基于色貌的感知对比度评价方法及建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步和人们生活水平的提高,各种类型的显示设备在日常生活和工作中得到了广泛应用,而其颜色特性的评价已成为各种显示技术在激烈竞争中取胜的关键。其中,对比度更是显示设备性能评价的指标性参数。但是,传统的对比度评价方法大多侧重于亮度的物理测量,往往不能反映人眼视觉系统(HVS)的真实感知,也不适应于变化的观察条件。因此,本研究利用心理物理学实验方法获取简单图样的视觉亮度阈值以及亮度感知对比度评估数据,基于色貌模型建立了相应的亮度感知对比度模型。进而,通过对亮暗及彩色条纹对比灵敏度函数(CSF)的视觉测量,分析了空间频率及颜色特性对感知对比度的影响。最后,基于色貌模型和CSF,提出了复杂图像的感知对比度模型,并利用图像颜色外貌感知实验的视觉数据进行了测试和验证。
     在视觉实验之前,首先对显示器的颜色特性进行了详细的测量与分析。对于不完全满足色品恒定性和通道相加性假设的大尺寸液晶显示器(LCD),采用局域三维查找法实现其颜色特征化,并提出了一种自适应实时搜索算法以提高其变换效率,特征化精度优于0.5△E*ab。对于阴极射线管(CRT)显示器,采用色品坐标变化的分段线性插值(PLVC)方法并结合抖动技术进行颜色特征化,特征化精度高达0.31AE*ab。对于近似满足两个假设条件的专业级Eizo LCD,采用了色品坐标不变的分段线性插值(PLCC)方法,特征化精度达到0.98AE*ab。
     通过恒常刺激视觉评价实验方法并采用数据处理的概率分析法,分别获得9种不同观察条件下对均匀中性色背景下不同亮度水平的19个目标刺激的视觉亮度阈值,并采用四种不同的颜色属性量进行表征,即以cd/m2为单位的亮度L、CIELAB的明度L*、CIECAM02的明度J和视明度Q。由变异系数CV对其相应的阈值对比度表征方程的预测性能进行评价,结果表明,基于色貌属性量的表征方程在不同观察条件下与视觉数据有更好的一致性,为建立感知对比度模型提供了实验和理论支持。
     基于幅值估计的心理物理学方法,分别实施了参考色样与测试色样观察条件相同(实验一)和参考色样观察条件固定(实验二)的感知对比度视觉评价实验,并通过视觉数据的拟合建立了亮度的感知对比度模型。建模的途径分为两类,一类是基于感知属性量特别是色貌属性量的对比度表征,另一类是基于恰可察觉亮度阶数的对比度表征。通过标准化残差平方和(STRESS)及F-test对不同模型预测性能的检验和比较可知,基于CIECAM02视明度Q的对比度模型CQ相比其他模型更加符合人眼视觉系统的非线性感知特性,并且对不同观察条件的适应性较好,因此可以推荐为实际应用中所采用的感知对比度模型,以取代传统的亮度对比率公式。为了方便地应用CQ模型于LCD对比度性能的评价,设计了圆斑测试图样,并提出了结合LCD色度预测模型的感知对比度评价流程,最后经视觉数据的实际测试,验证了其预测过程的可行性和预测性能的有效性。
     利用交叉阶梯法在CRT显示器上分别测得灰色中心及有彩颜色中心在0.5-11.7cpd空间频率范围内的亮度/明度及彩色对比度阈值,并拟合得到不同颜色中心的CSF以及不同空间频率下的彩色对比度阈值色度椭圆,分析了空间频率及颜色特性对对比度感知的影响。其间,提出了基于色差定义的统一量度的明度CSF和彩度CSF,并基于Barten模型建立了不同明度水平的明度CSF数学模型。
     采用类别判断的心理物理学实验方法对包含空间频率信息和颜色信息的复杂图像的颜色外貌属性进行了视觉评估,包括图像质量、对比度、色彩度、锐度、自然性以及全局对比度和局部对比度。在对图像感知对比度及其影响因素进行分析的基础上,提出了基于CSF空间频率适应和色貌模型的图像感知对比度模型S-PBCDR-Ⅰ和S-PBCDR-Ⅱ并与相对单图像感知对比度模型△SIPk和基于像素色差比的PBCDR模型进行了比较。经过视觉数据的检验,S-PBCDR-Ⅰ模型表现出相对最优的图像感知对比度预测性能,更加简便实用。
     最后,对本论文的主要内容以及所取得的主要研究成果予以概括总结,并对今后进一步的研究工作进行了展望。
Various types of display devices have been extensively applied in daily life and work with the development of science and technology and the improvement of the living standard. And the evaluations of their color characteristics have become the key to win in the hot competition among different display technologies. Hereinto, contrast is the representative parameter for the performance evaluation of displays. However, the traditional evaluation methods of contrast emphasize more on the physical measurement of luminance, which usually deviate from the real perception of the human visual system (HVS) and do not adapt to the variations of viewing conditions. Hereby, by performing the psychophysical experiments in this study, plenty of data were obtained for the visual threshold and perceptual contrast via simple neutral color patterns, so that the corresponding perceptual contrast models were built based on the color appearance model. Then the impact of spatial frequency and color on the perceptual contrast were analyzed through the visual measurements of the contrast sensitivity functions (CSF) of luminance and color grating patterns. Lastly, on the basis of the color appearance model and CSF, the perceptual contrast model of complex image was proposed, which was tested and verified using the visual data of image color appearance perception experiments.
     The color characteristics of displays were first measured and analyzed in detail before the visual experiments. For the large size liquid crystal displays (LCD) which do not fully meet the two assumptions of chromaticity constancy and channel additivity, the method of local three-dimension look-up table was adopted for their colorimetric characterization, and an auto-adaptation real-time searching algorithm was developed to promote the transformation efficiency with the characterization accuracy being better than0.5CIELAB color difference unit (△E*ab). For the cathode ray tube (CRT) display, the method of piecewise linear interpolation assuming variation in chromaticity coordinates (PLVC) combined with the dithering technique was implemented to achieve the high colorimetric characterization accuracy of0.31 △E*ab. The professional Eizo LCD. which approximately satisfies the two mentioned assumptions, was colorimetrically characterized using the method of piecewise linear interpolation assuming constant chromaticity coordinates (PLCC) to result in the characterization accuracy of0.98△E ab.
     The visual thresholds of19target stimuli with different lightness levels on the uniform neutral color background under9viewing conditions were measured using the psychophysical method of constant stimuli and data processing technique of probit analysis, which were represented by four different color attributes, i.e. luminance L in cd/m2, CIELAB lightness L*, CIECAM02lightness J and brightness Q. The prediction performances of different representation equations for visual threshold contrast were tested via the coefficient of variation (CV). which results indicated that the representation equations based on color appearance attributes were in better agreement with the visual data under different viewing conditions. This provided the experimental and theoretical supports for modeling the perceptual contrast.
     Based on the principle of the magnitude estimation method, two perceptual contrast assessment experiments were carried out, respectively, i.e. Experiment No.1with the reference and the test patterns under the same viewing condition and Experiment No.2with the reference pattern under the fixed viewing condition. Then two categories of perceptual contrast models were established through the fitting of visual data. One category is represented using the perceptual attributes especially the color appearance attributes, and another representation is based on the steps of the just noticeable difference (JND) of luminance. The prediction performance of these models were tested and compared by the ways of standardized residual sum of squares (STRESS) and F-test, and the results showed that the contrast model CQ adopting the CIECAM02brightness Q agreed better with the nonlinear perception characteristics of HVS than the other models and was well adaptive to different viewing conditions. Therefore, the CQ model may be suggested as the perceptual contrast model in practical applications to replace the traditional luminance ratio. In order to apply the CQ conveniently into the contrast evaluation of LCD. the spot test patterns were designed and the evaluation workflow involving the chromaticity prediction model of LCDs was proposed, of which the feasibility of the prediction procedure and the validity of the prediction performance were verified via the practical test of visual data.
     Utilizing the psychophysical method of interleaved staircase, the luminance/lightness and color contrast thresholds were measured, respectively, at gray and chromatic color centers with the spatial frequency ranged from0.5to11.7cpd on the CRT display. And the CSFs of different color centers and the chromaticity ellipses for color contrast thresholds at different spatial frequencies were obtained by fitting with the visual data. Then the influences of spatial frequency and chromacity on the contrast perception were analyzed. Meanwhile, the lightness and chromatic CSFs defined in the same scale by color difference were proposed, and the mathematic model of lightness CSF of different lightness levels at gray center was built from the Barten model.
     The complex images usually involve plenty of spatial and color information. Through the psychophysical method of category judgments, the image color appearance attributes were visually estimated, including image quality, contrast, colorfulness, sharpness, naturalness, global contrast and local contrast. On the top of the analysis of the image perceptual contrast and its influence factors, two image perceptual contrast models S-PBCDR-Ⅰ and S-PBCDR-Ⅱ were proposed, respectively. based on the CSF spatial adaptation and the color appearance model, and they were further compared with the relative single-image perceived contrast model△SIPk and the pixel-based color difference ratio model PBCDR. Through the test of visual data, the model S-PBCDR-Ⅰ exhibited best prediction performance in the perception of image contrast among all the models and was more simple and convenient as well in applications.
     Finally, the main contents and research achievements of this dissertation were summarized, and the perspectives of the future study were also forecasted.
引文
[1]应根裕,胡文波,邱勇.甲板显示技术.北京:人民邮电出版社, 2002.
    [2]刘永智,扬开愚等.液晶显示技术.成都:电子科技大学出版社,2000.
    [3](日)大石严,烟田丰彦,田林彻.显示技术基础.北京:科学出版社,2003.
    [4]S. Diego. The technological trends of future AMOLED. Proceedings of SPIE. 2009,7415,741500.
    [5]S Francisco. Recent progress of flexible AMOLED displays. Proceedings of SPIE,2011,7956,79560J.
    [6]G. C. de Wit. Contrast measurement of head-mounted displays. Optical Engineering,2002,41(9).2202-2207.
    [7]P. A. Boynton and E. F. Kelley. Measuring the contrast ratio of displays. Information Display,1996,12(11),24-27.
    [8]H. Seetzen. Observations of luminance, contrast and amplitude resolution of displays. SID 06 Digest,2006,1229.
    [9]M. E. Becker. Display-metrology for liquid-crystal-television-screens. Displays. 2005,26(7),197-207.
    [10]ANSI IT7.215. Data Projection Equipment and Large Screen Data Displays Test Methods and Performance Characteristics.1992.
    [11]Video Electronics Standards Association. Flat Panel Display Measurements 2.0. avail. From www.vesa.org.
    [12]ISO 9241-3. Ergonomic requirements for office work with visual display terminals-Part 3:Visual display requirements. International Standards Organization. Geneva, Switzerland.1992.
    [13]T. Mainelli. Tested contrast ratios rarely conform to vendors' specs. PC World e-zine,www.pcworld.com/news/article/. May 2003.
    [14]G. Ward. Defining dynamic range. Proceedings of the 2008 Society of Information Display Symposium, May 2008.
    [15]C. Teunissen. S. Qin, I. Heynderickx. A perceptually based metric to characterize the viewing-angle range of matrix displays. Journal of the Society for Information Display.2008,16(1),27-36.
    [16]K. Teunissen. A new characterization method to define the viewing angle range of matrix displays. Displays,2008,30 (12),77-83.
    [17]D. G. Lee, et al. The ergonomic contrast parameter for display devices. ASID-03,2004.
    [18]D. G. Lee and M. R. Luo. Human visual contrast model for display devices. The 10th Congress of the International Colour Association (AIC Colour'05). Granada. Spain.2005,689-692.
    [19]J. H. Chong, S. B. Lee, et al. A study on the evaluation method of perceptual contrast with CIECAM02. IMID'07 Digest.2007,1661-1663.
    [20]W. B. Cowan, N. Rowell. On the gun independence and phosphor constancy of colour video monitors. Color Research and Application,1986, (11),34-38.
    [21]D. H. Brainard. Calibration of a computer controlled color monitor. Color Research and Application.1989.14 (1),23-24.
    [22]R. S. Berns. Methods for characterizing CRT displays. Displays,1996,16(4). 173-182.
    [23]G. Sharma. Digital color imaging handbook. CRC Press, Boca Raton,2003.
    [24]P. Hung. Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations. Journal of Imaging Science and Technology,1993,2(1).53-61.
    [25]D. L. Post, C. S. Calhoun. An evaluation of methods for producing desired colors on CRT monitors. Color Research and Application.1989,14(4), 172-186.
    [26]R. S. Berns. R. J. Motta, M. E. Gorzynski. CRT colorimetry:Part I. Theory and practice. Color Research and Application.1993,18,299-314.
    [27]廖宁放,石俊生,曾华.传统阴极射线管色度预测模型的相干误差分析.光学学报.2000,20(1),133-138.
    [28]A. Abrardoa, M.BarniL, M. Zappalorti. CRT calibration for high quality reproduction of color images. SPIE,1999,3808,52-59.
    [29]N. Liao, Z. Gao. A comparative study of a CRT colorimetric prediction model by neural networks and the models by conventional method. Color Research and Application,1999,24(1),45-51.
    [30]E. A. Day, L. Taplin, R. S. Berns. Colorimetric characterization of a computer-controlled liquid crystal display. Color Research and Application, 2004,29(5),365-373.
    [31]D. L. Post, C. S. Calhoun. Further evaluation of methods for producing desired colors on CRT monitors. Color Research and Application,2000,25(2),90-104.
    [32]J. Thomas, J. Y. Hardeberg, I. Foucherot, et al. The PLVC display color characterization model revisited. Color Research and Application,2008.33(6). 449-460.
    [33]N. Tamura, N. Tsumura, Y. Miyake. Masking model for accurate colorimetric characterization of LCD. Journal of the Society of Information Display.2003, 11(2),1-7.
    [34]S. Wen, R. Wu. Two-primary crosstalk model for characterizing liquid crystal displays. Color Research and Application,2006.31(2).102-108.
    [35]张显斗.徐海松.数字图像颜色复现理论与方法研究.博士学位论文.浙江大学,2010,62-72.
    [36]张显斗,徐海松.液晶显示器颜色特征化的分段分空间模型.光学学报,2007,27(9),1719-1724.
    [37]宫睿,徐海松等.液晶显示器色度特征化的分空间补偿模型.光学学报,2011,31(4),0433001-1.
    [38]N. Katoh, T. Deguchi, et al. An accurate characterization of CRT monitor (I) verifications of past studies and clarifications of gamma. Optical Review,8(5): 305-314,2001.
    [39]N. Katoh, T. Deguchi, et al. An accurate characterization of CRT monitor (II) proposal for an extension to CIE method and its verification. Optical Review, 8(5):397-408,2001.
    [40]CIE. The relationship between digital and colorimetric data for computer-controlled CRT displays. Publication No.122, Vienna, Austria,1996.
    [41]Y. S. Kwak, L. W. Macdonald. Accurate prediction of colours on liquid crystal displays. IS&T/SID Ninth Color Imaging Conference,2001,355-359.
    [42]王勇,徐海松.液晶显示器颜色特征化的S模型算法.中国图像图形学报.2007.12(3).491-494.
    [43]何国兴.LCD显示器阶调复现曲线的函数表达.液晶与显示,2009,24(5),762-768.
    [44]G. Marcu, W. Chen. K. Chen, et al. Color characterization issues for TFTLCD displays. SPIE,2002,4663,187-198.
    [45]G. Sharma. Comparative evaluation of color characterization and gamut of LCDs versus CRTs. SPIE,2002,4663,177-186.
    [46]A. Cazes, F. Mintzer. Implementation of a color calibration method for liquid crystal displays. SPIE,2001,4295,267-278.
    [47]B. Bastani, B. Cressman, B. Funt. Calibrated color mapping between LCD and CRT displays:a case study. Color Research and Application,2005.30(6), 438-447.
    [48]IEC 61966-3. Colour Measurement and Management in Multimedia Systems and Equipment Part 3:Equipment using cathode ray tubes.1998.
    [49]IEC 61966-4. Colour Measurement and Management in Multimedia Systems and Equipment Part 4:Equipment using liquid crystal display panels 1998.
    [50]NEMA standards publication PS3.14, Digital Imaging and Communication in Medicine (DICOM) Part 14.
    [51]徐海松.颜色信息工程.杭州:浙江大学出版社.2005,25.
    [52]S. Y. Choi. Modeling colour and image appearance under flat panel display viewing conditions. Thesis. University of Leeds.2008.
    [53]William F. Schreiber, Fundamentals of Electronic Imaging Systems:some aspects of image processing,3rd edition. New York:Springer-Verlag.1993, 60-70.
    [54]G. Wyszecki, W. S. Stiles. Color Science:Concepts and Methods, Quantitative Data and Formulae,2nd edition. New York:John Wiley and Sons.1982.
    [55]Lijun Qu. Perceptually guided level of detail techniques. Thesis. University of Minnesota.2008.
    [56]M. D. Fairchild. Color Appearance Models,2nd edition. New York: Addison-Wesley.2005.
    [57]A. Michelson. Studies in Optics. University of Chicago Press.1927.
    [58]B. MaeIntyre, W. Cowan. A Practical Approach to Calculating Luminance Contrast on a CRT. ACM Transactions on Graphics,1992,11(4),226-347.
    [59]T.S. Mou. The new process of measuring method for luminance contrast under bright room condition. Chinese journal of electron devices.2008,31(1), 377-380.
    [60]IEC 62341-6 Ed.1.2/CD. Organic Light Mitring Diode (OLED) displays—Part 61 Measuring Methods of Optical and Optoeleetrical Parameters.
    [61]IEC 61988-2-3 Ed. 1/CD. Plasma Display Panels-Part 2-3:Measuring Methods-Quality.
    [62]K. A. Fetterly, H. R. Blume, et al. Introduction to Grayscale Calibration and Related Aspects of Medical Imaging Grade Liquid Displays. Journal of Digital Imaging.2008,21(2).93-207.
    [63]P. G. J. Barten. Contrast sensitivity of the human eye and its affects on image quality. SPIE. PM72,1999.
    [64]W. Lu, H. Xu, M. R. Luo. An improved surround adaptive metric for dynamic range of liquid crystal displays. Asian Display.2011.
    [65]M. R. Luo, R. W. G. Hunt. The structure of the CIE 1997 Colour Appearance Model (CIECAM97s). Color Research and Application,2008,23(3):138-146.
    [66]CIE, CIE 159:2004. A colour appearance model for colour management systems:CIECAM02. Vienna, Central Bureau of the CIE.2004.
    [67]CIE, CIE Publication No.15.2, Colorimetry,2nd ed. Vienna:Central Bureau of the Commission Internationale de I'Eclairage.1986.
    [68]E. Lee, J. H. Chong, et al. Improved Method for Angle-of-View Measurement of Display Devices, IMID 2009 DIGEST.2009,979-982.
    [69]F. W. Campbell and J. G. Robson. Application of Fourier analysis to the visibility of gratings. Journal of Physiology,1968,197,551-566.
    [70]石俊生,姚军财,余鸿飞等.用显示器测量人眼衬比度敏感函数.光学学报,2007,27(4),744-748.
    [71]姚军财,石俊生等.彩色图像对比度定义的探讨.云南师范大学学报,2006,26(4).49-51.
    [72]J. Shi, H. Yu et al. Color Difference Sensitivity of Human Vision System For Red-Green And Yellow-Blue Directions. ICO20:Illumination. Radiation, and Color Technolologies, Proc. of SPIE.2005, Vol.6033,60330M-1~60330M-6.
    [73]K. T. Mullen. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology,1985,359,381-400.
    [74]M. Nadenau. Integration of Human Colour Vision Models into High Quality Image Compression. Thesis. Ecole Poly technique Federale de Lausanne, Switzerland.2000.49-86.
    [75]K.Wenzel,K.Ladunga, K.Samu. Measurement of color defective and normal color vision subjects' color and luminance contrast threshold functions on CRT. Periodical Polytechnica Ser. Mech. Eng..2001,45(1),103-108.
    [76]H. C.Owens, S.Westland, K.Van de Velde, et al. Contrast Sensitivity For lime-Purple and Cyan-Orange Gratings. IS&T/SID Tenth Color Imaging Conference,2002,145-148.
    [77]Stephen Westland. Model of Luminance Contrast Sensitivity Function for Application to Image Assessment. Color Research and Application,2006.31(4), 315-319.
    [78]Y. J. Kim and H. Kim. Spatial Luminance Contrast Sensitivity:Effects of Surround. Journal of the Optical Society of Korea,2010,14(2),152-162.
    [79]Y. J. Kim. Measurement of Perceived Brightness and Contrast Sensitivity for Outdoor Condition. AIC05,2005.
    [80]Y. J. Kim. An Automatic Image Enhancement Method Adaptive to the Surround Luminance Variation for Small Sized Mobile Transmissive LCD, IEEE Transactions on Consumer Electronics,2010,56(3),1161-1165.
    [81]J. M. Rovamo, M. I. Kankaanpaa, H. Kukkonen. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings. Vision Research,1999,39(14),2387-2398.
    [82]P. G. J. Barten. Formula for the contrast sensitivity of the human eye. Image Quality and System Performance. Proc. of SPIE-IS&T Electronic Imaging, SPIE 2004,5294:231-238.
    [83]GM Johnson, MD Fairchild. On Contrast Sensitivity in an Image Difference Model. IS&T PICS 2002, Portland.2002,18-23.
    [84]T. Movshon and L. Kiorpes. Analysis of the development of spatial sensitivity in monkey and human infants. Journal of the Optical Society of America A, 1998,5(12),2166-2172.
    [85]S. Daly. The Visible Differences Predictor:An algorithm for the assessment of image fidelity, Ch.13 in Digital Images and Human Vision, A.B. Watson Ed. MIT Press, Cambridge, MA.1993.
    [86]X.M. Zhang and B.A. Wandell. A spatial extension to CIELAB for digital color image reproduction. Proc. of the SID Symposiums,1996.
    [87]E. Chorro, E. Perales, et al. Application of the S-CIELAB color model to processed and calibrated images with a colorimetric method. Optics Express. 2007,15(12).7810-7817.
    [88]CIE Technical Report (Draf). Method for deriving colour differences in images, CIE 18x:2008, ISBN 978 3 901906. Vienna, Austria:Central Bureau of the CIE.2008.
    [89]黄小乔,石俊生,姚军财,杨健.一种基于S-CIELAB的图像质量评价模型.云南师范大学学报(自然科学版),2006,26(5),48-51.
    [90]黄小乔,石俊生,杨健,姚军财.基于色差的均方误差与峰值信噪比评价彩色图像质量研究.光子学报,2007,36(sup),295-298.
    [91]G. M. Johnson and M. D. Fairchild. A top down description of S-CIELAB and CIEDE2000. Color Research and Application,2003.28(6),425-435.
    [92]S. Bech, R. Hamberg, et al. The RaPID Perceptual Image Description Method (RaPID). Proceedings of SPIE, Human Vision and Electronic Imaging,1996. 2657,317.
    [93]C. J. Bartleson. Memory Colors of Familiar Objects. Journal of the Optical Society of America,1960,50(1),73-77.
    [94]R. W. G. Hunt, I. T. Pitt, and L. M. Winter. The Preferred Reproduction of Blue Sky, Green Grass and Caucasian Skin in Colour Photography. Journal of Photographic Science,1974.22,144-149.
    [95]J. Perez-Carpinell, M. D. de Fez, R. Baldovi, and J. C. Soriano. Familiar Objects and Memory Color. Color Research and Application.1998,23(6). 416-427.
    [96]Y. Kwak, J. Hong, D. Park, and C. Kim. Preferred Memory and Accent Colors Shown on the Display and Their Size Effect. IS&T/SID 14th Color Imaging Conference, Scottsdale, Arizona, USA.2006,224.
    [97]D. G. Lee, M. R. Luo, and G. H. Cui. Evaluation for Colour Differences for Images. IS&T's 4th CGIV Conference, Terrassa, Spain.2005.
    [98]Z. H. Wang and M. R. Luo. Experimental Filters for Estimating IQ. IS&T's 4th CGIV Conference, Terrassa, Spain.2008.
    [99]K. Topfler, B. W. Keelan, S. O'Dell,and R. Cookingham. Preference in Image Quality Modeling. IS&T's PICS Conference, Portland. Oregon. USA.2002.60.
    [100]C. J. Bartleson. The Combined Influence of Sharpness and Graininess on the Quality of Colour Prints. Journal of Photographic Science,1982.30(2),33-38.
    [101]P. G. Engeldrum. Psychometric Scaling:a Toolkit for Imaging Systems Development. Imcotek Press, Winchester, MA.2000.
    [102]P. G. Engeldrum. Extending Image Quality Models. IS&T's PICS Conference. Portland, Oregon, USA.2002,65.
    [103]S. Y. Choi. Modelling Colour and Image Appearance under Flat Panel Display Viewing Conditions. Thesis. The University of Leeds.2008.
    [104]S. Y. Choi, M. R. Luo. and M. R. Pointer. Modelling Image Naturalness. IS&T's 4th European Conference on CGIV (Colour in Graphics, Imaging, and Vision). Terrassa, Spain,2008:126-131.
    [105]G. S. Rubin and K. Siegel. Recognition of Low-Pass Filtered Faces and Letters. Investigative ophthalmology and Visual Science Supplement,1984,25,71.
    [106]K. Matkovic, L. Neumann, A. Neumann, T. Psik, and W. Purgathofer. Global Contrast Factor-a New Approach to Image Contrast. International Symposium on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, Spain.2005,159-168.
    [107]E. Peri. Contrast in Complex Images. Journal of the Optical Society of America, 1990,7 (10).2032-2040.
    [108]P. J. Bex, W. Makous. Spatial Frequency, Phase and the Contrast of Natural Images. Journal of the Optical Society of America,2006,19 (6),1096-1106.
    [109]A. J. Calabria, M. D. Fairchild. Perceived Image Contrast and Observer Preference I. The Effects of Lightness, Chroma, and Sharpness Manipulations on Contrast Perception. Journal of Imaging Science and Technology,2003,47 (6),479-493.
    [110]A. J. Calabria, M. D. Fairchild. Perceived Image Contrast and Observer Preference Ⅱ. Empirical Modeling of Perceived Image Contrast and Observer Preference Data. Journal of Imaging Science and Technology,2003,47 (6), 494-508.
    [111]R. S. Berns, D. H. Alman, L. Reniff, G.D. Snyder, M. R. Balonon-Rosen. Visual determination of suprathreshold color-difference tolerances using probit analysis. Color Research and Application,1991,16 (5),297-316.
    [112]H. Xu, H. Yaguchi, S. Shioiri. Correlation between visual and colorimetric scales ranging from threshold to large color difference. Color Research and Application,2002,27 (5),349-359.
    [113]H. Xu, H. Yaguchi. Visual evaluation at scale of threshold to suprathreshold color difference. Color Research and Application,2005,30 (3),198-208.
    [114]T. Indow, M. L. Morrison. Construction of discrimination ellipsoids for surface colors by the method of constant stimuli. Color Research and Application,1991, 16(1),42-56.
    [115]M. D. Fairchild. Color Appearance Models,2nd Ed. New York:Addison-Wesley. 2005.
    [116]P. A. Garcia, R. Huertas, M. Melgosa, G. Cui. Measurement of the relationship between perceived and computed color differences. Journal of the Optical Society of America,2007,24 (7),1823-1829.
    [117]R. Baribeau, A. R. Robertson. Estimation of hue discrimination thresholds using a computer interactive method. Color Research and Application,2005,30 (6),410-415.
    [118]吴继宗,叶关荣.光辐射测量.北京:机械工业出版社.1990.
    [119]林仲贤,孙秀如.视觉与测色应用.北京:北京科学出版社.1987.
    [120]徐海松,颜色技术原理及在印染中的应用(五)第五篇均匀颜色空间与色差评价.印染,2005(22),40-42.
    [121]R. W. G. Hunt. Revised colour-appearance model for related and unrelated colours. Color Research and Application,1991,16 (3),146-165.
    [122]R. W. G. Hunt. An improved predictor of colourfulness in a model of colour vision. Color Research and Application,1994,19 (1),23-26.
    [123]Y. Nayatani. Revision of the chroma and hue scales of a nonlinear color-appearace model. Color Research and Application,1995,20 (3),143-155.
    [124]M. D. Fairchild. Refinement of the RLAB color space. Color Research and Application,1996,21 (5),338-346.
    [125]M. R. Luo, M. C. Lo, W. G. Kuo. The LLAB (l:c) colour model. Color Research and Application,1996,21 (6),412-429.
    [126]CIE 131. The CIE 1997 Interim colour appearance model (Simple Version), CIECAM97S.1998.
    [127]廖宁放,石俊生,吴文敏.数字图文图像颜色管理系统概论.北京:北京理工大学出版社,2009.
    [128]R. S. Berns. The mathematical development of CIE TC 1-29 proposed color difference equation:CIELCH. AIC COLOUR 93, Proceedings of the 7th AIC Congress, Budapest.1993.
    [129]CIE. CIE Publication No.116, Industrial color-difference evaluation. Vienna: Central Bureau of the Commission Internationale de I'Eclairage.1995.
    [130]CIE. CIE Publication No.142, Improvement to industrial colour-difference evaluation. Vienna:Central Bureau of the Commission Internationale de I'Eclairage.2001.
    [131]M. Cheung, B. Rigg. Color-difference ellipsoids for five colour centers. Color Research and Application,1986,11 (3),185-195.
    [132]M. Melgosa, E. Hita, A. J. Poza, et al. Suprathreshold color-difference ellipsoids for surface colors. Color Research and Application,1997,22 (3): 148-155.
    [133]G. Sharma, W. Wu, E. N. Dalal. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical obervations. Color Research and Application,2005,30 (10),21-30.
    [134]M. R. Luo, G. Cui, C. Li. Uniform colour spaces based on CIECAM02 colour appearance model. Color Research and Application,2006,31 (4),320-330.
    [135]曾旺.不同颜色背景下人眼视觉辨色特性的研究.硕士学位论文.浙江大学,2011,22-28.
    [136]汪哲弘.颜色视觉辨别特性及色差评价研究.博士学位论文.浙江大学,2009,17-26.
    [137]D. J. Finney. The application o f probit analysis to the results of mental test. Psychometerika,1944,9 (1),31-39.
    [138]C. Alder, K. P. Chaing, T. F. Chong, et al. Uniform chromaticity scales-new experimental data. Journal of the Society of Dyers and Colourists,1982,98 (1), 14-20.
    [139]P. A. Garcia, R. Huertas, M. Melgosa, G. Cui. Measurement of the relationship between perceived and computed color differences. Journal of the Optical Society of America,2007,24 (7),1823-1829.
    [140]M. R. Luo, G. Cui, C. Li. Uniform colour spaces based on CIECAM02 colour appearance model. Color Research and Application,2006,31 (4),320-330.
    [141]王勇.数字图像设备颜色特征化及其再现理论与技术研究.博士学位论文.浙江大学,2006,42-48.
    [142]L. Akarun, Y. Yardunci, A. E. Cetin. Adaptive methods for dithering color images. IEEE Transactions on Image Processing,1997,6 (7),950-955.
    [143]黄小乔,石俊生,罗祥安.利用抖动技术提高显示器幅度分辨率的研究,光子学报,2008,37(S2),13-15.
    [144]G. Cui, M. R. Luo, B. Rigg, W. Li. Colour-difference evaluation using CRT colours. Part I:Data gathering and testing colour difference formulae. Color Research and Application,2001,26 (5),402-394.
    [145]汪哲弘.颜色视觉辨别特性及色差评价研究.博士学位论文.浙江大学,2009,49-55.
    [146]A. R. Robertson. CIE guidelines for coordinated research on colour-difference evaluation. Color Research and Application.1978,3,149-151.
    [147]K. Witt. CIE guidelines for coordinated future work on industrial colour-difference evaluation. Color Research and Application,1995,20 (6), 399-403.
    [148]N. Moroney. Local Color Correction Using Non-Linear Masking. IS&T/SID 8th Color Imaging Conference, Scottsdale, Arizona, USA.2000,108-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700