumin (ALB), blood urine nitrogen (BUN), and aspartate transaminase (AST) ofBange Cashmere goat were significantly higher than those in Liaoning Cashmere goat (P<0.01). Thewhite blood cell (WBC) and mean corpuscular hemoglobin concerntration (MCHC) of Bange Cashmeregoat were higher than those in Liaoning Cashmere goat (P<0.05). These phenotypic characteristics ofblood reflect that the contents of several components in the blood were regulated by Bange Cashmeregoat to adapt to high altitude. These phenotypic characteristics were closely associated with adaptivegenome evolution, laying the foundations for molecular mechanisms for high altitude adaptation ofBange Cashmere goat at the molecular evolution level.
     The single nucleotide polymorphisms (SNPs) in transcriptomes of Bange Cashmere goat andLiaoning Cashmere goat were identified using RNA sequencing technology (RNA-Seq). Thetranscriptome sequencing was conducted on Illumina Hiseq2000platform for11pooled tissues,including cerebral cortex, bronchus, skin, heart muscle, lung, liver, gall-bladder, spleen, kidney, marrow, andskeletal muscle. After alignment with the goat genome,53,800intra-specific putative SNPs in the BangeCashmere goat sequence assembly,60,738intra-specific putative SNPs in the Liaoning Cashmere goatsequence assembly, and5,391inter-specific SNPs between Bange Cashmere goat and LiaoningCashmere goat were identified. In addition, transcriptomes were also assembled using de novo strategy.The reads unmapped to the goat genome were aligned to the contig sequence from the de novo assembly.The alignment showed that the hidden8,178intra-specific putative SNPs and7,727intra-specificputative SNPs, probably caused by alternative splicing, were found in Bange Cashmere goat contigsequence and Liaoning Cashmere goat contig sequence, respectively. Furthermore, several cashmeregrowth related genes (FGF12, FGF14, BMPR-IA, MTR, MT2, BMP2K, GHR, and GH2), high-altitudeadaptation related genes (EPAS1, PTEN, CDH13, GNPAT, FOXO1, HLA-DRA, and RHOB), and11HIF-1signal pathway related genes (HIF1A, EGLN1, PTEN, PIK3CA, PIK3C2A, PIK3CB, PIK3CG, PIK3R1, CPKC, CAMK2, and IL6R) were identified after GO classification and KEGG pathwayanalysis.
     Comparison to the genome of Capra hircus, six SNPs were identified in HIF1A gene of Bangecashmere goat, including A463G, G1074A, T1467C, C1738T, G1989A, and G2377A. Of them, A463Gcaused an amino acid mutation, I155V, which made the secondary structure and spatial structure ofHIF1A of Bange Cashmere goat different from that of Capra hircus’s (JN897021). The increaseddistances between amino acids79and155(from26.583to31.205), amino acids80and158(from17.396to23.566) of HIF1A of Bange Cashmere goat make it easier to form a dimer with HIF1B toenhance the transcription of the genes involving in the oxygen transportation, growth, and metabolismunder the high altitude hypoxia environments.
     On the basis of the above results, four additional breeds of goat living in the different altitude regions,which are Rutog goat (RT, altitude4750m), Chaidamu goat (CD, altitude2980m), Nanjiang Cashmeregoat (NJ, altitude1700m), and Inner Mongolia Cashmere Goat (IM, altitude1500m), were selected toscan coding SNPs (cSNPs) in the genome using exome capture and DNA pooling sequencingtechnology. The potential45470SNPs for BG,46501for RT,53971for CD,48704for NJ,57444forIM, and39180for LN were screened, respectively. After neutral test, the unique1,260genes for BGwere identified, which were mainly classified in the GO terms: multicellular organismal process(GO:0032501), sensory perception of light stimulus (GO:0050953), ion transport (GO:0006811),response to oxygen radical (GO:0000305), ion homeostasis (GO:0055072), and regulation of I-kappaBkinase/NF-kappaB cascade (GO:0043122and GO:0043123).These results demonstrated that under thenatural and artificial selection, Bange Cashmere goat accumulated mutations in the genome in responseto high altitude hypoxia and strong ultraviolet environments and the mutation of the the genome ofBange Cashmere goat increased its adaptability to the high altitude environments.
引文
[1]白玛央宗等.藏猪肺组织与高原低氧适应性的初步研究[J].湖北农业科学,2012,51(13):2776-2779.
    [2]柴旦等.急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响[J].生理学报,1997,49(5):497-503.
    [3]常荣.藏羚羊高海拔低氧适应的心脏特征及CaMKⅡ, ANP, BNP基因的克隆与表达[D].2011,青海大学.
    [4]顾为望等.西藏小型猪血液生理生化指标的初步研究[J].中国实验动物学报,2007,15(1):60-63.
    [5]江家椿等.不同海拔高度西藏高原牦牛若干血液生理常值的比较[J].畜牧兽医学报,1991,22(1):20-26.
    [6]江家椿等.不同海拔高度西藏高原山羊若干血液生理特性的对比分析[J].西南农业学报,1992,5(1):79-83.
    [7]姜生成等.西藏高原藏驴血细胞的观察分析[J].甘肃畜牧兽医,1993,23(5):9-11.
    [8]靳新花等.成年牦牛肺动脉的显微结构观察[J].中国兽医科学,2009,39(03):261-265.
    [9]李洪涛等.实验用西藏小型猪原代和第一代间部分血液指标比较[J].郑州大学学报(医学版),2008,43(1):63-65.
    [10]李梅等.藏鸡高原适应性的胚胎心脏组织差异表达研究[J].中国科学,2009,38(11):1066-1075.
    [11]刘燕等.合作猪血液生理生化指标特性的研究[J].中国畜牧兽医,2007,34(7):52-55.
    [12]马森等.高海拔地区牦牛的九项生理指标[J].中国牦牛,1988,(3):13-17.
    [13]强巴央宗等.高原环境中藏猪血液生理指标测定与比较[J].西南农业学报,2011,24(6):2382-2384.
    [14]沈明华等.不同地区牦牛心肌,骨骼肌CCO, SDH活性测定[J].黑龙江畜牧兽医,2012,19:48-50.
    [15]施雅风等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10-20.
    [16]魏登邦等.哺乳动物对高海拔低氧适应的分子机制研究进展[J].青海大学学报(自然科学版),2001,19(1):15-21.
    [17]文淑义等.辽宁绒山羊适应性观察及与藏山羊杂交试验报告[J].四川草原,1995,(4):42-48.
    [18]阎萍等.野、家牦牛及后裔产毛量、毛品质的测定分析[C].牦牛科学研究论文集.甘肃民族出版社,1990,185-189.
    [19]余满堂等.高原平原人群基因多态性及低氧相关基因的研究.2006-11-17取自http://big.hi138.com/yiyao/yixue/200611/129292.asp
    [20]俞红贤.藏羊肺组织形态测量指标及其与高原低氧的关系[J].中国兽医科技,1999,29(7):15-16.
    [21]张浩等.藏鸡高海拔适应与肺组织NOS活力的研究[J].中国农业大学学报,2006,11(1):35-38.
    [22]张浩等.藏鸡心脏高海拔低氧适应相关酶的研究[J].中国应用生理学杂志,2008,24(2):233-236.
    [23]张红平等.辽宁绒山羊引入高海拔地区适应性的初步研究[J].四川畜牧兽医,1994,(4):7-10.
    [24]张勤文等.基于骨骼肌线粒体超微结构研究生长期牦牛低氧适应性[J].畜牧兽医学报,2013,44(3):447-452.
    [25]中国畜禽遗传资源状况[M].中国畜禽遗传资源状况编委会.北京:中国农业出版社,2004.
    [26]中国猪品种志.中国猪品种志编委会.北京:农业出版社,1986.
    [27]周大鹏等.藏獒肺组织对高原低氧环境的适应特性[J].甘肃农业大学学报,2009,44(4):25-28.
    [28] Anand I, et al. The pulmonary circulation of some domestic animals at high altitude [J]. Int JBiometeorol,1988,32(1):56-64.
    [29] Arnold K, et al. The SWISS-MODEL workspace: a web-based environment for protein structurehomology modelling [J]. Bioinformatics,2006,22:195-201.
    [30] Asan, et al. Comprehensive comparison of three commercial human whole-exome captureplatforms [J]. Genome Biol,2011,12(9): R95.
    [31] Backstr m N, et al. Evidence from a house finch (Haemorhous mexicanus) spleen transcriptomefor adaptive evolution and biased gene conversion in passerine birds [J]. Mol Biol Evol,2013,30(5):1046-1050.
    [32]Bainbridge MN, et al. Whole exome capture in solution with3Gbp of data [J]. Genome Biol,2010,11(6): R62.
    [33] Bao H, et al. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and twolowland chicken breeds [J]. Sci China C Life Sci,2008,51(1):47-51.
    [34] Beall CM, et al. An Ethiopian pattern of human adaptation to high-altitude hypoxia [J]. Proc NatlAcad Sci U S A,2002,99:17215-17218.
    [35] Bhattacharya S, et al. Functional role of p35srj, a novel p300/CBP binding protein, duringtransactivation by HIF-1[J]. Genes Dev,1999,13(1):64-75.
    [36] Bigham A, et al. Identifying signatures of natural selection in Tibetan and Andean populationsusing dense genome scan data [J]. PLoS Genet,2010,6(9): e1001116.
    [37] Brahimi-Horn MC, et al. HIF at a glance [J]. Journal of Cell Science,2009,122,1055-1057.
    [38] Bruick RK. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducibletranscription factor [J]. Genes Dev,2003,17:2614-2623.
    [39] Burmester T, et al. A vertebrate globin expressed in the brain [J]. Nature,2000,407(6803):520-523.
    [40] Carrero P, et al. Redox-regulated recruitment of the transcriptional coactivators CREB-bindingprotein and SRC-1to hypoxia-inducible factor1alpha [J]. Mol Cell Biol,2000,20(1):402-415.
    [41] Chaudhary J, et al. The impact of genomic alterations on the transcriptome: a prostate cancer cellline case study [J]. Chromosome Res,2006,14(5):567-586.
    [42] Choi M, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[J]. Proc Natl Acad Sci U S A,2009,106(45):19096-19101.
    [43] Cosart T, et al. Exome-wide DNA capture and next generation sequencing in domestic and wildspecies [J]. BMC Genomics,2011,12:347.
    [44] Croucher NJ, et al. Studying bacterial transcriptomes using RNA-seq [J]. Curr Opin Microbiol,2010,13:619-624.
    [45] Cui X, et al. Transcriptional profiling of mammary gland in Holstein cows with extremely differentmilk protein and fat percentage using RNA sequencing [J]. BMC Genomics,2014,15(1):226.
    [46] da Fonseca RR, et al. The adaptive evolution of the mammalian mitochondrial genome [J]. BMCGenomics,2008,9:119.
    [47] Ding XC, et al. Physiological insight into the high-altitude adaptations in domesticated yaks (Bosgrunniens) along the Qinghai-Tibetan Plateau altitudinal gradient [J]. Livestock Science,2014,162:233-239.
    [48] Dong Y, et al. Sequencing and automated whole-genome optical mapping of the genome of adomestic goat (Capra hircus)[J]. Nat Biotechnol,2013,31(2):135-141.
    [49] Firth JD, et al. Oxygen-regulated control elements in the phosphoglycerate kinase1and lactatedehydrogenase A genes: similarities with the erythropoietin3enhancer [J]. Proc. Natl. Acad. Sci. USA.,1994,91:6496-6500.
    [50] Forsythe JA, et al. Activation of vascular endothelial growth factor gene transcription byhypoxia-inducible factor1[J]. Mol. Cell. Biol.,1996,16:4604-4613.
    [51] Frisancho AR. Developmental functional adaptation to high altitude: review [J]. Am J Hum Biol.,2013,25(2):151-168.
    [52] Gao Q, et al. A systematic evaluation of hybridization-based mouse exome capture system [J].BMC Genomics,2013,14(1):492.
    [53] Gerber HP, et al. Differential transcriptional regulation of the two vascular endothelial growthfactor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia [J]. J. Biol. Chem.,1997,272:23659-23667.
    [54] Ge RL, et al. Draft genome sequence of the Tibetan antelope [J]. Nat Commun,2013,4:1858.
    [55] Gleadle JM, et al. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelialgrowth factor, and glucose transporter-1by hypoxia: evidence against a regulatory role for Src kinase[J]. Blood.,1997,89:503-509.
    [56] Guex N, et al. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative proteinmodeling [J]. Electrophoresis,1997,18:2714-2723.
    [57] Guttman M, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals theconserved multi-exonic structure of lincRNAs [J]. Nature Biotech,2010,28:503–510.
    [58] Hackett PH, et al. High-altitude Medicine [M]. In: Auerbach PS, ed. Wilderness Medicine. St.Louis: Mosby,1995,1-31.
    [59] Hebbel RP, et al. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygenaffinity [J]. J Clin Invest,1978,62(3):593-600.
    [60] Hochachka PW, et al. Adaptation and conservation of physiological systems in the evolution ofhuman hypoxia tolerance [J]. Comp Biochem Physiol A Mol Integr Physiol,1999,124:1-17.
    [61] Hoppeler H, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia [J]. Int.J. Sports Med.,1990,11Suppl1: S3-S9.
    [62] Hu J, et al. Hypoxia regulates expression of the endothelin-1gene through a proximalhypoxia-inducible factor-1binding site on the antisense strand [J]. Biochem. Biophys. Res. Commun.,1998,245:894–899.
    [63] Iyer NV, et al. The human hypoxia-inducible factor1alpha gene: HIF1A structure and evolutionaryconservation. Genomics,1998,52:159-165.
    [64] Jeong C, et al. Admixture facilitates genetic adaptations to high altitude in Tibet [J]. Nat Commu,2014,5:3281.
    [65] Jessen TH, et al. Adaptation of bird hemoglobins to high altitudes: demonstration of molecularmechanism by protein engineering [J]. Proc Natl Acad Sci U S A,1991,88:6519-6522.
    [66] Jiang BH, et al. Hypoxia-inducible factor1levels vary exponentially over a physiologicallyrelevant range of O2tension [J]. Am. J. Physiol Cell Physiol,1996,271: C1172-C1180.
    [67] Jiang T, et al. High-performance single-chip exon capture allows accurate whole exomesequencing using the Illumina Genome Analyzer [J]. Sci China Life Sci,2011,54(10):945-952.
    [68] Liang YH, et al. The structure of greylag goose oxy haemoglobin: the roles of four mutationscompared with bar-headed goose haemoglobin. Acta Crystallogr D Biol Crystallogr,2001,57(12):1850-1856.
    [69] Jin X, et al. An effort to use human-based exome capture methods to analyze chimpanzee andmacaque exomes [J]. PLoS One,2012,7(7): e40637.
    [70] Kellogg R. Altitude acclimatization, a historical introduction emphasizing the regulation ofbreathing [J]. The Phsiologist,1968,11:37.
    [71] Kong D, et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1DNA-binding activity [J]. Cancer Res.,2005,65(19):9047-9055.
    [72] Koizumi T, et al. Contribution of nitric oxide to adaptation of tibetan sheep to high altitude [J].Respir Physiol Neurobiol,2004,140(2):189-196.
    [73] Li M, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs andTibetan wild boars [J]. Nat Genet,2013,45(12):1431-1438.
    [74] Li P, et al. Regulation of bone marrow hematopoietic stem cell is involved in high-altitudeerythrocytosis [J]. Exp Hematol,2011,39(1):37-46.
    [75] Li Y, et al. High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by themitochondrial genome analyses [J]. Gene,2013,517(2):169-178.
    [76] Li Y, et al. Population variation revealed high altitude adaptation of Tibetan Mastiffs [J]. Mol BiolEvol,2014.[Epub ahead of print].
    [77] Liu S, et al. Generation of genome-scale gene-associated SNPs in catfish for the construction of ahigh-density SNP array [J]. BMC Genomics,2011,12:53.
    [78] Luo Y, et al. Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochromec oxidase in hypoxic adaptation [J]. Mitochondrion,2008,8(5-6):352-357.
    [79] Maher CA, et al. Transcriptome sequencing to detect gene fusions in cancer [J]. Nature,2009,458(7234):97–101.
    [80] Marguerat S, et al. Next-generation sequencing: applications beyond genomes [J]. BiochemicalSociety Transactions,2008,36(5):1091–1096.
    [81] Martin J, et al. Rnnotator: an automated de novo transcriptome assembly pipeline from strandedRNA-seq reads [J]. BMC Genomics,2010,11:663.
    [82] Melillo G, et al. A hypoxia-responsive element mediates a novel pathway of activation of theinducible nitric oxide synthase promoter [J]. J. Exp. Med.,1995,182:1683-1693.
    [83] Metzen E, et al. How to manipulate cellular O2sensing [J]. Chem Biol,2010,17(4):314-315.
    [84] McCracken KG, et al. Phylogenetic and structural analysis of the HbA (αA/βA) and HbD (αD/βA)hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: bar-headed goose(Anser indicus) and Andean goose (Chloephaga melanoptera)[J]. Mol Phylogenet Evol,2010,56:649-658.
    [85] McIntosh BE, et al. Mammalian Per-Arnt-Sim proteins in environmental adaptation [J]. Annu RevPhysiol,2010,72:625-645.
    [86] MI Thurston, et al. Msatfinder: detection and characterisation of microsatellites. Available:http://www.genomics.ceh.ac.uk/msatfinder/. CEH Oxford, Mansfield Road, Oxford OX13SR.2005.
    [87] Mizuno H, et al. Massive parallel sequencing of mRNA in identification of unannotatedsalinitystress-inducible transcripts in rice (Oryza sativa L.)[J]. BMC Genomics,2010,11:683.
    [88] Moore LG. Comparative human ventilatory adaptation to high altitude [J]. Respir Physiol,2000,121:257-276.
    [89] Moore LG. Human genetic adaptation to high altitude. High Alt Med Biol,2001,2:257-279.
    [90] Moore LG, et al. Human adaptation to high altitude: regional and life-cycle perspectives [J]. Am JPhys Anthropol Suppl,1998,27:25-64.
    [91] Moore LG, et al. Comparative aspects of high-altitude adaptation in human populations [J]. AdvExp Med Biol,2000,475:45-62.
    [92] Mortazavi A, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. NatMethods,2008,5(7):621-628.
    [93] Ng SB, et al. Exome sequencing identifies the cause of a mendelian disorder [J]. Nat Genet,2010,42(1):30-35.
    [94] Ning T, et al. Adaptive evolution of the mitochondrial ND6gene in the domestic horse [J]. GenetMol Res,2010,9(1):144-150.
    [95] Oberthür W, et al. The amino acid sequence of Canada goose (Branta canadensis) and mute swan(Cygnus olor) hemoglobins. Two different species with identical beta-chains [J]. Hoppe Seylers ZPhysiol Chem,1982,363(8):777-787.
    [96] Parraguez VH, et al. Expression of vascular endothelial growth factor and endothelial nitric oxidesynthase is increased in the placenta of sheep at high altitude in the Andes [J]. Can J Vet Res,2010,74(3):193-199.
    [97] Peng Y, et al. Genetic variations in Tibetan populations and high-altitude adaptation at theHimalayas [J]. Mol Biol Evol,2011,28(2):1075-1081.
    [98] Priya RR, et al. Exome sequencing: capture and sequencing of all human coding regions fordisease gene discovery [J]. Methods Mol Biol,2012,884:335-351.
    [99] Qiu Q, et al. The yak genome and adaptation to life at high altitude [J]. Nature Genetics,2012,44(8):946-949.
    [100] Ramos E, et al. Population-based rare variant detection via pooled exome or custom hybridizationcapture with or without individual indexing [J]. BMC Genomics,2012,13:683.
    [101] Reynafarje B. Myoglobin content and enzymatic activity of human skeletal muscle-their relationwith the process of adaptation to high altitude [J]. Tech Doc Rep SAMTDR USAF Sch Aerosp Med,1962, SAM-TDR-62-89:8p.
    [102] Rolfs A, et al. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1[J]. J Biol Chem,1997,272(32):20055–20062.
    [103] Ruan Z, et al. Endogenous nitric oxide and pulmonary circulation response to hypoxia inhigh-altitude adapted Tibetan sheep [J]. Eur J Appl Physiol,2004,93(1-2):190-195.
    [104] Sakai A, et al. Cardiopulmonary hemodynamics of blue-sheep, Pseudois nayaur, as high-altitudeadapted mammals [J]. Jpn J Physiol,2003,53(5):377-384.
    [105] Salzberg SL, et al. Beware of mis-assembled genomes [J]. Bioinformatics,2005,21:4320-4321.
    [106] Scheinfeldt LB, et al. Genetic adaptation to high altitude in the Ethiopian highlands [J]. GenomeBiol,2012,13(1): R1.
    [107] Schwede T, et al. SWISS-MODEL: An automated protein homology-modeling server [J]. NucleicAcids Res,200331:3381-3385.
    [108] Scott GR, et al. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptationin the bar-headed goose [J]. Mol Biol Evol,2011,28:351-363.
    [109] Semenza GL. HIF-1and mechanisms of hypoxia sensing [J]. Curr. Opin. Cell Biol,2001,13:167-171.
    [110] Simonson TS, et al. Genetic evidence for high-altitude adaptation in Tibet [J]. Science,2010,329(5987):72-75.
    [111] Summerer D, et al. Targeted high throughput sequencing of a cancer-related exome subset byspecific sequence capture with a fully automated microarray platform [J]. Genomics,2010,95(4):241-246.
    [112] Tacchini L, et al. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptionalactivation and cell-specific post-transcriptional regulation [J]. J. Biol. Chem.,1999,274:24142-24146.
    [113] Vo TK, et al. Transcriptomic biomarkers of human ageing in peripheral blood mononuclear celltotal RNA [J]. Exp Gerontol,2009,45(3):188-194.
    [114] Wang ET, et al. Alternative isoform regulation in human tissue transcriptomes [J]. Nature,2008,456(7221):470-476.
    [115] Wang Z, et al. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nat Rev Genet,2009,10(1):57-63.
    [116] Xiao YH, et al. Asymmetric overlap extension PCR method bypassing intermediate purificationand the amplification of wild-type template in site-directed mutagenesis [J]. Biotechnol Lett,2007,29:925-930.
    [117] Xie L, et al. Inhibition of inducible nitric oxide synthase expression and nitric oxide production inplateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau [J]. Nitric Oxide,2014. doi:10.1016/j.niox.2014.02.009.[Epub ahead of print]
    [118] Xu S, et al. A genome-wide search for signals of high-altitude adaptation in Tibetans [J]. Mol BiolEvol.,2011,28(2):1003-1011.
    [119] Xu SQ, et al. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii)[J]. Genomics Proteomics Bioinformatics,2005,3(1):5-17.
    [120] Yang SY, et al. The role of hypoxia inducible factor-1alpha and vascular endothelial growth factorin hypoxic pulmonary hypertension in patients with acute high altitude reaction of rescue workers inYushu earthquake [J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2011,23(9):539-542.
    [121] Yi X, et al. Sequencing of50human exomes reveals adaptation to high altitude [J]. Science,2010,329(5987):75-78.
    [122] Yu LX, et al. Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positiveselection in NADH dehydrogenase genes in high-altitude adaptation [J]. Mitochondrion,2011,11(3):497-503.
    [123] Zagorska A, et al. HIF-1: the knowns and unknowns of hypoxia sensing [J]. Acta Biochim. Pol,2004,51:563–585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700