铝合金材料的应力腐蚀及腐蚀疲劳特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐溶液环境下金属材料的腐蚀力学是一门涉及到电化学、金属物理学、冶金学和力学等多门学科的新兴学科,虽然已经进行了大量的研究工作,也积累了不少实际经验,但由于涉及多种因素且各因素间的耦合作用复杂,因此尚未形成该力学过程的基本理论规律。在实际应用中,目前人们难以精确地确定和使用环境谱、载荷谱以及选择特定的腐蚀力学试验来获得可靠的实验数据,用以指导工程设计应用。因此本论文期望发展一种以力学为基础的可靠工具以预测和跟踪腐蚀环境中的裂纹形成与扩展直至失效行为。
     本文选择对环境十分敏感的铝合金材料作为研究对象,该材料的腐蚀问题更是一个很早就困扰航空、汽车等领域的难点,每年因腐蚀造成的经济损失数字庞大,引发的事故灾难屡见不鲜。应力腐蚀和腐蚀疲劳是铝合金材料失效破坏行为的多发领域,亟待人们去深入研究、解决设计和优化问题。目前在研究铝合金材料的腐蚀力学问题时,通常将荷载因素与腐蚀条件分别考虑,特别是实验测试中对于荷载与腐蚀环境两种因素的耦合作用规律还缺乏深入研究,因此造成所获得的实验数据局限性很大。而工程中铝合金材料有很多情况是同时受到荷载因素和腐蚀因素作用而最终导致失效破坏的,因此对铝合金材料在盐溶液环境下的腐蚀力学过程和规律进行系统的研究与阐述,具有重要的科学意义和实际应用价值。
     本论文提出以盐溶液中腐蚀电流作为腐蚀环境的特征参量,结合常规环境下铝合金材料的腐蚀力学理论,提出了使用寿命的预测模型,以及易于应用的断裂准则。本论文提出的模型系统地考虑了铝合金的常见力学参数在可控腐蚀条件和荷载的耦合作用下的趋势和规律。本论文的研究内容和创新点描述如下:
     1.本文首先提出了用腐蚀电极的电流强度衡量腐蚀速率的方法,并搭建了测量模型。选用工程中常用的2024铝合金材料,通过在实验过程中调整人工腐蚀溶液配比方案(包含浓度、酸碱度和温度等)实现了对该种材料的腐蚀速率的有效控制。该铝合金在溶液1%HCl+3.5%NaCl中经预腐蚀后,再进行材料抗冲击性能实验测试,应用扫描电镜等显微测量设备观察端口形貌,以及腐蚀边界与腐蚀孔的形貌特征等参量,研究分析了不同预腐蚀时间和腐蚀速率下材料的标准试验吸收能的衰减规律和腐蚀电流的关系,验证了用腐蚀电流表征腐蚀环境作用的可行性,并能同时判断腐蚀模式。
     2.本文研究了在拉压状态下应力腐蚀开裂行为,得到裂纹起裂时间的评价公式,并发现了受压状态下的开裂新行为。在获得了有效控制腐蚀速率方法的基础上,设计合适的实验方案,使用减薄的WOL试样进行应力腐蚀试验,通过应变片测量的方法得到了距预裂纹前端5mm处应变的变化规律,并通过数值模拟的方法得到了验证。论文还研究了初始应力对于应力腐蚀的影响,分析初始应力与起裂时间的关系,并以实验数据为基础,将疲劳领域中的S-N曲线公式引入到应力腐蚀领域,提出了初始应力强度因子与起裂时间的关系式
     3.本文还进一步提出了“腐蚀速率-时间-频率”的等效假设,并且以腐蚀速率和荷载频率为参量提出腐蚀疲劳寿命评价模型。该预测模型使用ZL101和7075两种光滑铝合金试件进行腐蚀疲劳寿命研究试验,拟合了S-N曲线,提出了腐蚀条件下应力-疲劳寿命的改进模型N_if(i_(cor))~n(△σ)~m=C。然后通过等比率地降低腐蚀速率和加载频率的方法再次测试材料的断裂破坏寿命,数据结果与原寿命预测曲线对比,结果未超出工程要求的误差范围,验证了等效假设的合理性。同时,本文还探索了腐蚀溶液如何与承受荷载条件的材料实现有效、可控接触的方法。
     4.本文发展了使用非耐腐蚀测量设备记录腐蚀条件下的裂纹扩展过程的方法,并基于实验结果和端口形貌分析提出了Paris公式的修正模型。在实验中我们分别实现了在1、5、10Hz频率,20℃、60℃、80℃温度和pH=3、7、10时的腐蚀溶液的条件下材料的疲劳裂纹扩展行为。温度和pH值的改变引起了腐蚀电流的改变,通过对腐蚀疲劳裂纹扩展速率测量结果与常温常态下的曲线作对比,得到腐蚀裂纹扩展的一般规律和速率变化趋势。分析了决定材料腐蚀疲劳裂纹扩展速率的多种因素,并对它们的变化范围和影响程度进行预测分析。提出了Paris公式的修正模型模型中引入影响因子α与速率偏置因子β,讨论频率、腐蚀电流参量参与表达腐蚀疲劳裂纹扩展预测模型的实用性和科学性。
Corrosion mechanics is an emerging discipline related to electrochemistry,metal physics and metallurgy. Continuous eforts have been made in this feld.However, scientists fail to extract reliable experiment data due to the difcultiesin determining corrosion fatigue test with proper environmental and loading con-ditions. The dilemma also lies in precisely predicting initiation or propagationof fatigue crack under corrosion environment since widely accepted mechanicalcriteria are still absent. Specifcally, corrosion of aluminum alloy has drawn theattention of aeronautics and automobile communities for decades. The factorsof fatigue, such as load condition and corrosion efects, are taken into accountseparately in traditional studies. Such a methodology results in signifcant er-ror regarding load and corrosion not coupled with material properties as long asfailure is normally resulted from the combined efects of load condition and cor-rosion environment. Hence, further detailed study and comprehensive analysisare necessary in this feld.
     The main focuses of this study are aiming at corrosion mechanics of alu-minum alloys, for example, initiation of stress fatigue crack under tension-compressionload, and characteristics of curve of corrosion fatigue life/propagation of corro-sion fatigue crack under uni-axial tension-compression load. Then an applicablefailure criterion is proposed to predict fatigue life of aluminum alloys under com-plex corrosion condition coupled with load. Highlights of this study are listed asfollows.
     First, a new method is employed to measure corrosion rate through currentintensity, which is gauged by a new established model. Experiments are con-ducted to study characteristics of aluminum alloy, for examples, corrosion rateafected by artifcial corrosion solution ratio, resistance to impact of pre-corroded sample, corrosion mode on cross-section and attenuation law of energy absorptionunder diferent corrosion time or corrosion rate.
     Secondly, this study uncovers the stress corrosion cracking(SCC) behav-ior under tension-compression load and that stress corrosion may occur undercompression for aluminum alloy. With controllable corrosion rate, variationof strain near crack front in stress corrosion fatigue test is obtained throughmeasuring strain with thin WOL samples. The result is verifed by numeri-cal simulation. The efects of initial stress to stress corrosion are also studied.The KISCCand the relationship of initial stress to time of initiation of crackingare yielded from the former step. Thirdly, the research introduces a corrosionrate/time/frequency assumption, based on which an estimation law of life on cor-rosion fatigue N_i=f(i_(cor))~n(△σ)~m is proposed with corrosion rate and frequencyof load as parameters. During this step, smooth aluminum alloy specimens,subjected to corrosion and cyclic tension, are tested to extract S-N curves inconsideration of corrosion environment and cyclic tension at the same time. Inaddition, the frequency efect is studied. Discussions are present to uncover theapplicable conditions for high-frequency equipment in terms of studying corrosionfatigue. Attempts are also made to study how to get efective contact betweencorrosion solution and specimens.
     Finally, an innovative application of recording equipment, not build for cor-rosion tests, is adopted to record fatigue crack propagation. A modifed Paris-with interaction factor α, deviation factor βand corrosion rate, is proposed to analyze practicality and feasibility of the fa-tigue model. During the experiment, three diferent frequencies, three temper-ature levels and solutions with three diferent ratios are successfully applied tofatigue cracking. Then the trend of fatigue-crack-propagation is obtained throughcomparing our experiment result to the propagation rate at room temperature.The dominant factors on fatigue-crack-propagation rate are analyzed to uncovertheir variation range and efects.
引文
[1]许金泉,材料强度学,上海交通大学出版社,上海,2009.
    [2] Murtaza G. and Akid R.,“Empirical corrosion fatigue life prediction modelsof a high strength steel”, Engineering Fracture Mechanics,2000,67(5),461–474.
    [3]中国腐蚀与防护学会《金属腐蚀手册》编委会(ed.),金属腐蚀手册,上海科学技术出版社,上海,1987.
    [4]庄东汉,材料失效分析,华东理工大学出版社,上海,2009.
    [5]杨德均,沈卓身,金属腐蚀学,北京:冶金工业出版社,1999.
    [6]林刚,铝合金应用手册,机械工业出版社,北京,2006.
    [7]中国腐蚀与防护学会(ed.),腐蚀与防护全书―――腐蚀总论,北京:化学工业出版社,1994.
    [8]曹楚南,中国材料的自然环境腐蚀,化学工业出版社,北京,2005.
    [9] Tsai T., Chang J., and Chuang T.,“Stress corrosion cracking of superplas-tically formed7475aluminum alloy”, Metallurgical and Materials Trans-actions A,1997,28(10),2113–2121.
    [10]查全胜,电极过程动力学导论,科学出版社,北京,2002.
    [11]何业东,齐慧滨,材料腐蚀与防护概论,机械工业出版社,北京,2005.
    [12] Danh N., Rajan K., and Wallace W.,“A TEM study of microstructuralchanges during retrogression and reaging in7075aluminum”, Metallurgicaland Materials Transactions A,1983,14(9),1843–1850.
    [13] Kanno M., Araki I., and Cui Q.,“Precipitation behaviour of7000alloysduring retrogression and reaging treatment”, Materials science and tech-nology,1994,10(7),599–603.
    [14] Braun R.,“Slow strain rate testing of aluminum alloy7050in diferenttempers using various synthetic environments”, Corrosion,1997,53(06).
    [15] Najjar D., Magnin T., and Warner T.,“Infuence of critical surface defectsand localized competition between anodic dissolution and hydrogen efectsduring stress corrosion cracking of a7050aluminium alloy”, Materials Sci-ence and Engineering: A,1997,238(2),293–302.
    [16] Puiggali M., Zielinski, A., Olive, JM, Renauld, E., Desjardins, D., and CidM.,“Efect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy”, Corrosion science,1998,40(4-5),805–819.
    [17] Wloka J., Hack T., and Virtanen S.,“Infuence of temper and surface con-dition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys”,Corrosion science,2007,49(3),1437–1449.
    [18] Wang D., Ma Z., and Gao Z.,“Efects of severe cold rolling on tensileproperties and stress corrosion cracking of7050aluminum alloy”, MaterialsChemistry and Physics,2009,117(1),228–233.
    [19] Bobby Kannan M. and Raja V.,“Enhancing stress corrosion cracking re-sistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization”, En-gineering Fracture Mechanics,2010,77(2),249–256.
    [20]左禹,左景伊,腐蚀数据与选材手册,化学工业出版社,北京,1995.
    [21]白新德,材料腐蚀与控制,清华大学出版社,北京,2005.
    [22]孙秋霞,材料腐蚀与防护,冶金工业出版社,北京,2001.
    [23] Song R G D.W.,“Stress corrosion cracking and hydrogen embrittlement ofan a1-zn-mg-cu alloy”, Acta Mater,2004,52(16),4727–4743.
    [24]杨武,金属的局部腐蚀,化学工业出版社,北京,1997.
    [25] Wei-Chih Chung L.W.T.,“Microstructure and stress corrosion crackingbehavior of the weld metal in alloy52-a508dissimilar welds”, MaterialsTransactions,2010,52(01),12–19.
    [26]褚武扬等,断裂与环境断裂,科学出版社,北京,2000.
    [27]中国石油化工设备管理协会设备防腐专业组,中国石油化工装置设备腐蚀与防护手册,北京,1996.
    [28]刘继华李荻.,“.7075铝合金应力腐蚀敏感性的ssrt和电化学测试研究”,腐蚀与防护,2005,26(1),6–9.
    [29]李金桂,航空产品腐蚀及其控制手册,航空工业部第621研究,1985.
    [30]汪定江,潘庆军,夏成宝,军用飞机的腐蚀与防护,航空工业出版社,北京,2006.
    [31]韩恩厚,腐蚀疲劳裂纹扩展规律与机理, Ph.D. thesis,东北工学院,沈阳,1990.
    [32]湛永钟,张国定,“低地球轨道环境对材料的影响”,宇航材料工艺,2003,33(1),1–5.
    [33]王珉,航空航天技术,江苏科学技术出版社,南京,1993.
    [34] Kaesche H. and Rapp R., Metallic corrosion: principles of physical chem-istry and current problems, National Association of Corrosion Engineers,1985.
    [35]徐丽新,胡津,“铝的点蚀行为”,宇航材料工艺,2002,32(002),21–24.
    [36] Lin C. and Yang S.,“Corrosion fatigue behavior of7050aluminum alloys indiferent tempers”, Engineering fracture mechanics,1998,59(6),779–795.
    [37] Pao P., Gill S., and Feng C.,“On fatigue crack initiation from corrosion pitsin7075-T7351aluminum alloy”, Scripta materialia,2000,43(5),391–396.
    [38] Liu X., Huang S., and Gu H.,“Crack growth behaviour of high strengthaluminium alloy in3.5%NaCl solution with corrosion inhibiting pigments”,International journal of fatigue,2002,24(7),803–809.
    [39] Wang Q., Kawagoishi N., and Chen Q.,“Efect of pitting corrosion on veryhigh cycle fatigue behavior”, Scripta materialia,2003,49(7),711–716.
    [40] Ayd n M. and Sava skan T.,“Fatigue properties of zinc–aluminium alloys in3.5%NaCl and1%HCl solutions”, International journal of fatigue,2004,26(1),103–110.
    [41] Villalobos-Guti′errez C., Gedler-Chacon, GE, La Barbera-Sosa, JG, Pineiro,A., Staia, MH, Lesage, J., Chicot, D., Mesmacque, G., and Puchi-CabreraE.,“Fatigue and corrosion fatigue behavior of an AA6063-T6aluminumalloy coated with a WC-10Co-4Cr alloy deposited by HVOF thermal spray-ing”, Surface and Coatings Technology,2008,202(18),4572–4577.
    [42] Puchi-Cabrera E., Staia, MH, Lesage, J., Gil, L., Villalobos-Gutierrez, C.,La Barbera-Sosa, J., Ochoa-Perez, EA, and Le Bourhis E.,“Fatigue behav-ior of AA7075-T6aluminum alloy coated with ZrN by PVD”, InternationalJournal of Fatigue,2008,30(7),1220–1230.
    [43] Zupanc U. and Grum J.,“Efect of pitting corrosion on fatigue perfor-mance of shot-peened aluminium alloy7075-T651”, Journal of MaterialsProcessing Technology,2010,210(9),1197–1202.
    [44]梁成浩,现代腐蚀科学与防护技术,华东理工大学出版社,上海,2007.
    [45]“ISO7539-2corrosion of metal and alloys-stress corrosion testing-part2:preparation and use of bent-beam specimens”,.
    [46]“ISO7539-3corrosion of metal and alloys-stress corrosion testing-part3:preparation and use of u-bend specimens”,.
    [47]“ISO7539-5corrosion of metal and alloys-stress corrosion testing-part5:preparation and use of c-ring specimens”,.
    [48]“ISO7539-6corrosion of metal and alloys-stress corrosion testing-part6:preparation and use of pre-cracked specimens”,.
    [49]“ISO7539-8corrosion of metal and alloys-stress corrosion testing-part8:preparation and use of welded specimens”,.
    [50] Chu W., Hsiao C., and Wang J.,“Stress corrosion cracking of an aluminumalloy under compressive stress”, Metallurgical and Materials TransactionsA,1985,16(9),1663–1670.
    [51] Lemaitre J C.J.,“Mechanics of solid materials”, Cambridge,1990.
    [52]张行,金属构件应用疲劳损伤力学,国防工业出版社,北京,1998.
    [53]毋玲,“应力腐蚀损伤裂纹起始寿命计算模型”,机械强度,2004,26(s),58–59.
    [54] Sudarshan T. and Louthan M.,“Gaseous environment efects on fatiguebehaviour of metals”, International Materials Review,1987,32,121–151.
    [55] Hartt W. and Tennant J.,“Solution chemistry modifcation withincorrosion-fatigue crack”, ASTM-STP,1978,642,5–18.
    [56] Wei R. and Rao P.,“Fracture mechanics and surface chemistry studies offatigue crack growth in an aluminum alloy”, Met. Trans.A,1960,11A,151–158.
    [57]沈海军,吕志国,“腐蚀疲劳裂纹扩展过程中裂尖阳极溶解的贡献”,西北工业大学学报,2001,19,225–228.
    [58] Engelhardt GR M.D.,“Modelling the crack propagation rate for corrosionfatigue at high frequency of applied stress”, Corrosion Science,2010,52,1115–1122.
    [59] Rong W.,“A fracture model of corrosion fatigue crack propogation of alu-minum alloys based on the material elemrnts fracture ahead of a crack tip”,Internatioanl Journal of Fatigue,2008,30,1376–1386.
    [60] Lal DN W.V.,“A notch analysis of fracture approach to fatigue crack prop-agation”, Metallurgical and Materials Transactions A,1978,9,413–426.
    [61]美国腐蚀工程师协会编,朱日彰等译,腐蚀与防护技术基础,冶金工业出版社,北京,1987.
    [62]“GB/T1173-1995铸造铝合金”,.
    [63]李晓敏,“我国汽车铝合金轮毂发展现状”,轻合金加工技术,2003,31(9),12–13.
    [64] Ogris, E., Wahlen, A., Lu¨chinger H., and Uggowitzer P.,“On the siliconspheroidization in al-si alloys”, Journal of Light Metals,2002,2(4),263–269.
    [65] Eisenmeier, G., Holzwarth, B., Ho¨ppel H., and Mughrabi H.,“Cyclic de-formation and fatigue behaviour of the magnesium alloy AZ91”, MaterialsScience and Engineering: A,2001,319,578–582.
    [66] Zhang X., Su, GC, Han, YY, Ai, XH, and Yan W.,“A study on the com-position optimization and mechanical properties of Al-Mg-Si cast alloys”,Materials Science and Engineering: A,2010,527(16),3852–3856.
    [67]曹楚南,腐蚀电化学原理,化学工业出版社,北京,2004.
    [68] Lodgaard L. and Ryum N.,“Precipitation of chromium containing disper-soids in Al-Mg-Si alloys”, Materials science and technology,2000,16(6),599–604.
    [69]孙跃,胡津,金属腐蚀与控制,哈尔滨工业大学出版社,哈尔滨,2003.
    [70]侯保荣,海洋腐蚀与防护,科学出版社,北京,1997.
    [71]刘道新,材料的腐蚀与防护,西北工业大学出版社,西安,2006.
    [72]王光雍,自然环境的腐蚀与防护,化学工业出版社,北京,1997.
    [73]李久青,杜翠薇,腐蚀试验方法及监测技术,中国石化出版社,北京,2007.
    [74]张彭熹,张保珍,唐渊,中国盐湖自然资源及其开发利用,科学出版社,1999.
    [75]周本省,工业水处理技术,化学工业出版社,北京,2002.
    [76] Beackman W.V.著,赖敬文译,阴极保护简明手册,石油工业出版社,北京,1987.
    [77]李晓刚, X70钢的腐蚀行为与试验研究,科学出版社,北京,2006.
    [78]胡士信,阴极保护工程手册,化学工业出版社,北京,1999.
    [79]宋光铃,曹楚南,林海潮,史志明,“土壤腐蚀性评价方法综述”,腐蚀科学与防护技术,1993,5(4),268.
    [80]王强,地下金属管道的腐蚀与阴极保护,青海人民出版社,西宁,1984.
    [81] Kim H., Kim, W.S., Bang, I.W., and Oh K.,“Analysis of stresses on buriednatural gas pipeline subjected to ground subsidence”, The1998Interna-tional Pipeline Conference, IPC. Part2(of2),1998,749–756.
    [82]杨启明,吕瑞典,工业设备腐蚀与防护,石油工业出版社,北京,2001.
    [83]孙跃,胡津,金属腐蚀与控制,哈尔滨工业大学,哈尔滨,2003.
    [84]陈群志,腐蚀环境下飞机结构日历寿命技术体系研究, Ph.D. thesis,北京航空航天大学,1999.
    [85]廖灵洪,“老龄飞机腐蚀预防和控制”,腐蚀控制,2005,19(1),20–22.
    [86]孙祚东,军用飞机典型铝合金结构腐蚀损伤规律及加速腐蚀试验方法研究, Ph.D. thesis,哈尔滨工程大学,哈尔滨,2005.
    [87]王荣,金属材料的腐蚀疲劳,西北工业大学出版社,西安,2001.
    [88]鲁自界, LY12CZ和7075T6铝合金在氯化钠溶液中的腐蚀疲劳裂纹扩展研究, Ph.D. thesis,中国科学院金属研究所,北京,2001.
    [89]穆志韬,海军飞机结构腐蚀损伤规律及使用寿命研究, Ph.D. thesis,北京航空航天大学,北京,2001.
    [90]张有宏,吕国志,陈跃良,“LY12-CZ铝合金预腐蚀及疲劳损伤研究”,航空学报,2005,26(6).
    [91] Jones K., Efect of Microstructure on Pit-to-Crack Transition of7075-T6Aluminum Alloy, Ph.D. thesis, University of Utah,2004.
    [92]张福泽,“腐蚀温度对飞机疲劳寿命的影响”, ACTA AERONAUTICA ETASTRONAUTICA SINICA,2004,25(5).
    [93] Du M., Chiang F., Kagwade S., et al.,“Damage of al2024alloy due tosequential exposure to fatigue, corrosion and fatigue”, International journalof fatigue,1998,20(10),743–748.
    [94] Kim Y., Speaker, SM, Wei, RP, and Manning S.,“Development of fatigueand crack propagation design and analysis methodology in a corrosive envi-ronment for typical mechanically-fastened joints. volume2. state-of-the-artassessment.”, Technical report, DTIC Document,1983.
    [95] Simpson D. and Brooks C.,“Tailoring the structural integrity process tomeet the challenges of aging aircraft”, International Journal of Fatigue,1999,21, S1–S14.
    [96] Shipilov S.,“Location of the fracture process zone for hydrogen-inducedcorrosion fatigue crack propagation”, Scripta materialia,2002,47(5),301–305.
    [97] Alyousif O., Corrosion and corrosion fatigue of aluminum alloys, Ph.D.thesis, Lehigh University,2002.
    [98]沈海军,高强度铝合金腐蚀疲劳机理与腐蚀疲劳全寿命工程模型, Ph.D.thesis,西北工业大学,西安,2000.
    [99] Shipilov S.,“Corrosion fatigue crack growth behavior of titanium alloys inaqueous solutions”, Corrosion,1998,54(01),29–39.
    [100] Congleton J., Charles E., and Sui G.,“Review on efect of cyclic loadingon environmental assisted cracking of alloy600in typical nuclear coolantwaters”, Corrosion science,2001,43(12),2265–2279.
    [101] Daeubler M., Warren, GW, Bernstein, IM, and Thompson A.,“Modeling ofcorrosion fatigue crack initiation under passive electrochemical conditions”,Metallurgical and Materials Transactions A,1991,22(2),521–529.
    [102] Lachmann E. and Rie K.,“The low cycle corrosion fatigue of AH36-GLand13CrMo44steel in3%NaCl solution”, Corrosion science,1983,23(6),637–644.
    [103]蒋祖国,“估算低周腐蚀疲劳寿命的几个模型”,航空学报,1989,6,254–258.
    [104] Bernstein H. and Loeby C.,“Low-cycle corrosion fatigue of three engineer-ing alloys in salt water”, Journal of Engineering Materials and Technology,1988,110,234.
    [105] Xiulin Z. and Rong W.,“On the corrosion fatigue crack initiation modeland expression of metallic notched elements”, Engineering fracture mechan-ics,1997,57(6),617–624.
    [106] Shipilov S.,“Mechanisms for corrosion fatigue crack propagation”, Fatigue&Fracture of Engineering Materials&Structures,2002,25(3),243–259.
    [107] Wu Y. and Burnside O.,“Efcient probabilistic structural analysis using anadvanced mean value method”, Probabilistic Methods in Civil Engineering,ASCE,1988,492–495.
    [108] Atkinson J., Yu J., Chen Z., et al.,“Modeling of corrosion fatigue crackgrowth plateau for rpv steels in high temperature water”, Nuclear Engi-neering and Design,1998,184(1),13––25.
    [109] Lin Y. and Yang J.,“A stochastic theory of fatigue crack propagation”,Structures, Structural Dynamics and Materials Conference,24th, LakeTahoe, NV,1983,552–562.
    [110] Rocha M. and Schue˙ller G.,“A probabilistic criterion for evaluating thegoodness of fatigue crack growth models”, Engineering fracture mechanics,1996,53(5),707–731.
    [111] Wu W. and Ni C.,“A study of stochastic fatigue crack growth model-ing through experimental data”, Probabilistic engineering mechanics,2003,18(2),107–118.
    [112] Bergner F. and Zouhar G.,“A new approach to the correlation betweenthe coefcient and the exponent in the power law equation of fatigue crackgrowth”, International journal of fatigue,2000,22(3),229–239.
    [113] Wu W., Ni C., and Liou H.,“Random outcome and stochastic analysisof some fatigue crack growth data”, Journal of Mechanics,2001,17(02),61–68.
    [114] I.B.Beech,“Corrosion of technical materials in the presence of bioflms-current understanding and state-of the art method sofstudy”, InternationalBiodeterioration&Biodegration,2004,53(3),177–183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700