金属熔体过热及过冷液态电阻率与结构的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过电阻率测量,结合高温X射线衍射,从头算分子动力模拟(AIMD),粘度测量等手段,对Pb-Sb, Cu-Ni, Cu-Co, Cu-Sb及C079.5Sn20.5等合金的液态、过冷液态熔体局域结构的演变进行研究,在电子层次上(价电子、自由电子等)揭示金属熔体的液态及过冷液态的电阻率变化、微观结构演变以及它们的相关性,为完善金属凝固理论奠定一定的理论基础,为新型合金材料的开发提供理论支持。
     首先,根据费米面实验数据修正的模型赝势,结合实验结构因子及硬球结构因子,计算不同温度下液态铅的电阻率,并对计算过程中的误差及模型赝势的适用性进行了分析。这加深了我们对电阻率与结构相关性的认识,也为二元Pb-Sb合金电阻率的计算奠定基础。通过测量Pb-Sb合金熔体的电阻率及粘度,发现Pb3oSb7o, Pb2oSb8O及Pb10Sb90熔体在降温过程中具有非线性的电阻率温度关系。Pb20Sb80与Pb30Sb70熔体的异常的粘度温度关系证实了异常结构转变的存在,这种异常转变被认为是具有Peierls畸变的大尺寸Sb团簇的形成。
     再次,通过高温XRD, AIMD,电阻率测量及粘度测量对Cu-Sb合金熔体的结构演变进行了研究。Cu80Sb20熔体结构因子(S(q))主峰之前存在的预峰表明,熔体中存在中程有序(MRO)。熔体的偏双体分布函数表明,异类原子间距明显小于同类原子半径之和。负的V(?)arren-Cowley参数及负的TCR,异常大的粘流激活能也都表明熔体中CSRO的存在。通过纳米晶粒模型的计算得到的Cu3Sb衍射强度曲线上,也具有与实验得到的衍射强度曲线一致的预峰,这直接表明熔体中存在着与晶体Cu3Sb团簇相类似的团簇结构。Cu37Sb63及Cu20Sb80的结构因子曲线上具有明显的主峰劈裂现象,这被认为是熔体中存在着Cu-和Sb-类团簇的标志。Cu20Sb80的粘度温度关系上存在着转折,低温下粘流激活能增大,这表明了Sb类团簇及皮尔斯畸变的强化。在整个Cu-Sb合计的AIMD模拟研究中,我们发现,异类原子偏配位数明显高于同类原子的偏配位数,这表明了熔体中原子异类配位具有优先性。Sb-Sb原子间距在Cu75Sb25处具有明显的跌落,这意味着Sb-Sb配位的快速增加。电阻率的成分关系,也表明了熔体中的结构的不均匀性。而熔体中Warren-Cowley参数与浓度相关函数的负的最大值的位置明显不同,被认为是尺寸效应及其导致的成分不均匀性造成的。
     其次,通过无电极测量方式,对Cu-Ni, Cu-Co合金的液态及过冷液态电阻率温度关系进行了研究。结果表明,Cu-Ni合金的液态及过冷液态具有线性的电阻率温度关系,而Cu-Co合金的液相线附近及以上温度具有线性电阻率温度关系,而在过冷区域发生了明显的转折,并且电阻率温度系数(TCR)变化的温度区间与亚稳相分离的温度区间相吻合。凝固组织研究也表明TCR发生改变的试样的凝固组织发生了相分离。这些结果表明,熔体进入过冷液态不会影响其电阻率温度关系,当熔体发生相变或者电子浓度明显变化时,TCR才会发生变化。
     最后,通过对C079.5Sn20.5合金的液态、过冷结构的结构进行了XRD,电阻率,DSC表征,获得了熔体由液态到过冷液态的局域结构参数的变化。结果发现,进入过冷液态后,熔体的局域团簇的原子数目快速增加。通过凝固组织研究发现,随着过冷度的变化,Co79.5Sn20.5合金不同过冷度凝固的表面形貌及横截面的微观组织形貌均会发生变化。通过成分分析,发现初生Co固溶体的Sn含量高于固溶度极限值,获得α-Co相的溶质截留效应的直接证据,结合组织形貌分析,探索过冷结构对凝固过程中的枝晶生长方式的影响。
Using resistivity measurement, Pb-Sb, Cu-Ni, Cu-Co, Cu-Sb and melts are studied. Cu-Sb and Co79.5Sn20.5melts are also investigated combining high temperature XRD, AIMD, viscosity measurement. The structure evolution in superheated and undercooled liquid, and its relationship to resistivity change have been studied on electronic level (valence electrons, free electrons). These would lay a theoretical basis to perfect metal solidification theory and provide theoretical support to develop new alloys.
     Firstly, using the pseudopotential corrected by data of Fermi surface, combined with experimental and hard-sphere structure factor, resistivity of liquid Pb is calculated. The validity and errors of calculation are discussed. This not only deepens our understanding of the relationship between resistivity and structure, but also is helpful to calculate the resistivity of Pb-Sb alloys. In Pb30Sb70, Pb20Sb80, and Pb10Sb90melts, temperature dependence of resistivity deviates from linear dependence during cooling. In Pb30Sb70and Pb20Sb80melts, abnormal viscosity verifies the existence of abnormal structure transition, which is attributed to the reinforcement of Peierls distortion.
     Secondly, local structure of Cu-Sb alloys has been studied by X-ray diffraction, ab initio molecular dynamics simulation, viscosity and resistivity measurements. Over the whole concentration range, heterogeneous coordination numbers are larger than that of homogeneous atoms, indicating preferential Cu-Sb coordination. A drop is observed in maximum position of simulated Sb-Sb partial distribution functions around Cu75Sb25, which reveals the rapid increase of Sb-Sb coordination. Structural inhomogeneity has been discussed by resistivity measurements. Pre-peaks in relation with medium-range order are observed in structure factor of Cu-20at.%Sb. Negative Warren-Cowley parameters, abnormally large activation energy of viscous flow and negative TCR, reflect the existence of chemical order, which is interpreted as Cu3Sb clusters following nano-crystal model. Around eutectic melts, main peak splitting is observed in both structure factor and simulated total PDFs, which reveals the co-existence of Cu-Sb heterogeneous and Sb-Sb clusters. This results in the smaller first neighbor radius and higher viscosity in Cu37Sb63melts. In pair distribution functions of Cu20Sb80melts, the hump around0.44nm becomes obvious below973K, which reveals the reinforcement of Sb clusters with Peierls distortion. This is consistent with the increase in viscous-flow activation energy in Cu20Sb80melts around973K.
     Thirdly, the resistivity behavior of undercooled liquid Cu-Ni and Cu-Co alloys had been studied by the electrodeless method, to probe the structure transition in undercooled melts during the cooling process. Over the entire concentration range, linear behavior of resistivity with temperature was obtained in Cu-Ni system. And similar results were obtained in Cu-Co system in the vicinity of liquidus temperature. However, a turning point was obvious in temperature coefficient of resistivity of Cu-Co alloys around the bimodal line, which was interpreted to be responsible for metastable liquid-liquid phase separation. During liquid phase separation process, resistivity decreased and the temperature coefficient of resistivity was larger than that of homogeneous melts. In combination with TEM and SEM studies on the as-solidified microstructure, this was interpreted as the formation of egg-type structure and concentration change in Cu-rich and Co-rich phases. These indicate that, when noble and transition melts enter into undercooled liquid states, temperature dependence of resistivity does not change.
     Finally, with the help of XRD, resistivity, viscosity and DSC, structure evolution of Co79.5Sn20.5alloys has been studied from superheated to undercooled liquid state. In undercooled liquid state, the number of atoms in atomic clusters rapidly increased. The microstructure and surface morphology change with undercooling of Co79.5Sn20.5alloy. Combing melts structure, EDS and morphology analysis, the growth model in undercooled melts has been discussed.
引文
1边秀房,刘相法,马家骥,铸造金属遗传学.山东科学技术岀版社,济南,1999
    2边秀房,王伟民,李辉,马家骥,金属熔体结构.上海交通大学出版社,上海,2003
    3 Srirangam P, Kramer M J, Shankar S. Effect of strontium on liquid structure of Al-Si hypoeutectic alloys using high-energy X-ray diffraction, Acta Materialia,2011,59:503-513
    4赵宁,潘学民,马海涛,王来.Cu-Sn焊料液态结构的研究.金属学报,2008,4:467-472
    5 Qin J, Zuo M, Gu T, Liu X. The featured local structural units in liquid Al80Si15P5 alloy and their relationship with Si modification. Journal of Alloys and Compounds,2010,49:525-528
    6 Qin J, Gu T, Yang L, Bian X. Study on the structural relationship between the liquid and amorphous Fe78Si9B13 alloys by ab initio molecular dynamics simulation. Applied Physics Letters,2007,90:201909
    7张振忠,宋广生,杨根仓,周尧和.深过冷净化的影响因素及工艺优化.铸造技术,1999,18(3):40-43
    8陈光,俞建威,孙彦臣,傅恒志.熔体热历史对Al-Cu合金定向凝固界面稳定性的影响.材料研究学报,1999,13:497-500
    9 Lee B, Lee G W. Comparative study of Ti and Ni clusters from first principles, Journal of Chemical Physcis,2007,127:164316
    10 Wang N, Han X J, Wei B. Specific heat and thermodynamic properties of undercooled liquid cobalt. Applied Physics Letters,2002,80:28
    11 Tian X L, Chen X C, Ilinsky A G. Microstructure of Cu70Ni30 alloy in liquid and undercooled liquid. Science China series A,2000,43(12):1301-1305
    12 Hou J X, Zhan C W, Tian X L, Chen X C, Kim Y S, Choe H. Structure of Cu-Sn melt at high temperature. Metallurgical and Materials Transactions A,2012,43A:4023-4027
    13 Hirata A, Hirotsu Y, Ohkubo T, Hanada T, Bengus V Z. Compositional dependence of local atomic structures in amorphous Fe100-xBx (x= 14,17,20) alloys studied by electron diffraction and high-resolution electron microscopy. Physical Review B,2006,74:214206
    14 Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiterk G. Observation of five-fold local symmetry in liquid lead. Nature,2000,408:839-841
    15 Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D M. Physical Review Letters, 2002,89:075507
    16 Frank F C. Supercooling of liquids. Proceedings of the Royal Society of London. Series A, 1952,215(1120):43-46
    17 Turnbull D. Formation of crystal nuclei in liquid metals. Journal of Applied Physics,1950,21: 1022
    18 Lee G W, Gangopadhyay A K, Kelton K F, Hyers RW, Rathz T J, Rogers J R, Robinson D S. Difference in icosahedral short-range order in early and late transition metal liquids. Physical Review Letters,2004,93:037802
    19 Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz TJ, Rogers J R, Robinson M B, Robinson DS. First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Physical Review Letters,2003,90:195504
    20 Kim T H, Lee G W, Gangopadhyay A K, Hyers R W, Rogers J R, Goldman A I, Kelton K F. Structural studies of a Ti-Zr-Ni quasicrystal-forming liquid. Journal of Physics:Condense Matter, 2007,19:455212
    21 Simonet V, Hippert F, Klein H, Audier M, Bellissent R, Fischer H, Murani A P, Boursier D. Local order and magnetism in liquid Al-Pd-Mn alloys. Physics Review B 1998,58:6273-6286
    22 Jakse N, Bacq O L, Pasturel A. Localized magnetism in liquid alloys:A first-principles investigation. Europhysical Letters,2006,74(2):275
    23 Herlach D M. Metastable materials solidified from undercooled melts. Journal of Physics: Condense Matter 2001,13:7737-7751
    24 Platzek D, Notthoff C, Herlach D M, Jacobs G, Herlach D, Maier K. Specific heat capacity of undercooled magnetic melts. Applied Physics Letters,1994,65:1723
    25 Egry I. Structure and properties of levitated liquid metals. Journal of Non-Crystalline Solids, 1999,250-252:63-69
    26 Tasci E, Sluiter M, Pasturel A, Villars P. Liquid structure as a guide for phase stability in the solid state:Discovery of a stable compound in the Au-Si alloy system. Acta Materialia,2010,58: 449-456
    27 Ning S, Bian X, Ren Z. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys. Physica B,2010,405:3633-3637
    28 Shor Y, Yahel E, Makov. G. Short range order in anomalous liquid metals. Journal of Non-Crystalline Solids,2012,358:2687-2694
    29 Bellissent R, Nergman C, Ceolin R, Gaspard J P. Structure of liquid As:A Peierls distortion in a liquid. Physical Review Letters 1987,59:661
    30 Otjacques C, Raty J Y, Coulet M V, Johnson M, Schober H, Bichara C, Gaspard J P. Dynamics of the negative thermal expansion in tellurium based liquid alloys. Physical Review Letters,2009, 103:245901
    31 Raty J, Godlevsky V, Ghosez P, Bichara C, Gaspard J, Chelikowsky J. Evidence of a reentrant peierls distortion in Liquid GeTe. Physical Review Letters,2000,85:1950-1953
    32 Huang L, Wang C, Ho K. Structure and dynamics of liquid Ni36Zr64 by ab initio molecular dynamics. Physics Review B,2011,83:184103
    33 Holland-Moritz D, Schenk T, Simonet V, Bellissent R (2003). MRS Proceedings,805,201-212
    34 Wessels V, Gangopadhyay A, Sahu K, Hyers R, Canepari S, Rogers J, Kramer M, Goldman A, Robinson D, Lee J, Morris J, Kelton K. Rapid chemical and topological ordering in supercooled liquid Cu46Zr54. Physical Review B,2011,83:094116
    35 Steeb S, Entress H. Atom distribution and electrical resistivity of Mg-Sn alloys. Zeitschrift fur Metallkunde,1966,57:803-807
    36 Cormier L, Gaskell P, Calas G, Soper A. Medium-range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution. Physical Review B,1998,58: 11322
    37 Alblas B, Lugt W, Dijkstra J, Geertsma W, Van Dijk C. Structure of liquid Na-Sn alloys. Journal of Physics F:Metal Physics,1983,13:2465-2477
    38 Qin J, Bian X, Sliusarenko S, Wang W. Pre-peak in the structure factor of liquid Al-Fe alloy. Journal of Physics:Condense Matter,1998,10:1211-1218
    39 Bian X, Sun M, Xue X, Qin X. Medium-range order and viscosity of molten Cu-23% Sn alloy. Materials Letters,2003,57:2001-2006
    40 Chiba A, Tomomasa M, Hayakawa T, Bennington S, Hannon A, Tsuji K. Pressure-induced suppression of the Peierls distortion of liquid As and GeX (X=S.Se,Te). Physical Review B,2009, 80:060201
    41 Saida J, Matsushita M, Inoue A. Nanoicosahedral quasicrystalline phase in Zr-Pd and Zr-Pt binary alloys. Journal of Applied Physics 2001,90:4717
    42 Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A, Jiang J. Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Applied Physics Letters 2003,83:3924
    43 Yang L, Jiang J, Saksl K, Franz H. Origin of the pre-peak in Zr70Cu29Pd1 metallic glass. Journal of Physics:Condense Matter,2007,19:476217
    44 Liu D, Pan S, Qin J, Gu T. Chemical and topological short-range order evolution of Mg65Cu25Gd10 alloy in the process of rapid solidification. Journal of Applied Physics,2011,109: 093519
    45徐锦锋,代富平,魏炳波.急冷条件下Cu-Pb偏晶合金的相分离研究.物理学报,2007,56(7):3996-4003
    46 He J, Li H, Yang B, Zhao J, Zhang H, Hu Z. Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particles. Journal of Alloys and Compounds,2010,489:535-540
    47 Aasland S, McMillan P. Density-driven liquid-liquid phase separation in the system Al2O3-Y2O3, Nature,1994,369:633-636
    48 Curiotto S, Greco R, Pryds N H, Johnson E, Battezzati L. The liquid metastable miscibility gap in Cu-based systems. Fluid Phase Equilibria 2007,256:132-136
    49 Greaves G N, Meneau F, Sapelkin A, Colyer L M, Gwynn I, Wade S, G. Sankar. The rheology of collapsing zeolites amorphized by temperature and pressure, Nature, Materials,2003,2: 622-629
    50 Barnes A C, Skinner L B, Salmon P S, Bytchkov A, Pozdnyakova I, Farmer T O, Fischer H E. Liquid-liquid phase transition in supercooled yttria-alumina. Physical Review Letters,2009,103: 225702
    51 Angell C A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science,2008,319:582-587
    52 Glosli J M, Ree K H. Liquid-liquid phase transformation in carbon. Physical Review Letters, 1999,82:4659-4662
    53 Togaya M. Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid Carbon. Physical Review Letters,1997,79:2474-2477
    54 Tsuji K. Structure of liquid metals under high pressure. Journal of Non-Crystalline Solids, 1990,117-118:27-34
    55 Zu F Q, Shen R R, Xi Y, Li X F, Ding G H, Liu H M. Electrical resistivity of liquid Sn-Sb alloy. Journal of Physics:Condense Matter,2006,18(10):2817-2823
    56 Shen R R, Zu F Q, Li Q, Xi Y, Li, X F, Ding G H, Liu H M. Study on temperature dependence of resistivity in liquid In-Sn alloy. Physica Script A,2006,73 (2):184-187
    57 Huang Z Y, Xi Y, Zu F Q, Li X F, Ding G H, Chen J. On the correlation between solidified microstructures and liquid structural states in Bi-40 wt%Te alloy. Journal of Crystal Growth,2009, 311:4129-4133
    58 Dzugutov M, Dahlborg U. Collective excitations in a liquid semimetal:Molecular-dynamics simulation of the dynamics of liquid bismuth. Physical Review A,1989,40:4103
    59 Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P, Makov G. Evidence for a temperature-driven structural transformation in liquid bismuth. Europhysical Letters,2009,86: 36004
    60 Frank F C, Kaspar J S. Complex alloy structures regarded as sphere packings. Acta Crystallographica,1958,11:184
    61 Bernal J D. Proceedings of the Royal Institution of Great Britain.1959,37:355
    62 Bernal J D. A geometrical approach to the structure of liquids. Nature, London,1959,183: 141-147
    63 Bernal J D, Mason J. Packing of spheres:co-ordination of randomly packed spheres. Nature, London,1960,188:910
    64 Bernal J D. Geometry of the structure of monatomic liquids, Nature, London,1960,185:68
    65 Percus J K, Yevick G J. Dynamical considerations on a new approach to the many-body problem. Physical Review,1958,110:1
    66 Ascroft N W, Lekner. Structure and resistivity of liquid metals. J. Phys. Rev.1965,145:83
    67 Waseda Y. The Structure of Non-Crystalline Materials-Liquids and Amorphous Solids. McGraw-Hill,1981
    68 Kaban I, Hoyer W, Il'inskii A, Slukhovskii O, Slyusarenko S. Short-range order in liquid silver-tin alloys. Journal of Non-Crystalline Solids,2003,331:254-262
    69 Tian X L, Shen J, Sun J F, Li Q C. A new model for microstructure of liquid metal. Chinese Physical Letters,2004,21:700-703
    70 Klug H P, Alexander L E. Fundamental Principles of X-ray Diffraction, in:X-ray Diffraction Procedures.2nd, eds. Wiley, New York,1974,120-170.
    71 Tian X L, Zhan C W, Hou J X, Chen X C, Sun J J. Nanocrystal model for liquid metals and amorphous metals. Journal of Materials Science Technology,2010,26(1):69-74
    72 共晶Ni53Si47合金的液固结构相关性.孙建俊,田学雷,郑洪亮,詹成伟.材料科学与工程学报,2009,10:668-670
    73 Hou J X, Sun J J, Zhan C W, Tian X L, Chen X C. The structural change of Cu-Sn melt. Science in China Series G:Physics, Mechanics and Astronomy,2007,50:414-420
    74 Eder O J, Erdpresser E, Kunsch B, Stiller H, Suda M, Weinzierl P. The structure factor of liquid nickel at 1873K. Journal of Physics F:Metal Physics,1979,9:1215-1222
    75 Di Cicco A. Local structure in binary liquids probed by EXAFS. Journal Physics:Condense Matter,1996,8:9341-9345
    76 Wang Q, Chen X, Li C, Lu K. Electrical resistivity of molten indium-antimony alloys. Journal of Applied Physics,2000,87:4623-4625
    77 Plevachuk Y, Sklyarchuk V, Hoyer W, Kaban I. Electrical conductivity, thermoelectric power and viscosity of liquid Sn-based alloys. Journal of Materials Science,2006,41:4632-4635
    78 Terzieff P, Tsuchiya Y. Magnetic susceptibility of liquid Ag-Ge, Ag-Sn and Ag-Pb. Journal of Physics:Condense Matter,2001,13:3573-3582
    79 Gu T, Qin J, Xu C, Bian X. Structural, bonding, and dynamical properties of liquid Fe-Si alloys:An ab initio molecular-dynamics simulation. Physical Review B 2004,70:144204
    80 Han X J, Chen M, Lv Y J. Transport properties of undercooled liquid copper:a molecular dynamics study, International Journal of Thermophysics,2008,29:1408-1421
    81 Debye P, Menke H. Determination of the internal structure of liquids with X-rays. Zeitschrift fur Physik,1930,31:797
    82 Hoyer W, Jodicke R. Short-range and mediun-order in liquid Au-Ge alloys. Journal of Non-Crystalline Solids,1995,192-193:102-105
    83 Katayama Y, Mizutani T. Utsumi W, Shimomura O, Yamakata M, Funakoshi K, Nature (London),2000,403:170
    84 Zu F, Zhu Z, Guo L, Qin X, Yang H, Shan W. Observation of an anomalous discontinuous liquid-structure change with temperature. Physical Review Letters,2002,89:125505
    85 Dahlborg U, Besser M, Calvo-Dahlborg M, Cuello G, Dewhurst C D, Kramer M J, Morris J R, Sordelet D J. Structure of molten Al-Si alloys. Journal of Non-Crystalline Solids,2007,353: 3005-3010
    86 Jelassi J, Grosz T, Bako I, Bellissent-Funel M C, Dore J C, Castricum H L, Sridi-Dorbez R. Structural studies of water in hydrophilic and hydrophobic mesoporous silicas:an x-ray and neutron diffraction study at 297 K. Journal Chemical Physics,2011,134:6
    87 Lorenzo J E, Regnault LP, Boullier C, Martin N, Vanishri S, Marin C. Magnetic chirality of the spin triplet in the spin-ladder compound Sr,4Cu24041 as seen via polarized inelastic neutron scattering. Physical Review B,2011,83:140413
    88 Isnard O, Paul-Boncour V, Arnold Z, Colin C V, Leblond T, Kamarad J, Sugiura H. Pressure-induced changes in the structural and magnetic properties of YFe2D4.2. Physical Review B,2011,84:094429
    89 Fricke H. The K-characteristic absorption frequencies for the chemical elements magnesium to chromium. Physical Review,1920,16:202
    90 Sayers D E, Stern E A, Lytle F W. New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray absorption fine structure. Physical Review Letter,1971,27: 1204-1207
    91 Petersen H, Kunz C. L2,3 transitions in liquid Na and Al:edge singularity and extended X-ray-absorption fine structure. Physical Review Letters,1975,35:863
    92 Hayes T M, Boyce J B. EXAFS as a probe of atom-atom interaction potentials:Agl and Cul. Journal of Physics C:Solid State Physics,1980,13:L731
    93 Filipponi A, Di Cicco A. Short-range order in crystalline, amorphous, liquid, and supercooled germanium probed by x-ray-absorption spectroscopy. Physical Review B,1995,51:12322
    94 Di Cicco A, Trapananti A, Faggioni S, Filipponi A. Physical Review Letters,2003,91:135505
    95 Zhao X, Bian X, Bai Y, Li X. Structure and fragility of supercooled Ga-In melts. J. Appl. Phys. 2012,111:103514
    96 Pola A, Gelfi M, Modigell M, Roberti R. Semisolid lead-antimony alloys for cars batteries. Trans. Nonferrous Met. Soc. China,2010,20:1774-1779
    97 Wang X, Bian X, Song K, Zhao X, Bai Y. Melt fragility of near-intermetallic composition. J. Appl. Phys.2012,112:074902
    98 Wagner S, Pundt A. Electrical resistivity and hydrogen solubility of PdHc thin films. Acta Materialia,2010,58:1387-1394
    99 He D W, Zhang F X, Yu W, Zhang M, Liu Y P, Wang W K. Electrical resistance changes of germanium during solidification under high pressure, Journal of Applied Physics,1998,83: 5003-5005
    100 Guo F, Lu T, Qin J, Zheng H, Tian X. Abnormal resistivity behavior of Cu-Ni and Cu-Co alloys in undercooled liquid state. Physica B,2012,407:4108-4113
    101 Ziman J M. A theory of the electrical properties of liquid metals. Philosophical Magazine, 1961,6:1013-1034
    102 Evans R, Greenwood D A, Lloyd P, Ziman J M. The resistivity and thermopower of liquid Mercury. Physical Letters,1969,30A:313
    103 Kumar A, Ojha D P. Anomalous behavior of electronic transport properties in Cu-Sn liquid binary alloys. Armenian Journal of Physics,2012,5:21-34
    104 Gu T. Correlation between local structure and electrical resistivity in gallium-antimony melts. Applied Physics Letters,2012,100:171908
    105 Abdellah A B, Gasser J G, Makradi A, Grosdidier B, Hugel J. Resistivity of the liquid gallium-lead miscibility gap system. Physics Review B,2003,68:184201
    106 Chaib C, Gasser J G, Hugel J, Roubi L. Electrical resistivity and absolute thermoelectric power of liquid copper-lead alloys. Physica B,1998,252:106-113
    107 Wang Q, Chen X, Li C, Lu K. Electrical resistivity of molten indium-antimony alloys. Journal of Applied Physics,2000,87:4623-4625
    108 余瑾,祖方遒,丁厚福,刘兰俊,李先芬,薛国宪.连续变温金属固一液电阻率测试装置及应用.稀有金属学报,2004,28(5):880-884
    109 Li X F, Li J G, Zu F Q, Hu C M, Yi X. Reversible resistivity-temperature anomalies of liquid Pb-Bi-Sn alloys. Physics and Chemistry of Liquids,2009,47(6):673-680
    110 Huang Z, Zu F, Li X. Control of the phase composition and morphology of a Cu-Sb eutectic alloy via liquid-liquid structure transition. Crystal Research and Technology,2012,47:953-959
    111 Hajek M, Vesely J, Cieslar M. Precision of electrical resistivity measurements. Materials Science and Engineering A,2007,462:339-342
    112 Jia E G, Guo L J, Wu A Q, Shan W J, Zhu Z G. Temperature and concentration dependence of the electrical resistivity of liquid indium-tin alloys. Physics Script,2007,75:490-493
    113 Endo R, Maeda S, Jinnai Y, Lan R, Kuwahara M, Kobayashi Y, Susa M. Electric resistivity measurements of Sb2Te3 and Ge2Sb2Te5 Melts using four-terminal method. Japanese Journal of Applied Physics,2010,49:065802
    114 Enderby J E, Ansell S, Krishnan S, Price D L, Saboungi M L. The electrical conductivity of levitated liquids. Applied Physics Letters,1997,71:116
    115 Barnes A C, Whittle K R, Enderby J E. A determination of the electronic conductivity of aerodynamically levitated high temperature liquid metals and semiconductors by contactless methods. Journal of Non-Crystalline Solids,2002,312-314:299-304
    116 Teodorescu S G, Overfelt R A, Bakhtiyarov S I. An inductive technique for electrical conductivity measurements on molten metals. International Journal of Thermophysics,2001,22: 25-30
    117 Richardsen T, Lohofer G. Contactless electrical conductivity measurement of electro-magnetically levitated metallic melts. International Journal of Thermophysics,1999,20:1029
    118 Richardsen T, Lohofer G, Egry I. Electrical Resistivity of Undercooled Liquid Cu-Ni Alloys. 2001,23:1207-1216
    119 Egry I. Structure and properties of levitated liquid metals. Journal of Non-Crystalline Solids, 1999.250-252:63-69
    120 Tumbull D. Formation of Crystal Nuclei in Liquid Metals. Journal of Applied Physics,1950, 21:1022-1028
    121 Willnecker R, Herlach D M, Feuerbacher B. Evidence of nonequilibrium processes in rapid solidification of undercooled metals. Physical Review Letters,1989,62:2707-2710
    122 Liu F, Yang G C. Rapid solidification of highly undercooled bulk liquid superalloy:recent developments, future directions. International Materials Reviews,2006,51:145-170
    123 孙万里,张忠明,徐春杰,郭学锋.深过冷快速凝固技术的研究进展.兵器材料科学与工程,2005,5:66-71
    124 Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metallurgica,1958,6:704-711
    125 Wang C, Liu X, Ohnuma I, Kainuma R, Ishida K. Formation of immiscible alloy powders with egg-type microstructure. Science,2002,297:990-993
    126 Cao C D, Herlach D M, Kolbe M, Gorler GP, Wei B. Rapid solidification of Cu84Co16 alloy undercooled into the metastable miscibility gap under different conditions. Scripta Materialia, 2003,48:5-9
    127 Curiotto S, Battezzati L, Johnson E, Pryds N. Thermodynamics and mechanism of demixing in undercooled Cu-Co-Ni alloys. Acta Materialia 2007,55:6642-6650
    128 Yang W, Chen S H, Yu H, Li S, Liu F, Yang G C. Effects of liquid separation on the microstructure formation and hardness behavior of undercooled Cu-Co alloy. Applied Physics A, 2012,109:665-671
    129 Xie H, Sun J, Yang GC, Chen YZ, Lu ZL. Liquid phase separation and its thermodynamic description in undercooled Ni-Pb hypermonotectic melts. Materials Science and Engineering A, 2007,457:33-37
    130 Kolbe M, Cao C D, Lu X Y, Galenko P K, Wei B, Herlach D M. Solidification behavior of undercooled Co-Cu alloys showing a metastable miscibility gap. Materials Science and Engineering A,2004,375-377:520-523
    131 Piccone TJ, Wu Y, Shiohara Y, Flemings M C. Dendritic growth of undercooled nickel-tin. Metallugrical Transactions A,1987,18A:925
    132 Yao W J, Wei B. Nucleation and growth of Cu3Sb intermetallic compound in undercooled Cu-31%Sb eutectic alloy. Journal of Alloys and Compounds,2004,366:165-170
    133 Yang C, Liu F, Yang G, Chen Y, Liu N, Zhou Y. Microstructure and phase selection in bulk undercooled Fe-B eutectic alloys, Journal of Alloys and Compounds,2007,441:101-106
    134 Liu L, Wei X X, Huang Q S. Li J F, Cheng X H, Zhou Y H. Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys. Journal of Crystal Growth,2012,358:20-28
    135 Liu L, Li JF, Zhou YH. Solidification of undercooled eutectic alloys containing a third element. Acta Materialia,2009,57:1536-1545
    136 Dragnevski K, Cochrane R F, Mullis A M. Experimental evidence for dendrite tip splitting in deeply undercooled ultrahigh purity Cu. Physical Review Letters,2002,89:215502
    137 Dragnevski K, Cochrane R F, Mullis A M. Experimental evidence for dendrite tip splitting in deeply undercooled ultrahigh purity Cu. Phys. Rev.Lett.2002,89:215502
    1 Guo F, Zheng H, Qin J, Qin X, Lv T, Jia Y, Xu R, Tian X. Medium-range order and physical properties of Cu-20at.% Sb melts. Journal of Non-Crystalline Solids 2012,358:3327-3331
    2 Waseda Y. The structure of non-crystalline materials. New York:McGraw-Gill,1980
    3 Cromer D T, Mann J B. Compton Scattering Factors for Spherically Symmetric Free Atoms. J Chem Phys 1967,47:1892
    4 Ning S, Bian X, Ren Z. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys. Physica B,2010,405:3633-3637
    5 Emadi D, Gruzleski J E, Toguri J M. The effect of na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metall. Trans. B Process. Metall.1993,24:1055-1063
    6 米春旭,贺俊艳,秦敬玉,潘少鹏.Fe78Si9B,3非晶合金晶化过程的电阻变化研究.功能材料,2009,11:1818-1821
    7 Zhang M, Tian X, Guo F.电磁感应式液固态金属电阻率定性测量装置及应用.A cta. Phys. Sin.-Chin. Ed.2009,58:6080
    8 Foster R. A reactance theorem. Bell system technical journal,1924,3:259-267
    9 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999,59:1758
    10 Nose S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984,81:511
    11 Qin J, Liu H, Gu T, Bian X. The complex structure of liquid Cu6Sn5 alloy. J. Phys. Condens. Matter 2009,21:155106
    1边秀房,李辉,张景祥,李玉忱.温度对液态重金属Pb结构变化的影响.无机化学学报,2000,16:47
    2 Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G. Observation of five-fold local symmetry in liquid lead. Nature,2000,408:839
    3 Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C. Structure change of Pb melt. Phy. Lett. A 2006,358:171
    4周丽丽,刘让苏,侯兆阳,田泽安,林艳,刘全慧.冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.物理学报,2008,57:3653
    5 Li H, Zhang J, Song X G, Bian X F, Zhang J X. Reverse Monte Carlo study on structural order in liquid and glassy Al-Fe alloys. Chin. Phys. B,2009,18:4949
    6 Chen J Z, Zhang J, Han R S. First-principles calculation of transport property in nano-devices under an external magnetic field. Chin. Phys. B,2008,17:2208
    7王强,陆坤权,李言祥.物理学报.液态InSb的电阻率和热电势与温度的关系.2001,50:1335
    8雷啸霖.无序晶态合金的电阻率.物理学报,1980,29;1385
    9 Behari J. Effect of the dielectric function on the pseudopotential calculations of some electronic properties:an application to aluminium. J. Phys. F:Met. Phys.1973,3:959
    10 Behari J. Use of a model pseudopotential in the calculation of some electronic properties of lead (solid and liquid states). J. Phys F:Met. Phys.1973,3:1553
    11 Davidovic M, Vukajlovic F, Zekovic S, Veljkovic V. The temperature dependence, of the resistivity of liquid lead. Phil. Mag.1977,36:1257
    12 Ziman J M. A theory of the electrical properties of liquid metals. Ⅰ:The monovalent metals. Phil. Mag.1961,6:1013
    13 Bradley C C, Faber T E, Wilson E G, Ziman J M. A theory of the electrical properties of liquid metals Ⅱ. Polyvalent metals. Phil. Mag.1962,7:865
    14 Anderson J R, Gold A V. Fermi Surface, Pseudopotential Coefficients, and Spin-Orbit Coupling in Lead. Phys. Rev.1965,139:1459
    15 Hu G Y, O'Connell R F. Generalization of the Lindhard dielectric function to include fluctuation effects. Phys. Rev. B 1989,40:3600
    16 Price D L, Singwi K S, Tosi M P. Lattice dynamics of alkali metals in the self-consistent screening theory. Phys. Rev. B 1970,2:2983
    17 Singwi K S, Sjolander A, Tosi M P, Land R H. Electron correlations at metallic densities. Ⅳ. Phys. Rev. B 1970,1:589
    18 Ascroft N W, Lekner J. Structure and resistivity of liquid metals. Phys. Rev.1966,145:83
    19 Bath A, Gasser J G, Bretonnet J L, Bianchin R, Kleim R. J Phys.1980,41:519
    20 Esposito E, Ehrenreich H, Gelatt C D. Electrical resistivity and thermoelectric power of liquid Ge-Sb and Pb-Sb alloys. Phys. Rev. B 1978,18:3913
    21 Dreierach O, Evans R, Guntherodt H J, Kunzi H U. A simple muffin tin model for the electrical resistivity of liquid noble and transition metals and their alloys. J. Phys. F 1972,2:109
    22 Sun Z, Zhou J, Mao H K, Ahuja R. Peierls distortion mediated reversible phase transition in GeTe under pressure. PNAS,2012,109(16):5948-5952
    23 Toriyama T, Nakao A, Yamaki Y, Nakao H, Murakami Y, Hasegawa K, Isobe M, Ueda Y, Ushakov A V, Khomskii D I, Streltsov S V, Konishi T, Ohta Y. Peierls mechanism of the metal-insulator transition in ferromagnetic hollandite K2Cr8O16. Phys Rev Lett,2011,107(26): 266402.
    24 Ding Y, Wang Y. First-principles study of the triwing grapheme nanoribbons: Junction-dependent electronic structures and electric field modulations. Phys Chem Chem Phys, 2012,14:2040-2049
    25 Cheng X, Shen Y, Zhang L, Liu X H. Surface effect on the screw dislocation mobility over the Peierls barrier. Phil Mag Lett,2012,92(6):270-277
    26 Raty J Y, Godlevshy V, Ghosez P, Bichara C, Gaspard J P, Chelikowsky J R. Evidence of a reentrant Peierls distortion in liquid GeTe. Phys Rev Lett,2000,85(9):1950-1953
    27 Wu Y, Zhao G, Liu C, Zhu Z. Molecular dynamics simulations of liquid phosphorus at high temperature and pressure. Commun Theor Phys,2008,49(5):1323-1332
    28 Bellissent R, Bergman C, Ceolin R, Gaspard J P. Structure of liquid As:A Peierls distortion in a liquid. Phys Rev Lett,1987,59(6):661-663
    29 Hafner J, Jank W. Structural and electronic properties of the liquid polyvalent elements. IV. The pentavalent semimetals and trends across the periodic table. Phys Rev B,1992,45(6): 2739-2749
    30 Raty J Y, Gaspard J P, Ceolin R, Bellissent R. Evolution of the Peierls distortion in liquid AsxSb1-x compounds. J Non-cryst Solids,1998,232-234(11):59-64
    31 Tsuchiya Y. Sound velocity in the molten As-Te system. Ber Bunsenges Phys Chem,1998, 102:1123-1127
    32 Waseda Y, Suzuki K. Structure of liquid antimony by neutron diffraction. Phys Status Solidi B, 1971,47(2):581-590
    33 Gaspard J P, Bellissent R, Menelle A, Bergman C, Ceolin R. Melting properties of group-V elements and InSb. Nuovo Cimento D,1990,12:649-655
    34 Wang Q, Li C X, Wu Z H, Wang L W, Niu X J, Yan W S, Xie Y N, Wei S Q, Lu K Q. Temperature effect of the local structure in liquid Sb studied with X-ray absorption spectroscopy. J Chem Phys,2008,128(22):224501
    35 Zu F, Zhou B, Li X, Yi X, Cheng Y, Sun Q. Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys. Transactions of Nonferrous Metals Society of China,2007,17(5): 893-897
    36 Leblanc D, Putyera K. New resistivity/dopant density model for compensated-Si. Transactions of Nonferrous Metals Society of China,2011,21(5):1172-1177
    37 Hu Z, Chen Z, Xia J, Ding G. Wear property of high-resistivity carbon brushes made with and without MoS2 in variable humidity. Transactions of Nonferrous Metals Society of China,2008, 18(2):340-345
    38 Wang Q, Chen X M, Lu K Q. Concentration and temperature dependence of the electrical resistivity of liquid gallium-antimony alloys. J Phys Condens Matter,2001,13(37):8445-8453
    39 Wang Q, Chen X, Li C, Lu K Q. Electrical resistivity of molten indium-antimony alloys. J Appl Phys,2000,87(9):4623-4625
    40 Gu T K, Qin J Y, Bian X F, Xu C Y, Qi Y H. Ab initio molecular dynamics simulations of liquid structure change with temperature for a GaSb alloy. Phys Rev B,2004,70(24):245214
    41 Ziman J M. A theory of the electrical properties of liquid metals. Ⅰ:the monovalent metals. Phil Mag,1961,6(68):1013-1034
    42 Ashcroft N W, Langreth D C. Structure of binary liquid mixtures. Ⅱ. Resistivity of alloys and the ion-ion interaction. Phys Rev,1967,159(3):500-510
    43 Faber T E, Ziman J M. A theory of the electrical properties of liquid metals. Phil Mag,1965, 11(109):153-173
    44 Ohno S, Okazaki H, Tamaki S. Electrical resistivity of liquid Sb-alloy. J Phys Soc Japan,1974, 36(4):1133-1136
    45 Hou J X, Guo H X, Sun J J, Tian X L, Zhan C W, Qin X B, Chen X C. Structure change of Pb melt. Phys Lett A,2006,358(3):171-175
    46 Waseda Y. The structure of non-crystalline materials:liquids and amorphous solids. New York: McGraw-Hill,1981:54-55
    47 Tomlinson J L. Calculated electrical resistivity of liquid alloys. Physical Review,1969,187(1): 341-345
    48 Chiba A, Tomomasa M, Hayakawa T, Hinzmann A, Takahashi R, Nakamura J, Tsukatani T, Kumazawa T, Tsuji K. Relationship between Peierls distortion and medium-range order in liquid group-V elements and liquid group-IV-VI compounds. J Phys Conf Ser,2010,215:012077
    49 Tian X L, Chen X C, Ilinsky A G. Microstructure of Cu70Ni30 alloy in liquid and undercooled liquid. Sci China Ser A,2000,43(12):1301-1305
    50 Richardsen T, Lohofer G, Egry I. Electrical resistivity of undercooled liquid Cu-Ni alloys. Int J Thermophys,2002,23(5):1207-1216.
    51 Li X, Zhang F, Zu F, Lv X, Zhao Z, Yang D. Effect of liquid-liquid structure transition on solidification and wettability of Sn-0.7Cu solder. J Alloys Compd,2010,505:472-475
    52 Li X F, Li, J G, Zu F Q, Hu C M, Yi X. Reversible resistivity-temperature anomalies of liquid Pb-Bi-Sn alloys. Phys Chem Liquids,2009,47(6):673-680
    53 Li X F, Zu F Q, Liu L J, Yu J, Zhou B. Hump phenomenon on resistivity-temperature curve in liquid Bi, Sb and their alloys. Phys Chem Liquids,2007,45(5):531-539
    54 Pola A, Gelfi M, Modigell M, Roberti R. Semisolid lead-antimony alloys for cars batteries. Transactions of Nonferrous Metals Society of China,2010,20(9):1774-1779
    55秦敬玉,边秀房,王伟民,Sliusarenko S I. Al和Sn液态结构的温度变化特性.物理学报,1998,47:438-444
    56 Hou J, Guo H, Sun J, Tian X, Zhan C, Qin X, Chen X. Structure change of Pb melt. Physics Letters A,2006,358:171-175
    57 Bian X, Sun M, Xue X. Qin X. Medium-range order and viscosity of molten Cu-23% Sn alloy. Materials Letters,2003,57:2001-2006
    58 Chaib C, Gasser J G, Hugel J, Roubi L. Electrical resistivity and absolute thermoelectric power of liquid copper-lead alloys. Physica B 1998,252:106-113
    1 Schick M, Brillo J, Egry I, Hallstedt B. Viscosity of Al-Cu liquid alloys:measurement and thermodynamic description. J Mater Sci 2012,47:8145
    2 Tian H, Liu H, Zhang C, Zhao J, Dong C, Wen B. Ab initio molecular dynamics simulation of binary Ni62.5Nb37.5 bulk metallic glass:validation of the cluster-plus-glue-atom model. J Mater Sci 2012,47:7628
    3 Kaban I, Kohler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer AL. Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys. Acta Mater 2011,59:6880
    4 Kaban I, Curiotto S, Chatain D, Hoyer W. Surfaces, interfaces and phase transitions in Al-In monotectic alloys. Acta Mater 2011,483(58):3406
    5 Sun H, Hou L, Wu Y, Wei J. Structural change of laser-irradiated Ge2Sb2Te5 films studied by electrical property measurement, J. Non-Cryst. Solids 2008,354:5563-5566
    6 Tintu R, Nampoori V, Radhakrishnan P, Thomas S. Reverse saturable absorption in nano colloidal Ge 28Sb 12Se 60 chalcogenide glass. J. Non-Cryst. Solids 2011,357:2888-2891
    7 Jordanov N, Wondraczek L, Gutzow I. Thermodynamic properties of amorphous solids:The electrochemical approach. J. Non-Cryst. Solids 2012,358:1239-1256
    8 Subramanian S, Iekha C P, Padiyan P D. Influence of polyaniline doping concentration in (Bi0.5Sb0.5)2S3 thin polycrystalline films on structural, electrical and optical properties. J. Non-Cryst. Solids 2010,356:1173-1179
    9 Mosby J M, Prieto A L. Direct Electrodeposition of Cu2Sb for Lithium-Ion Battery Anodes, J. Am. Chem. Soc.2008,130:10656-10661
    10 Chen J, Yin Z, Sim D, Tay Y Y, Zhang H, Ma J, Hng H H, Yan Q. Controlled CVD growth of Cu-Sb alloy nanostructures. Nanotechnology 2011,22:325602
    11 Gao J R, Wang N, Wei B. Rapid Crystal Growth in Undercooled Hypoeutectic Cu-Sb Alloys. Mater. Sci. Forum 2000,329-330:13-18
    12 Yao W, Han X, Wei B. Monte Carlo Simulation of Thermophysical Properties for Al-Ce Liquid Alloys. Chin. Sci. Bull.2002,47:1312-1316
    13 Yao W J, Wei B. Nucleation and growth of Cu3Sb intermetallic compound in undercooled Cu-31%Sb eutectic alloy. J. Alloys Compd.2004,366:165-170
    14 Gierlotka W, Jendrzejczyk-Handzlik D. Thermodynamic description of the Cu-Sb binary system. J. Alloys Compd.2009,484:172-176
    15 Ning S, Bian X, Ren Z. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys. Physica B 2010,405:3633-3637
    16 Steeb S, Maier U, Godel D. Temperature and concentration-dependency of the electrical resistivity of molten Ag-Mg, Cu-Sb, and Zn-Sn alloy. Phys Chem Liq 1969,1:221-234
    17 Knoll W, Steeb S. Partial interference and pair correlation functions, thermoelectric power, and electrical resistivity of molten Cu-Sb alloys. Phys Chem Liq 1973,4:27-38
    18 Halm Th, Neumann H, Hoyer W Z Naturforsch,1994,49A:489
    19 Zhao N, Pan X, Ma H, Wang L. The liquid structure of Sn-Cu lead-free solders. Acta Metall. Sin.2008,4:467-472
    20 McMillan P. Phase transitions jumping between liquid states. Nature 2000,403:151-152
    21 Greenberg Y, Yahel E, Caspi EN, Benmore C, Beuneu B, Dariel M P, Makov G. Evidence for a temperature-driven structural transformation in liquid bismuth. EPL 2009,86:36004
    22 Zu F Q, Mao L N, Hu C M, Chen J, Huang Z Y, Liu Y C, Liu M Q. Effects of liquid-liquid transition on solidification of Sb-10 wt.%Cu alloy. Materials Science and Technology,2010,26 (11):1353-1157
    23 Huang Z, Zu F, Li X. Control of the phase composition and morphology of a Cu-Sb eutectic alloy via liquid-liquid structure transition. Cryst Res Technol 2012,47:953-9
    24 Kitada M, Imafuku M, Saida J, Inoue A. Structural study of quasicrystallization in Zr-NM metallicglasses, J. Non-Cryst. Solids 2002,312-314:594-598
    25 Hoppe U, Walter G, Brow R K, Wyckoff N P. Structure of potassium germanophosphate glasses by X-ray and neutron diffraction:2. Medium-range order. J. Non-Cryst. Solids 2008,354: 3400-3407
    26 Mauro N A, Wessels V, Bendert J C, Klein S, Gangopadhyay A K, Kramer M J, Hao S G, Rustan G E, Kreyssig A, Goldman A I, Kelton K F. Short and medium range order in ZrgoPt20 liquids, Phys. Rev. B 2011,83:184109
    27 Hui X, Gao R, Chen G L, Shang S L, Wang Y, Liu ZK. Short-to-medium-range order in Mg65Cu25Y10 metallic glass, Phys. Lett. A 2008,372:3078
    28 Knoll W, Steeb S. Structure of molten Copper-Antimony alloys by combination of neutron and X-ray diffraction. Phys. Chem. Liq.1973,4:39-60
    29 Li M, Du Z, Guo C, Li C. Thennodynamic optimization of the Cu-Sn and Cu-Nb-Sn systems. J. Alloys Compd.2009,477:104-117
    30 Bian X, Sun M, Xue X, Qin X. Medium-range order and viscosity of molten Cu-23% Sn alloy, Mater. Lett.2003,57:2001-2006
    31 Chiba A, Tomomasa M, Hayakawa T, Hinzmann A, Takahashi R, Nakamura J, Tsukatani T, Kumazawa T, Tsuji K, Chiba A, Tomomasa M, Hayakawa T, A H. Relationship between Peierls distortion and medium-range order in Liquid Group-V elements and liquid Group-IV-VI compounds. J. Phys. Conf. Ser.2010,215:012077
    32 Tian XL, Zhan CW, Hou JX, Chen XC, Sun JJ. The nanocrystal model for liquid metals and amorphous metals. J. Mater. Sci. Technol.2010,26:69-74.
    33 Sun J J, Tian X L, Zhan C W, Zhang M X. Structure correlation of Al71.6Ge28.4 eutectic alloy be-tween liquid and solid state. Chin. Sci. Bull.2009,54:2252-2256
    34 Sun J, Zheng H, Shi X, Tian X. Structure correlation of Co795Sn20.5 eutectic alloy between liquid and solid states. Chinese Sci. Ser. E 2009,52:1-4
    35 Glasstone S, Laidler J J, Eyring H, in:The Theory of Rate Processes, McGraw-Hill book Company, Inc, New York,1941, pp.85-100.
    36 Faber T E, Ziman J M. A theory of the electrical properties of liquid metals. Ⅲ. the resistivity of binary alloys. Phil. Mag.1965,11:153-173
    37 Busch G, Guntherodt HJ. Electronic Properties of Liquid Metals and Alloys. Solid State Phys. 1974,29:235-313
    1 Lee G W, Gangopadhyay A K, Kelton K F, Hyers R W, Rathz T J, Rogers J R, Robinson D S. Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett.,2004,93:037802
    2 Saadeddine S, Gasser J G. Electrical resistivity of liquid copper-silver alloys. Philos. Mag. B, 1994,69:p1075-1082
    3 Kim T H, Lee G W, Gangopadhyay A K, Hyers R W, Rogers JR, Goldman A I, Kelton K F. Structural studies of a Ti-Zr-Ni quasicrystal-forming liquid. J Phys:. Conden. Matter,2007,19: 452112
    4 Wang Q, Li C X, Wu Z H, Wang L W, Niu X J, Yan W S, Xie Y N, Wei S Q, Lu K Q. Temperature effect of the local structure in liquid Sb studied with x-ray absorption spectroscopy. J. Chem. Phys.,2008,128:224501
    5 Holland-Moritz D, Schenk T, Simonet V, Bellissent R, Convert P. Short-range order in undercooled melts forming quasicrystals and approximants. J. Alloy Compd.,2002,342:77-81
    6 Waseda Y, Suzuki K. Structure of liquid antimony by neutron diffraction. Phys. Stat. Solidi B, 1971,47:581-590
    7 Qin J Y, Bian X F, Wang W M. Characteristic of temperature-induced change on the structure of liquid Al and Sn. Acta Phys. Sin.,1998,47:438-444
    8 Turnbull D. Formation of Crystal Nuclei in Liquid Metals. J. Appl. Phys.1950,21:1022
    9 Lu S Y, Li J F, Li X L, Zhou Y H. Grain boundaries in the refined solidification structure of undercooled Ni75Pd25. Physica B 2008,403:2609
    10 Yang W, Xu Z F, Li W J, Cai C C, Li S, Liu F, Yang G C. Comparisons of grain refinement and recalescence behavior during the rapid solidification of undercooled Cu-Co and Cu-Ni alloys. Physica B,2011,406:3710
    11 Jungblut S, Dellago C. Heterogeneous crystallization on tiny clusters. Europhys. Lett 2011,96: 56006
    12 Hartmann H, Holland-Moritz D, Galenko P K, Herlach D M. Evidence of the transition from ordered to disordered growth during rapid solidification of an intermetallic phase. Europhys. Lett. 2009,87:40007
    13 Liu N, Yang G C, Yang W, Liu F, Yang C L, Zhou Y H. Microstructure evolution of undercooled Fe-Co-Cu alloys. Physica B 2011,406:957
    14 Liu L, Li J F, Zhou Y H. Solidification interface pattern in undercooled Co-Sn eutectic alloys. Acta Mater 2011,59:5558
    15 Wang Q, Chen X, Li C, Lu K. Electrical resistivity of molten indium-antimony alloys. J. Appl. Phys.2000,87:4623
    16 Lohofer G, Schneider S, Egry I. Thermophysical properties of undercooled liquid Co80Pd20.Int. J. Thermophys.2001,22:593
    17 Lohofer G, Brillo J, Egry I. Thermophysical properties of undercooled liquid Cu-Ni alloys. Int. J. Thermophys.2004,25:1535
    18 Tian X L, Chen X C, Ilinsky A G. Liquid structure of undercooled Cu7oNi3o alloy. Sci. China 2000,43:1301
    19 Richardsen T, Lohofer G, Egry I. Electrical resistivity of undercooled liquid Cu-Ni alloys. Int. J. Thermophys.2002,23:1207
    20 Nakagawa Y. Liuqid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall.1958,6:704
    21 Egry I, Herlach D, Kolbe M, Ratke L, Reutzel S, Perrin C, Chatain D. Phase separation and solidification of undercooled Cobalt-Copper. Adv. Eng. Mater.2003,5:819
    22 Frank F C. Supercooling of Liquids. Proc. R. Soc. London A 1952,215:43
    23 Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D M. Icosahedral Short-Range Order in Deeply Undercooled Metallic Melts, Phys. Rev. Lett.2002,89:075507
    24 Cicco A D, Trapananti A, Faggioni S, Filipponi A. Is There Icosahedral Ordering in Liquid and Undercooled Metals. Phys. Rev. Lett.2003,91:135505
    25 Ganesh P, Widom M. Signature of nearly icosahedral structures in liquid and supercooled liquid Copper. Phys. Rev. B 2006,74:134205
    26 Kim TH, Lee G W, Gangopadhyay A K, Hyers R W, Rogers J R, Goldman A I, Kelton K F. Structural studies of a Ti-Zr-Ni quasicrystal-forming liquid. J. Phys.:Condens. Matter 2007,19: 455212
    27 Ashkenazy Y, Averback R S. Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings. Europhys. Lett.2007,79:26005
    28 Willnecker R, Herlach D M, Feuerbacher B. Evidence of nonequilibrium processes in rapid solidification of undercooled metals. Phys. Rev. Lett.1989,62:2707
    29 Schwarz M, Karma A, Eckler K, Herlach DM. Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett.1994,73:1380
    30 Qi Y, Cagin T, Kimura, Y Goddard W A. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:Cu-Ag and Cu-Ni. Phys. Rev. B 1999,59:3527
    31 Abdellah A B, Gasser J G, Makradi A, Grosdidier B. Resistivity of the liquid gallium-lead miscibility gap system. J. Hugel, Phys. Rev. B 2003,68:184201
    32 Munitz A, Elder S P, Abbaschian R. Supercooling effects in Cu-10 wt Pct Co alloys solidified at different cooling rates. Metall. Trans. A 1992,23:1817
    33 Mogilko E, Burlachkov L, Strelniker Y M, Schlesinger Y, Havlin S. Estimation of the Josephson critical current of a single grain:percolation model of the resistive transition. Physica B 2003,329-333:1500
    34 Cao C D, Gorier G, Herlach D, Wei B. Liquid-liquid phase separation in undercooled Co-Cu alloys. Mater. Sci. Eng. A 2002,325:503
    35 Wang C, Liu X, Ohnuma I, Kainuma R, Ishida K. Formation of Immiscible Alloy Powders with Egg-Type Microstructure. Science 2002,297,990
    36 Nishizawa T, Ohnuma I, Ishida K. Correlation between interfacial energy and phase diagram in ceramic-metal systems. J. Phase Equilibrium 2001,22:269
    37 Curiotto S, Battezzati L, Johnson E, Pryds N. Thermodynamics and mechanism of demixing in undercooled Cu-Co-Ni alloys. Acta Mater.2007,55:6642
    38 Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Clarendon Press, Oxford, 1993.
    39 Antion C, Chatain D. Liquid surface and liquid/liquid interface energies of binary subregular alloys and wetting transitions. Surf. Sci.2007,601:2232
    40 Curiotto S, Pryds N H, Johnson E, Battezzati L. Liquid-liquid phase separation and remixing in the Cu-Co system. Metall. Mater. Trans. A 2006,37°:2361
    41 Luiggi N J, Febres O. Resistivity anomaly during the process of separation of phases of a binary alloy. Phys. Rev. B 1992,46:1992
    42 Battezzati L, Curiotto S, Johnson E, Pryds NH. Undercooling and demixing in rapidly solidified Cu-Co alloys. Mater. Sci. Eng. A 2007,449-451:7
    43 Bose S, Puthucode A, Banerjee R, Ayyub P. The influence of nanoscale phase separation and devitrification on the electrical transport properties of amorphous Cu-Nb alloy thin films. J. Phys.: Condens. Matter 2009,21:285305
    44 Li J F, Zhou Y H, Yang G C. Solidification behavior of undercooled Cu70Ni30 alloy melt. Mater. Sci. Eng. A 2000,277:161-168
    45 Kim D I, Abbaschian R. The Metastable Liquid Miscibility Gap in Cu-Co-Fe Alloys. Journal of Phase Equilibria 2000,21(1):25-31
    1黄峰,卢献忠,郑超超,余聪,刘芸.Co-Sn金属复合氧化物的制备及电化学性能研究.武汉理工大学学报,2008,31:316-319
    2 Sujatha M M, Sabitha R, Pushpavanam M. Electrodeposited tin-cobalt alloy from a neutral gluconate bath. Transactions of the Institution of Metal Finishing,2000,78(1):49-52
    3何见超,赵海雷,王捷,王静,陈敬波.纳米Co-Sn合金负极材料的制备和电化学性能.稀有金属材料与工程,2011,40:452-456
    4 Waseda Y, M. Ohtani. Static structure of liquid Noble and transition metals by X-Ray diffraction. Phys. stat. sol. (b) 1974,62:535
    5 Brener E, Muller-Krumbhaar H, Temkin D, Abel T E. Morphology diagram of possible structures in diffusional growth. Physica A 1998,249:73
    6 Lamelas FJ, Seader S, Zunic M. Morphology transitions during the growth of alkali halides from solution. Phys Rev B 2003,67:045414
    7 Mullis A M, Dragnevski K I, Cochrane R F. The solidification of undereooled melts via twinned dendritic growth. Mater Sci Eng A 2004,375-377:157
    8 Liu L, Li J F, Zhou Y H. Solidification interface morphology pattern in the undereooled Co-24.0 at.% Sn eutectic melt. Acta Materialia 2011,59; 5558-5567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700