横管外降膜流动与蒸发传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
横管降膜蒸发技术由来已久,其所具有的传热系数高、传热温差小、可低温传热等优点使之被广泛应用在海水淡化、食品加工、制冷工程、石油冶炼和化学工程等诸多领域,尤其被多用于多效蒸发设备中。在海水淡化领域,以横管降膜蒸发为主要技术的低温多效蒸发海水淡化技术在具备了上述优点外,更加之高造水水质、换热管耐结垢、耐腐蚀且可利用电厂低品位余热等诸多优势,已然成为海水淡化厂所使用的主流技术之一。开展对横管降膜蒸发技术的研究,为设计生产更加高效的新一代海水淡化设备和其他领域横管降膜蒸发器提供了重要的技术依据和理论基础。
     为了获得准确的横管降膜蒸发传热数据和机理,本文对横管降膜蒸发进行了传热实验研究、流动观测研究和数值模拟计算。本文针对横管降膜蒸发的实验和理论研究的主要内容如下:
     (1)本文对横管降膜蒸发传热系数的影响因素进行了实验研究。实验从流动形态和液膜流速入手,讨论了布管方式和喷淋密度对传热过程的影响,通过局部传热系数和平均传热系数的对比,探讨布管方式和喷淋密度在换热管表面的影响区域,同时定义了最优喷淋雷诺数ReC,,以用于深入剖析横管降膜流动的传热过程,探讨传热过程中各因素对传热效果的影响。本文从换热方式的不同入手,讨论了热流密度对传热系数的影响。从物性变化入手,讨论了蒸发温度和实验流体对局部传热系数和平均传热系数的影响,在实验过程中还首次发现并解释了以海水作为实验流体时,传热系数随蒸发温度变化的特殊规律,并以此表明了以非海水流体为基础的横管降膜蒸发实验结论和规律不可轻易套用于海水淡化领域中。
     (2)本文对不同布管方式的液膜流动进行了观测、拍摄和对比讨论。通过对液膜流动的观测实验,细致阐述了横管降膜流动流体下落和液膜铺展的物理过程,对流型转换所需的雷诺数和影响因素进行深入探讨,并以此印证传热实验中所呈现出的流动对换热过程的影响。
     (3)本文选用Navier-Stokes方程作为流体运动的控制方程,以VOF方法来追踪液膜的自由表面变化,对横管降膜流动进行了三维数值模拟。通过对比发现,本文所构建的三维模型数值模拟结果与实验结果吻合性很好,处理方法基本可行,计算结果相对可靠。而且通过对数值模拟速度分布图和液膜厚度分布图的分析,深入讨论了横管降膜流动过程和液膜铺展规律,更好的解释了传热实验中所展现出来的物理现象,使模拟结果在对实验结论的微观分析中起到了重要的作用。
Horizontal-tube falling film evaporation has long been used for its advantage of high heat transfer coefficient at low temperature and small temperature difference. It has been wide application in desalination, food processing, refrigeration engineering, oil refining, chemical engineering, and many other fields. Incorporated with falling film evaporation as the main technology, low temperature evaporation multi-effect desalination not only owns such advantages above, but also could produce high quality fresh water, have high resistant to fouling, and keep high corrosion-resistant and is becoming one of the mainstream technologies in desalination power plant. Carrying out studies on horizontal tube falling film evaporation technology provides important technical and theoretical basis for designing more effective water desalination equipments or falling film evaporators for other applications.
     For obtaining the accurate data and mechanism, experiments of heat transfer study, flow pattern study, and numerical simulation have been carried out for falling film evaporation. The main contents of this paper are as follows:
     (1). Experiments are carried out to explore influencing factors for falling film evaporation. The influence of spray density and tube layout on heat transfer coefficient are discussed through flow pattern and water film velocity. Influencing area at different spray density and with different tube layouts are studied by comparisons between local heat transfer coefficient and average heat transfer coefficient, meanwhile, an optimal spray Reynolds number Recr is defined to thoroughly analyze heat transfer process within the falling film and the influences of each factor on heat transfer performance. The impact of heat flux on heat transfer coefficient is discussed based on the modes of heat exchange. Variations of local heat transfer coefficient and average heat transfer coefficient with evaporation temperatures and working fluids are discussed by means of the change of properties of working fluids. A special law of heat transfer coefficient with the evaporation temperature is first discovered and explained with seawater as working fluid in this paper. The result exhibits that heat transfer laws of falling film evaporation with other working fluids might not be applicable for sea water desalination.
     (2). For different tube layouts, the falling film are observed, photographed and comparative discussed. Through the observation experiments, the physical process of working fluid falling downwards and film spreading are discussed in detail. The Reynolds number needed and influencing factors for the transition of flow patterns are deeply studied and used to further confirm the influence of flow pattern on heat transfer performance within experiment results.
     (3). The Navier-Stokes equation chosen as governing equation, VOF (Volume of Fluid) method selected to trace the change of film on free surface, the three-dimensional numerical simulation was conducted on falling film flow. Through the comparison between the simulation results and that of the experiments, it was found that the results of three dimensional simulations fitted well with that of the experiments which showed the feasibility of and reliability of such numerical simulation. Moreover, through the analysis of flow field diagram numerical simulation and film distribution map, the flowing process and film spreading law are further discussed and better explain the physical law exhibited in experiments. That make the simulation results play an significant role in microscopic analysis of experimental results.
引文
[1]高从楷,陈国华.海水淡化技术与工程手册[M].化学工业出版社,2004.
    [2]何季民.我国海水淡化事业基本情况[J].电站辅机,2002,2:35-43.
    [3]王世昌.海水淡化及其对经济持续发展的作用[J].化学工业与工程,2010,2(27):
    [4]解利昕,李凭力,王世昌.海水淡化技术现状及各种淡化方法评述[J].化工进展,2003,22(10):
    [5]孙娴霏.主流海水淡化技术及未来发展趋势[J].装备机械,2011,3:2-8.
    [6]Rautenbach R, Widua J, Schafer S. Reflections on desalination processes for the 21 st century[C]. Proceedings of the IDA world congress on desalination and water sciences, Abu Dhabi,UAE, 1995.
    [7]Darwish M, El-Dessouky H. The heat recovery thermal vapor-compression desalting system:a comparison with other thermal desalination processes[J]. Applied Thermal Engineering,1996,16 (6):523-537.
    [8]Yang L, Shen S. Experimental study of falling film evaporation heat transfer outside horizontal tubes[J]. Desalination,2008,220:654-660.
    [9]Thome J. Falling film evaporation:state-of-the-art review of recent work[J]. J Enhanced Heat Transfer,1999,6:263-277.
    [10]何茂刚,王小飞,张颖.制冷用水平管降膜蒸发器的研究进展及新技术[J].化工学报,2008,59(2):23-28.
    [11]马学虎,高大志,安家明.功能表面降膜蒸发传热特性的实验研究[J].热科学与技术,2003,2(2):119-123.
    [12]路慧霞,马晓建.水平管外降膜蒸发的传热实验[J].化工进展,2009,28(2):203-205.
    [13]Al-Shammiri M, Safar M. Multi-effect distillation plants:state of art[J]. Desalination,1999, 126:45-49.
    [14]Kutateladze S, Gogonin I, Sosunov V. The influence of condensate flow rate on heat trasfer in film condensation of stationary vapour on horizontal tube tube banks[J]. Int J Heat Mass Transfer,1985,28:1011-1018.
    [15]Mitrovic J. Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film[C]. Proceedings of the 8th international heat transfer conference.San Francisco,1986.
    [16]Marto P. Recent Progress in Enhancing Film Condensation Heat Transfer on Horizontal Tubes[J]. Heat Transfer Engineering,1986,27:53-63.
    [17]Hongda H, Uchima B, Nozu S, et al. Film Condensation of R-113 on Lin-Line Bundles of Horizontal Finned Tubes[J]. ASME Journal of Heat Transfer,1991,113:479-486.
    [18]Rogers J, Goindi S, Lamari M. Turbulent Falling Film Flow and Heat Transfer on Horizontal Tubes[C]. Proceedings of the national heat transfer conference, Porland,1995.
    [19]Roques J, Dupont V, Thome J. Falling film transitions on plain and enhanced tubes[J]. J Heat Transfer,2002,124:491-499.
    [20]Honda H, Uchima B, Nozu S, et al. Film Condensation of R-113 on Lin-Line Bundles of Horizontal Finned Tubes[J]. ASME Journal of Heat Transfer,1991,113:479-486.
    [21]Webb R, Pais C. Nucleate pool boling data for five refrigerants on plain, integrafin and enhanced tube geometries[J]. Int J Heat Mass Transfer,1992,35:1893-1904.
    [22]Yung D, Lorenz J, Ganic E. Vapor/Liquid Interaction and Entraninment in Falling Film Evaporation[J]. Heat Transfer,1980,102 (1):20-25.
    [23]Ganic E, Roppo M. An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer[J]. J Heat Transfer,1980,102:342-346.
    [24]Armbruster R, Mitrovic J. Patterns of falling film flow over horizontal smooth tubes[C]. Proceedings of the 10th international heat transfer conference Brighton,1994.
    [25]王书中.水平管束降膜动力学与界面吸收性能实验研究[D].天津大学,2008.
    [26]Hu X, Jacobi A. The Intertube Falling Film:Part 1-Flow Characteristics, Mode Transitions, and Hysteresis[J]. J Heat Transfer,1996,118:616-625.
    [27]Fujita Y, Tsutsui M. Evaporation heat transfer of falling films on horizontal tube. Part 2 Experimental study[J]. Heat Transfer. Jpn,1995,24:17-31.
    [28]Fujita Y, Tsutsui M. Experimental and analytical study of evaporation heat transfer in falling films on horizontal tubes[C]. Proceedings of the 10th international heat transfer conference, Brighton,1994.
    [29]Parken W. Heat transfer to thin films on horizontal tubes[D]. Rutgers University,1975.
    [30]Parken W, Fletcher L, Sernas V. Heat transfer through falling film evaporation and boiling on horizontal tubes[J]. J Heat Transfer,1990,112:744-750.
    [31]Conti R. Experimental investigation of horizontal tube ammonia film evaporators with small temperature differentials[C]. Proceedings of the fifth ocean thermal energy conversion (OTEC), Miami Beach,1978.
    [32]Hu X, Jacobi A. The intertube falling film:part 2 -- mode effects on sensible heat transfer to a falling liquid film[J]. Journal of Heat Transfer,1996,118 (3):626-633.
    [33]刘振华,张彤.紧凑高效型水平管束降膜蒸发换热器的实验研究[J].热能动力工程,2004,19(2):160-162.
    [34]Li W, Wu X, Luo Z, et al. Heat transfer characteristics of falling film evaporation on horizontal tube arrays[J]. International Journal of Heat and Mass Transfer,2011,54:1986-7993.
    [35]Slesarenko V. Thermal desalination of sea water in thin film plants[J]. Desalination,1983,45 (1-3):295-302.
    [36]Slesarenko V. Investigation of heat exchange during sea water boiling in a horizontal thin film desalination plant[J]. Desalination,1979,28:311-318.
    [37]Jelino G. Pilot Plant Test and Design Study of a 2.5MGD Horizontal-tube Multiple-effect plant[R]. Office of Saline Water Research and Development Progress Report,1969, No 492.
    [38]Liu P. The evaporating falling film on horizontal tubes[D]. University of Wisconsin-Madison,1975.
    [39]Sabin S, Poppendiek H. Film evaporation of ammonia over horizontal round tubes[C]. Proceedings of the 5th OTEC conference, Miami Beach,1978.
    [40]Zeng X, Chyu M. Evaporation heat transfer performance of nozzle sprayed ammonia on a horizontal tube[J]. ASHRAE Trans,1995,101 (1):317-324.
    [41]Chyu M, Bergles A. An analytical and experimental study of falling-film evaporation on a horizontal tube[J]. J Heat Transfer,1987,109:983-990.
    [42]Chyu M, Bergles A. Horizontal-Tube Falling-Film Evaporation with Structure Surfaces[J]. J Heat Transfer,1989,111:518-524.
    [43]Owens W. Correlation of Thin Film Evaporation Heat Transfer Coefficients for Horizontal Tubes[C]. ASME, New York,1978.
    [44]Danilova B, Burkin V, Dyundin V. Heat transfer spray-type refrigerator evaporators [J]. Heat Transfer-Soviet Research,1976,8 (6):105-113.
    [45]Fletcher L, Sernas V, Galowin L. Evaporation from thin water films on horizontal tubes[J]. Ind. Eng. Chem., Process Des,1974,13:265-269.
    [46]Fletcher L, Sernas V, Parken W. Evaporation Heat Transfer Coefficients for Thin Sea Water Films on Horizontal Tubes[J]. Ind. Eng. Chem., Process Des,1975,14:411-416.
    [47]Parken W, Fletcher L. Heat transfer in thin liquid films flowing over horizontal tubes[C]. Proceedings of the 7th international heat transfer conference, Munich,1982.
    [48]Ganic E, Getachew D. Effectof surface condition and working fluid on liquid film breakdown during heat transfer[C]. Proceedings of the 8th international heat transfer conference, San Francisco,1986.
    [49]Armbruster R, Mitrovic J. Heat transfer in falling film on a horizontal tube[C]. Proceedings of the national heat transfer conference, Porland,1995.
    [50]Armbruster R, Mitrovic J. Evaporation cooling of falling water film on horizontal tubes[J]. Exp Thermal Fluid Science,1998,18:183-194.
    [51]Putilin J, Podberezney V, Rifert V. Evaporation heat transfer in liquid films flowing down horizontal smooth and longitudinally profiled tubes[J]. Desalination,1996,105:165-170.
    [52]Rifert V, Sardak A. Heat exchange at dropwise condensation in heat exchangers of desalination plants[J]. Desalination,1989,74:373-382.
    [53]Rifert V, Podberezny V, Putilin J, et al. Heat transfer in thin film-type evaporator with profiled tubes[J]. Desalination,1989,74:363-372.
    [54]Kuwahara H, Yasukawa A, Nakayama W, et al. Evaporative heat transfer from horizontal enhanced tubes in thin film flow[J]. Heat Transfer-Jpn Res,1990,19:83-97.
    [55]许莉.水平管降膜海水淡化多效蒸发传热研究[D].天津大学,1999.
    [56]解利听.水平管降膜蒸发海水淡化过程研究[D].天津大学,2002.
    [57]齐和发,沈吟秋.影响水平管降膜蒸发传热性能的因素[J].高校化学工程学报,1995,9(3):270-274.
    [58]Chyu M. Falling film evaporation on horizontal tubes with smooth and structured surfaces[D]. Iowa State University,1984.
    [59]Chyu M, Bergles A, Mayinger F. Enhancement of horizontal tube spray film evaporators[C]. Proceedings of the 7th ineternational heat transfer conference, Munich,1982.
    [60]Fujita Y, Tsutsui M. Experimental investigation of falling film evaporation on horizontal tubes[J]. Heat Transfer. Jpn,1998,27:609-618.
    [61]Edahiro K, Hamada T. Research and development of multi-effect horizontal tube film evaporator[J]. Desalination,1977,22:121-130.
    [62]Chang T, Lu C, Li J. Enhancing the heat transfer performance of triangular-pitch shell-and-tube evaporators using an interior spray technique[J]. Applied Thermal Engineering, 2009,29:2572-2533.
    [63]Ribatski G, Jacobi A M. Falling film evaporation on horizontal tubes-a critical review [J]. International Journal of Refrigeration,2005,28:635-653.
    [64]Ribatski G, Jabardo J S. Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces[J]. International Journal of Heat and Mass Transfer,2003,46:4439-4451.
    [65]Ribatski G, Thome J. Experimental study on the onset of local dryout in an evaporating falling film on horizontal plain tubes[J]. Exp Thermal Fluid Science,2007,31:483-493.
    [66]Moeykens S, Newton B, Pate M. Effects of surface enhancement film feed supply rate, and bundle geometry on spray evaporation heat transfer performance [J]. ASHRAE Trans,1995,101 (2):408-419.
    [67]Moeykens S, Kelly J, Pate M. Spray evaporation heat transfer performance of R-123 in tube bundles[J]. ASHRAE Trans,1996,102 (2):259-272.
    [68]Zeng X, Chyu M, Ayub Z. Experimental investigation on ammonia spray evaporators with triangular-pitch plain tube bundle.Part Ⅰ. Tube bundle effect[J]. Int J Heat Mass Transfer,2001, 44:2299-2310.
    [69]Zeng X, Chyu M, Ayub Z. Experimental investigation on ammonia spray evaporators with triangular-pitch plain tube bundle.Part Ⅱ. Evaporator performance[J]. Int J Heat Mass Transfer, 2001,44:2081-2092.
    [70]Newson I. Heat transfer characterizes of horizontal tube multiple effect (HTME) evaporators-possible enhanced tube profiles[C]. Proc.6th int.Sym.Fresh water from the sea, 1978.
    [71]刘振华,秋雨豪.紧凑型滚压强化管管束内水和盐水的沸腾强化换热特性[J].上海交通大学学报,2004,38(10):1627-1630.
    [72]Liu Z, Yi J. Enhanced evaporation heat transfer of water and R-11 falling film with the roll-worked enhanced tube bundle[J]. Experimental Thermal and Fluid Science,2001,25: 447-455.
    [73]Liu Z, Zhu Q, Chen Y. Evaporation heat transfer of falling water film on a horizontal tube bundle[J]. Heat Transfer-Asian Research,2002,31 (1):42-55.
    [74]Jamieson D, Tudhope J. Physical properties of sea water solutions-Thermal Conductivity [J]. Desalination,1970,8:393-401.
    [75]Caldwell D. Thermal conductivity of sea water[J]. Deep Sea Reasearch and Oceanographic, 1974,21 (2):131-137.
    [76]Castelli V, Stanley E, Fischer E. The thermal conductivity of seawater as a function of pressure and temperature[J]. Deep Sea Reasearch and Oceanographic,1974,21 (4):311-319.
    [77]Fabuss B, Korosi A. OSWR&D Progress Report[R]. No 384,1968,
    [78]Rogers J. Laminar falling film flow and heat transfer characteristics on horizontal tubes[J]. Can J Chem Eng,1981,59:213-222.
    [79]Gstoehl D, Roques J, Crisinel P. Measurement of falling film thickness around a horizontal tube using a laser measurement technique[J]. Heat Transfer Engineering,2004,25 (8):28-34.
    [80]Wang X, He M, Fan H, et al. Measurement of falling film thickness around a horizontal tube using laser-induced fluorescence technique[J]. Journal of Physics,2009,147 (1):175-180.
    [81]Hou H, Bi Q, Ma H, et al. Distribution characteristics of falling film thickness around a horizontal tube[J]. Desalination,2012,285:393-398.
    [82]江波.水平管外降膜流动与传热的实验研究[D].华中科技大学,2011.
    [83]Miyasaka Y, Inada S. The effect of pure forced convection on the boiling heat transfer between a two dimensional subcooled water jet and a heated surface[J]. Journal of chemical Engineering of Japan,1980,13 (1):22-28.
    [84]何茂刚,王小飞,张颖,et al水平管降膜蒸发器管外液体流动研究及膜厚的模拟计算[1J].热科学与技术,2007,6(4):319-325.
    [85]张铭,冯厚军,吕庆春.传热管外液体流动数值模拟研究[J].化学工业与工程,201 1,28(3):54-57.
    [86]Killion J, Garimella S. Simulation of Pendant Droplets and Falling Films in Horizontal Tube Absorbers[J]. J Heat Transfer,2004,126:1003-1013.
    [87]Killion J, Garimella S. Gravity-driven flow of liquid films and droplets in horizontal tube banks[J]. Int J Refrig,2003,26 (5):516-526.
    [88]Killion J, Garimella S. Pendant droplet dynamics for absorption on horizontal tube banks[J]. Int J Heat Mass Transfer,2003,47:4403-4414.
    [89]王小飞,何茂刚,张颖.水平管降膜蒸发器管外液体流动数值模拟[J].工程热物理学报,2008,29(8):1347-1350.
    [90]邱庆刚,陈金波.管束排列方式及管间距对水平管外液体成膜情况的影响分析[J].热科学与技术,2011,10(2):117-122.
    [91]Bukin V, Danilova G, Dyundin V. Heat transfer from freons flowing over bundles of horizontal tubes that carry a porous coating[J]. Heat Transfer-Soviet Research,1982,14:98-103.
    [92]Lorenz J, Yung D. Film breakdown and bundle-depth effercts in horizon tube, falling-film evaporators[J]. Journal of Heat Transfer,1982,104:569-571.
    [93]Chang T, Chiou J. Spray evaporation of R-141b on a horizontal tube bundle[J]. Int J Heat Mass Transfer,1999,42:1467-1478.
    [94]Tatara R, Payvar P. Measurement of spray boiling refrigerant coefficients in an integral-fin tube bundle segment simulating a full bundle[J]. Int J Refrig,2001,24:744-754.
    [95]Zeng X, Chyu M, Ayub Z. Characteristic study of sprayed fluid flow in a tube bundle[J]. ASHRAE Trans,1994,100(1):63-72.
    [96]Zeng X, Chyu M, Ayub Z. Performance of nozzle sprayed ammonia evaporator with square-pitch plain-tube bundle[J]. ASHRAE Trans,1997,103 (2):68-81.
    [97]Moeykens S, Pate M. The effects of nozzle height and orifice size on spray evaporation heat transfer performance for a low-finned, triangular-pitch tube bundle with R-134a[J]. ASHRAE Trans,1995,101 (2):420-433.
    [98]Moeykens S, Pate M. Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles[J], ASHRAE Trans,1996,102 (1):410-426.
    [99]Glade H, Rawajfeh A. Modeling of CO2 release and the carbonate system in multiple-effect distillers[J]. Desalination,2008,222:605-625.
    [100]Semiat R, Galperin Y. Effect of non-condensable gases on heat transfer in the tower MED seawater desalination plant[J]. Desalination,2001,140:27-46.
    [101]Genthner K, Seifert A. A calculation method for condensers in multistage evaporators with non-condensable gases[J]. Desalination,1991,81:349-366.
    [102]Rabas T, Mueller A. Effect of non-condensable gases and vent flow rate on the thermal performance of single-pass X-shell condensers[J]. Heat Transfer Engineering,1986,7 (3-4): 35-42.
    [103]Bharadwaj J, Raghavan V. Influence of non-condensables on modern thermal desalination[J]. Desalination,1984,49:357-365.
    [104]Khan R. Effect of non-condensables in sea water evaporators[J]. Chemical Industry and Engineering Progress,1972,68:79-80.
    [105]陈才生.数学物理方程[M].科学出版社,2008.
    [106]Xu Z, Lian J, Dang C. Inclusion degree:A perspective on measures for rough set data analysis[J]. Information Sciences,2002,141:227-236.
    [107]Nosoko T, Miyara A, Nagata T. Characteristics of falling film flow on completely wetted horizontal tubes and the associated gas absorption[J]. International Journal of Heat and Mass Transfer,2002,45 (13):2729-2738.
    [108]陶文铨.数值传热学(第二版)[M].西安交通大学出版社,2009.
    [109]杨勇.水蒸气超音速流动中的非平衡相变与激波效应[D].大连理工大学,2010.
    [110]杨沫,王育清,傅燕弘,et al具有表面辐射的导热和对流耦合问题的数值计算方法[J].西安交通大学学报,1992,26(2):26-32.
    [111]Sun Y, Emery A. Multigrid computation of natural convection in enclosures with a conductive baffle[J]. Numer Heat Transfer,1994,25:575-592.
    [112]Brumfield L, theofanous T. On the prediction of heat transfer across turbulent liquid films[J]. J Heat Transfer,1976,98:496-502.
    [113]Hirt C, Nichols B. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics,1981,39:201-225.
    [114]董志.基于VOF方法的非线性波浪数值模拟研究与应用[D].中山大学,2009.
    [115]Patankar S. Numerical heat transfer and fluid flow [M]. Hemisphere Publishing Corporation, 1979.
    [116]Patankar S, Spalding D. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer,1972,15:1787-1806.
    [117]Department of Mechanical Engineering. IAPWS on the Surface Tension of Ordinary Water Substance[R]. International Association for the Properties of Water and Steam,1994,
    [118]张鹏.海水表面张力的研究[J].山西师范大学学报(自然科学版),2011,25(4):44-45.
    [119]Carlson D. Viscosity of sea surface slicks[J]. Nature,1987,329 (29):823-825.
    [120]陈国华,佘敬曾,郭玲,et a1.海水表面张力的研究-海水表面张力同温度和实用盐度之间的经验关系[J].海洋与沼泽,1994,25(3):306-311.
    [121]Fofonoff N. Physical properties of seawater:A new salinity scale and equation of state for seawater[J]. Journal of Geophysical Research,1985,90 (C2):3332-3342.
    [122]Sun H, Feistel R, Koch M, et al. New equations for density, entropy, heat capacity and potential temperature of a saline thermal fluid[J]. Deep-Sea Research,2008,55:1304-1310.
    [123]Sharqawy H, John H, Lienhard V, et al. Thermophysical properties of seawater:a review of existing correlations and data[J]. Desalination and Water Treatment,2010,16:354-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700