具有抗菌功能的壳聚糖复合膜研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖(CTS)是一种天然多糖类生物大分子,具有多种优良的功能性质和潜在的应用价值,其中最为引人关注的特性就是成膜性和抗菌防腐作用,这两种独特性质使其广泛应用于农药载体、涂膜保鲜、可食膜载体、生物可降解用膜等领域。但是,由于目的不同而对壳聚糖膜性质和功能具有不同的要求,壳聚糖由于分子结构的特点,其单膜对果蔬涂膜保鲜时,存在保水率较低的缺点,果实易失水焉萎,同时,抗菌防腐也达不到保鲜的要求,难以满足室温下果蔬保水保鲜的要求;当作为农药膜剂型的载体应用时,壳聚糖单膜的机械性能较弱,易龟裂、易破碎。上述壳聚糖的缺陷是其自身的结构和性质所致,拓宽壳聚糖的应用关键在于改善和提高其膜材的抑菌性能、保水率和机械强度。纳米氧化硅(SiOx)是一种无毒、无味、无污染的白色粉术非金属材料,是目前有机材料改性中应用最为广泛的无机纳米材料之一,其粒子粒径减小至纳米级会产生一系列特殊的效应。
     因此,利用纳米SiOx对壳聚糖进行改性,提高壳聚糖膜的强韧性和抑菌杀虫性、改善透水率和透气性,并将改性后的壳聚糖纳米SiOx复合膜应用于果蔬的采摘前后,使生长期的果蔬得到病虫害防治和采摘后的果蔬得到贮藏保鲜。本研究主要内容和结论如下。
     1.壳聚糖纳米SiOx复合膜性能的研究。利用纳米SiOx对壳聚糖进行改性,得到壳聚糖纳米SiOx复合膜(CTS-Fh),并对涂膜结构进行红外光谱(IR)、X射线衍射(XRD)和电镜透射(TEM)等表征。结果表明:CTS-Fh中壳聚糖与SiOx粒子表面的大量羟基存在强烈的氢键相互作用,使其拉伸强度、断裂伸长率和直角撕裂强度较壳聚糖单膜分别提高了63.29%,45.38%和11.58%。同时,CTS-Fh的透光率和透气性等性能也得到改善,复合膜性能优于简单膜。
     2.壳聚糖纳米SiOx复合膜抑菌活性的研究。壳聚糖纳米SiOx复合膜(CTS-Fh)与壳聚糖单膜(CTS)抑菌实验表明:CTS-Fh对细菌如革兰氏阴性菌大肠杆菌(Escherichia coli.)和革兰氏阳性菌枯草芽孢杆菌(Bacillus subtilis),真菌如酵母(Saccharomyces)和青霉(Penicillium)的抑菌效果明显好于CTS,抑菌率分别提高了22.34%、6.50%、36.49%和53.76%。同时CTS-Fh对植物致病菌如马铃薯晚疫病(Phytophthora infestans)、番茄灰霉病(Botrytis cinerea Pers.)、和辣椒枯萎病(Fusarium wilt)也有明显的抑制效果。
     3.壳聚糖纳米SiOx复合膜涂膜保鲜的应用研究。以透水率最小化为目标函数,采用二次回归旋转正交组合试验设计方法,建立单指标二次回归模型,得到壳聚糖纳米SiOx保鲜复合涂膜最佳配方,并对金秋梨和黄瓜进行室温下涂膜保鲜,分别测试室温条件下失水率、维生素C、呼吸强度、多酚氧化酶(PPO)、过氧化酶(POD)、超氧化物歧化酶(SOD)、好果率和保鲜时间。同时,分析了壳聚糖复合膜对金秋梨表皮形貌的影响,研究结果表明:当复合膜中壳聚糖用量1.547g、SiOx用量0.028g、单甘酯用量0.015g时,壳聚糖复合膜较壳聚糖单膜的透水率降低了73.13%;室温下果蔬保鲜时间得到明显延长,各项指标得到改善和提高,其中金秋梨由20d延长至60d,好果率为80.00%,黄瓜由6d延长至12d,好果率为95.12%。
     4.壳聚糖纳米SiOx复合膜对蚜虫杀虫活性的研究。室内毒力实验:CTS-Fh对蚜虫有良好的活性,抗蚜虫性能高于CTS(57.41%),达到62.93%,提高了15%。田间试验:壳聚糖单膜、壳聚糖复合膜、壳聚糖复合-阿维混合液和0.18%阿维农药分别喷施金秋梨果树的药后1-7天,虫口减退率分别为53.04%、68.66%、90.52%和87.60%,该结果表明壳聚糖复合膜能够增强农药的药效和持续时间。
     5.壳聚糖纳米SiOx复合膜急性毒性试验研究。对昆明种二级小鼠进行急性毒性试验,结果表明:LD_(50)>10.0g/kg BW,未发现任何试验动物出现中毒表现,未出现动物死亡,壳聚糖/纳米SiOx属实际无毒范围。
     6.壳聚糖复合膜农药剂型研究。无论是室内毒力试验,还是田间药效试验,壳聚糖复合膜都具有一定的杀虫活性,该结论表明:壳聚糖复合膜可作为农药应用于果蔬植物的病虫害防治,而成为无农残、安全的绿色农药;而且壳聚糖复合膜与农药混合后,利用壳聚糖的成膜功能,壳聚糖复合膜作为一种农药剂型可以更广泛地应用于农业生产中。
The Chitosan (CTS), a kind of natural polysaccharide biological macromolecule, has many outstanding properties and potential application in various areas. Its film forming ability and antibacterial preservation for vegetable and fruit are the most important features, which make it extremely important in the field of the coating to maintain fruits fresh, the film separation, eatable film carrier, the film for biological degradation and so on. So it is required that the CTS films must have different properties when used for different purposes. When the CTS is used to coat on fruits and vegetable to prolong their storage life, it has been forced to be associated with some shortcomings, such as a low moisture-holding rate, fruits dehydration due to its typical molecular structural feature. Moreover, simultaneous maintenance of quality of fruits and vegetabales, moisture control at room temperature cannot be achieved along with the desired anticorrosive microbial properties. When CTS is used as a film carrier, the mechanical strength of CTS film is weak, easily chapped or staved. The above mentioned limitations of CTS film are attributed to the structure of CTS molecule and its nature, therefore, in order to extend the application of CTS it is imperative to improve and enhance the moisture-keeping and the mechanical strength of the membrane. Nano-SiOx is non-toxic, tasteless, non-polluting. It is one of the most extensively used inorganic nano-materials in the present modification of application of organic materials. When its particle size is reduced to nanometer level, SiOx displays a series of special functions. Moreover, nano-SiOx has a large quantity of unsaturated linkage and hydroxyl functionality in the different linkage state, and the molecules within cluster is in the form of three dimensional chain structure, leading to some interaction between SiOx with certain groups or bases of high polymer material. This may help to improve the performances of the material to a great extent.
     Therefore, using nano-SiOx to carry molecular modification to Chitosan to enhance the film obdurabihty and antibacterial property, improve water penetration rate and permeability, and make it apply to the fruits and vegetables' before harvestry and after harvestry. Fruits and vegetables from growing to postharvest storage all gain safe and effective protection. Primary coverage and main conclusions of the present research are as follows.
     1. Performance researches of Chitosan nano-SiOx composite films. Chitosan was modified by adding nano-SiOx, and then Chitosan nano-SiOx mixture (CTS-Fh) was coated to obtain films. Characteristics of the composite films were investigated by Infra-red spectroscopy (IR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The results indicated that strong hydrogen bonds were formed between Chitosan and nano-SiOx. Compared with the non-modified Chitosan films, the tensile strength, elongation-at-break and orthogonal tear strength of modified composite films(CTS-Fh) increased by about 63.29%, 45.38% and 11.58% respectively. At the same time, transmittivity and permeability of CTS-Fh were also improved. The performance of the CTS-Fh films obviously surpassed that of the pure CTS films.
     2. Researches on antibacterial properties of Chitosan nano-SiOx composite films. The antibacterial property experiments of the CTS-Fh and the CTS indicated that modified Chitosan films had a more obvious effect than pure CTS films against bacterium such as Gram-negative bacteria E. coli (Escherichia coli.) and Gelanshi masculine fungus subtilis bud spore bacillus (Bacillus subtilis), and fungus like yeast (Saccharomyces) and blue mildew (Penicillium), the antibacterial rate reaching 22.34%、6.50%、36.49%和53.76%, respectively. Simultaneously CTS-Fh had an obvious function to control the growth of agricultural pathogenic bacteria like late blight of potato (Phytophthora infestans), the tomato grey mold (Botrytis cinerea Pers) and the hot pepper wilt disease (Fusarium wilt).
     3. The application in the storage of fruits and vegetables. Taking the permeation rate of water as objective function, the orthogonal rotation experimental design methods based on single quadratic regression were used for investigation and established a quadratic regression model, obtaining an optimal formula of CTS-Fh for coating Jinqiu pear and cucumber to prolong their storage life at room temperature. The rate of water loss, vitamin C content, respiratory strength, polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), good fruit ratio and fresh-keeping life were determined separately. At the same time, the influence of the composited Chitosan film on the surface morphology and the waxy no-smooth character of Jinqiu pear were analyzed. Research results indicated that when the ratio of Chitosan and SiOx and monoglyceride was 1.547 : 0.028 : 0.015, the permeation rate of composite films failed were 73.1% as compared to the pure membrane; the preservative life of treated fruits and vegetables had been significantly prolonged at room temperature. Various indexes had been improved, such as the preservative life of the Jinqiu pear was extended from 20 days to 60 days, and good fruit rate was up to 80.00%, and the preservative life of Cucumber was extended to 12 days from 6 days, and good fruit rate was 95.12%.
     4. Research on insectieidal activity of Chitosan nano-SiOx composite films against Aphid. The toxicity testing in laboratory showed: CTS-Fh films had good insectieidal activity against aphid. Its anti-insect (aphis) effect was higher than that of CTS (57.41%), reaching to 62.93%, increasing by 15%. Field experiments showed that after pure CTS solution, CTS-Fh composite solution, CTS/AWei (a compound) mixture solution and 0.18% AWei (pesticide) were spayed on to Jinqiu pear trees, the levels of insects decreased evidently and fell to 53.04%, 68.66%, 90.52% and 87.60 respectively during 1-7 days after application. Results indicated that CTS/nano-SiOx composite films can strengthen the drug efficacy and the duration of pesticide.
     5. Acute toxicity test of Chitosan composite films. By adding an acceptable maximum amount of nano-SiOx to the Chitosan films following the formula, acute toxicity test of the film was carried on the Kunming second-level mouse. Results indicated that when the applied dosage was 10.0 g/kg BW, LD_(50)>10.0 g/kg BW after 2 weeks. It was discovered neither any presented animals died nor any were under intoxication. CTS-Fh composite film is safe and an innocuous material.
     6. Pesticide formulation rsearch of Chitosan nano-SiOx composite films. Whether the indoor toxicity tests, or the field pharmacodynamic experiments, CTS-Fh films had a certain degree of insectieidal activity. In conclusion, CTS-Fh films could be used as a pesticide to control diseases and insect pests of fruits and vegetables, and proved to be a green pesticide which was at a lower residual level. When CTS-Fh films mixed with pesticides, taking advantage of the function of chitosan's film isformation, CTS-Fh films as a pesticide agent can be more widely used in agriculturalproduction.
引文
[1]毛黎.纳米技术路漫漫、发展纳米更需关注社会安全[EB/OL]http://www.people/com.cn/GB/keji/1059/2066663.htmL.2004,02.15.
    [2]王昕.番茄常温可食涂膜保鲜的理论与方法[D].吉林大学博士学位论文,2005,10-46.
    [3]王明力,赵德刚,陈汝财.纳米SiOx/单甘酯对壳聚糖保鲜涂膜改性的研究[J].食品科学,2007,28(3):96-99.
    [4]王璋.食品酶学[M].中国轻工业出版社,1994,51-56.
    [5]王国宏,李定或.纳米ZnO的表面改性研究[J].湖北师范学院学报(自然科学版),2006,24(1):10-14.
    [6]王雅芬,王慧俐.可食性壳聚糖包装膜的制备及其性质研究[J].东海海洋,2001,19(2):32-37.
    [7]中华人民共和国卫生部.保健食品检验与评价技术规范[M].北京:法律出版社,2003.79-87.
    [8]王琳玲,张文清,夏玮,等.壳聚糖及其衍生物抗菌性质的研究进展[J].上海生物医学工程,2006,27(2):111-114.
    [9]王祖武,刘彩莉,张天箴.果品贮藏与简易加工.[M].石家庄:河北人民出版社,1984.70-72.
    [10]王小红,马建彪,何炳林.甲壳素、壳聚糖及其衍生物的开发及应用[J].功能高分子学报,1999,12(2):197-202.
    [11]王军,何文,李荣波,等.氧氟沙星壳聚糖口腔溃疡膜的研究[J].中国医院药学杂志,2003,23(6):333-334.
    [12]王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究[J].功能高分子学报,1998,11(1):83-86.
    [13]王爱华,于勇,黄冲平,等.食品辐照保鲜的研究进展[J].粮油加工与食品机械,2003,(10):78-81.
    [14]王君,徐国财,吉小利,等.纳米氧化硅粉粒的表面改性研究[J].无机化学学报,2003,19(9):968-970.
    [15]中川吕一.果实园艺原论[M].曾攘等译.北京:农业出版社,1982.352.
    [16]石光,袁彦超,陈炳稔,等.交联壳聚糖的结构及其对不同金属离子的吸附性能[J].应 用化学,2005,22(2):195-199.
    [17]宁正祥.食品成分分析手册[M].中国轻工业出版社,北京:1997,190-192.
    [18]许方.梨树生物学[M].北京:科学出版社,1992,188-204.
    [19]师素云,薛启汉.壳聚糖对玉米的生长调节作用[J].天然产物研究与开发,1999,11(2):32-36.
    [20]朱宏莉,杨彬彬,张秀齐,等.果蔬保鲜加工现状及发展浅析[J].食品科学,2006,27(10):596-600.
    [21]朱启忠,赵宏,韩晓弟.壳聚糖及其应用[J].资源开发与市场,2005,21(1):63-64.
    [22]华淑南,张俊.壳聚糖涂膜保鲜竹笋研究[J].食品科学,2002,23(4):123-126.
    [23]刘俊渤,藏玉春,吴景贵,等.纳米二氧化硅的开发与应用[J].长春工业大学学报,2003,24(4):9-12.
    [24]刘国凌,许晓春,陈尚围.壳聚糖对枇杷保鲜的影响[J].现代食品科技,2006,22(3):70-72.
    [25]刘建,徐遥,王锁牢,等.国内外农药剂型的发展及现状简介[J].新疆农业科学,1998,(4):179-181.
    [26]刘晶,王明力,沈丹,等.农药新剂型的进展及研究[J].贵州工业大学学报,2006,35(7):62-34.
    [27]安秋凤,郭琨.纳米SiO_2表面改性及其应用在复合材料中的研究进展[J].纳米科技,2007,(5):9-14.
    [28]吉小利,王君,李爱元,等.纳米二氧化硅粉体的表面改性研究[J].安徽理工大学学报(自然科学版),2004,24(5)83-86.
    [29]农业部农药检定所.农业田间药试验准则(一)[M].北京:中国标准出版社,2000.
    [30]严俊.甲壳素的化学利应用[J].化学通报,1984,(11):26-31.
    [31]李正理.植物切片技术[M].北京:科学出版社,1978,23-35.
    [32]李燕芸,尹振晏.食品防腐保鲜剂的现状和发展[J].北京石油化工学院学报,2003,11(4):18-23.
    [33]李军,张振华,葛毅强,等.我国苹果加工业现状分析[J].食品科学,2004,25(9):198-204.
    [34]李宗磊,王明力.纳米/壳聚糖复合涂膜剂的制备及在富士苹果保鲜中的应用[J].贵州工业大学学报,2006,35(2):99-102.
    [35]李杜,何晓晓,王柯敏.无机硅壳类纳米颗粒对细胞的毒性检测[J].湖南大学学报(自然 科学版),2002,29(6):1-6.
    [36]李桂峰.可食性膜对鲜切葡萄生理生化及保鲜效果影响的研究[D].西北农林科技大学硕士学位论文,2005,34-35.
    [37]周学永,陈守文,喻子牛.医药和农药纳米剂型研究和应用[J].化学与生物工程,2004,(1):4-7.
    [38]李君兰,冯谦,武治昌.贮藏温度和湿度对鸡腿蘑保鲜效果的影响[J].食品与发酵工业,2005,31(5):151-152.
    [39]李年华.我国每年烂在路上果蔬够2亿人吃.农民日报,2006,2.15.
    [40]刘福春.纳米复合涂料的研究进展[J].材料保护,2001,34(2):1-4.
    [41]阳元娥,罗发兴,谭伟.新型的天然食品保鲜剂-壳聚糖[J].武汉工业学院学报,2002,(3):22-25.
    [42]阮晓,王强,周疆明,等.香梨果实成熟衰老过程中4种内源激素的变化[J].植物生理学报,2000,26(5):402-406.
    [43]陆荔,马明,张宇,唐萌,等.纳米材料生物安全性研究进展[J].东南大学学报(自然科学版),2004,34(5):711-714.
    [44]沈月新.食品保鲜贮藏手册[M].上海:上海科学技术出版社.2006,93-96.
    [45]沈萍,范秀容.微生物实验[M].高等教育出版社,1999.35-76.
    [46]阿拉木萨,李宝江.梨品种果实组织结构研究[J].哲里木畜牧学院学报,1999,9(2):5-10.
    [47]汪艺,杨靖先,丘坤元.甲壳胺接枝聚合反应的研究[J1.高分子学报,1994(2):188-195.
    [48]汪斌华,黄婉霞,刘雪峰,等.纳米SiO_2的光学特性研究[J].材料科学与工程学报,2003,21(4):514-517.
    [49]陈永成,秦新忠,曹杰等.果蔬保鲜技术的研究现状及发展趋势[J].粮油加工与食品机械,2002,(2):10-11.
    [50]陈天,壳聚糖果蔬保鲜猕猴桃的研究[J].食品科学,1991,(10):37-40.
    [51]陈云辉,李文芳,杜军,等.纳米SiO_2粉体新型表面活性剂复合改性工艺研究[J].表面技术,2006,35(5):34-36.
    [52]陈年春.农药生物测定技术[M].北京:北京农业大学出版社,1993,36-64.
    [53]陈福良,王仪.5%烯唑醇微乳剂的研制[J].农药,2001(3):12-13.
    [54]陈蔚林,韩谋国,温家钧。绿色农药新剂型的开发[J].安徽化工,2004,128(2):2-5.
    [55]邹尔云,马丽艳,杨丽丽,等.化学保鲜剂在果蔬保鲜中的应用[J].衣产品加工,2006, (3):38-40.
    [56]邹勇,文正康.山妹子金秋梨的主要营养成分分析[J].黔东南民族师范高等专科学校学报,2005,23(6):18-19.
    [57]邹波.金秋梨与黄花梨冷藏后风味品质及营养成分的变化[J].中国南方果树,2005,34(4):71-72.
    [58]孟翠省.纳米技术在高分子材料应用[J].化工新型材料,2001,29(2):3-6.
    [59]苏学军,郑典模.纳米SiO_2的应用研究进展[J].江西化工,2002,(1):6-10.
    [60]宋纯鹏.植物衰老生理学[M].北京:北京大学出版社,2001,77-98.
    [61]吴昊,汪东风,于丽娜,等.壳聚糖铈配合物的制备及其对黄瓜保鲜和对硫磷的降解作用[J].中国稀土学报,2006,24(12):176-180.
    [62]吴锦涛,张昭其.果蔬保鲜与加工[M].北京:化学工业出版社,2001,58-59.
    [63]郑连英,朱江峰,孙昆山.壳聚糖的抗菌性能研究[J].材料科学与工程,2000,18(2):22-24.
    [64]杨中华.常见化学防腐保鲜剂的使用[J].山东食品科技,2002,(8):16-17.
    [65]杨冬芝,刘晓非,李治.壳聚糖抗菌活性的影响因素[J].应用化学,2000,17(6):598-602.
    [66]罗万春.世界新农药与环境-发展中的新型杀虫剂[M].北京:世界知识出版社,2002,21-64.
    [67]刘新.小菜蛾防治药剂的种类与特点分析[J].衣约科学与管理,2004,25(8):24-26。
    [68]俞继华,冯才旺,唐有根.甲壳素和壳聚糖的化学改性及其应用[J].广西化工,1997,26(3):28-30.
    [69]张一宾.农药制剂技术的开发与最近动向[J].农药译丛,1998,(3):49-55.
    [70]张金艳,王延锋,王志军.我国农药剂型加工工业的现状和发展建议[J].黑龙江农业科学,2001,(2):39-41.
    [71]易求实.均匀沉淀法制备纳米碱式硫酸铜杀菌剂的研究[J].农约,2001,40(8):20-21.
    [72]张华峰,张宾,陈天华,等.乙烯生物合成基因工程在果蔬保鲜中的应用[J].生物技术,2005,15(6):80-82.
    [73]张立德,牟季美.纳米材料学[M].沈阳:科学出版社,1994,1-5.
    [74]张密林,丁立国,景晓燕,等.纳米二氧化硅的制备、改性与应用[J].化学工程师,2003,(6):12-14.
    [75]张晓海,杨学田,曲金丽.果蔬保鲜技术的研究现状及发展趋势[J].石河子科技,2000, (6):33-34.
    [76]张晓彦,刘伟民.国内外果蔬涂膜技术动态[J].食品科技,2000,(6):2-3.
    [77]张志健,李新生.食品防腐保鲜技术[M].北京科学出版社,2006,3946.
    [78]赵冰.蔬菜品质学概论[M].北京:化学工业出版社,2003,71-72.
    [79]赵善欢.植物化学保护(第三版)[M].北京:中国农业出版社,2000.
    [80]单春会,童军茂,冯世江.壳聚糖及其衍生物涂膜保鲜果蔬的研究现状与展望[J].中国食物与营养,2004,(12):29-31.
    [81]林抗美,胡奇勇.高效生物杀虫剂BtA防治肛豆蚜虫试验及其残留分析[J].武夷科学,2003,12(3):30-32.
    [82]林宝凤.壳聚糖成膜剂特性的研究[J].食品与酵工业,1998,24(1):44-47.
    [83]陆荔,马明,张宇,等.纳米材料生物安全性研究进展[J].东南大学学报(自然科学版),2004,34(5):711-714.
    [84]胡玉洁.天然高分子材料改性与应用[M].化学工业出版社,2003,7-12.
    [85]胡瑛,杜予民,刘慧.壳聚糖抗菌性与分子量利环境介质相关性研究[J].分析科学学报,2003,19(4):304-308.
    [86]胡国华.食品添加剂应用基础[M].北京:化学工业出版社,2005,15-36.
    [87]胡文玉,邹良栋.壳聚糖涂膜对苹果的保鲜效应[J].植物生理学通讯,1998,(34):17-19。
    [88]施晓文,杜予民,覃采芹,等.交联羧甲基壳聚糖微球的制备及其对pb~(2+)的吸附性能[J].应用化学,2003,20(8):715-719.
    [89]郑连英,朱江峰,孙昆山.壳聚糖的抗菌性能研究[J].材料科学与工程,2000,18(2):22-24.
    [90]郑铁军.农药新剂型的研究[J].黑龙江农业科学,2003,(1):35-37.
    [9l]贺鹏,赵安赤.聚合物改性中纳米复合新技术[J].高分子通报,2001,(1):74-78.
    [92]凌世海.农药剂型进展评述[J].农药,1998,37(8):6-9.
    [93]凌世海.农药剂型加工工业现状和发展建议[J].安徽化工,2002,4:2-7.
    [94]夏红英.农药剂型、表面活性剂的发展动其对生物活性的影响[J].江西农业大学学报,2001,23(4):530-532.
    [95]闻燕,杜予民,李湛.壳聚糖/纳米TiO_2复合膜的制备和性能[J].武汉大学学报(理学版),2002,48(6):47-50.
    [96]贾元宏,张淑青,张学庆.一种纳米材料抑菌效果及毒性试验观察[J].预防医学文献信 息,2002,8(6):737.
    [97]胥利先,孙继红,马重芳,等.纳米改性涂料的研究进展[J].化工进展,2005,25(4):341-349.
    [98]郭敏.食品涂膜保鲜研究[J].食品科学,1994,180(12):69-71.
    [99]栾金水.果蔬保鲜新技术[J].江苏食品与发酵,2005,(1):25-27.
    [100]徐文娟,王志明.果蔬气调贮藏保鲜技术及设备[J].保鲜与加工,2002,2(2):4-6.
    [101]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002,46-54.
    [102]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004,81-120.
    [103]袁唯,邵金良,焦凌梅,等.壳聚糖涂膜处理黄瓜保鲜作用的研究[J].中国食品添加剂,2005,(4):18-21.
    [104]袁晓华,杨中汉.植物生理生化试验[M].高等教育出版社,1988,56-57.
    [105]黄永春,李琳,郭祀远.木瓜蛋白酶对壳聚糖的降解特性[J].华南理工大学学报(自然科学版),2003,31(6):71-75.
    [106]黄向红,陈曼云.壳聚糖膜保鲜四季柚的效果研究[J].四川果树,1995,(4):12-13.
    [107]黄渊基.梨树新品种-金秋梨[J].果树科学,1996,3(1):62-63.
    [108]梅特利茨基.水果、蔬菜生物化学基础[M].北京:科学出版社,1989,13-15.
    [109]钱晓静,刘孝恒,陆路德,等.辛醇改性纳米二氧化硅表面的研究[J].无机化学学报,2005,20(3):341-348.
    [110]彭湘红,杜金平,王敏娟.甲基丙烯酸与壳聚糖接枝共聚物的制备及应用研究[J].精细化工,2000,17(3):137-139.
    [111]蔡贵忠.农药新剂型-泡腾片剂[J].福建化工,2000,(2):6-8.
    [112]鲍世利.果蔬贮藏保鲜技术的应用研究[J].福建轻纺,2003,168(5):8-13.
    [113]董英,胡冠娟.壳聚糖对板栗褐变的抑制作用[J].中国食品添加剂,2006,(3):88-86.
    [114]董炎明、吴玉松、王勉.邻苯二甲酰化壳聚糖的合成与溶致液晶表征[J].物理化学学报,2002,18(7):636-639.
    [115]谢培荣,许桂芳.金秋梨的采收期和贮藏方法研究[J].中国南方果树,2003,32(4):72-73.
    [116]傅乐峰,郑柏存.壳聚糖涂膜保鲜香梨的研究[J].食品工业,2005,28(2):57-58.
    [117]蒋跃明,陈绵达.香蕉低温酶促褐变[J].植物生理学报,1991,17(2):57-163.
    [118]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001,33-38.
    [119]蒋挺大.甲壳素和壳聚糖膜材料的研究进展[J].膜科学与技术,1998,15(3):20-25.
    [120]黎军英,李红叶.壳聚糖对桃褐腐病菌的抑制作用[J].电子显微学报,2002,21(2):138-140.
    [121]程建军,王震新.苹果梨和鸭梨酶促褐变机理的研究[J].食品科学,2000,21(2):71-73.
    [122]韩冬梅,吴振先.龙眼采后果肉生理生化变化研究[J].华南农业大学学报,2002,23(1):20-230.
    [123]覃彩芹,龙晶,李会荣,等.壳聚糖抗庭院植物病原真菌的活性[J].武汉大学学报(理学版),2005,51(4):489-492.
    [124]瞿晶晶,何正浩,杜华,等.果蔬负压保鲜负离子的产生[J].电工电能新技术,2005,24(2):77-80.
    [125]QB/T 2591-2003.抗菌塑料抗菌性能实验方法和抗菌效果.
    [126]Anker M.Mechanical properties water vapor permeability,and moistur contents of β-Lactoglogulin and when protein films using multivariate analysis[J].Journal of Agricultural and Food Chemistry,1998,(46):1820-1829.
    [127]Cancer C.,Vergano P.J.,Wiles J.L.Chitosan film mechanical and permeation properties as affected by acid,plasticizer,and storage[J].Journal of Science,1998,63(6):1049-1053.
    [128]Corrales T.,Peinado C.,Allen N.S.J.Photochem and photobio[J].Chemistry,2003,(156):151-160.
    [129]Cancer C.,Vergano P.J,Wiles J.L.Chitosan film mechanical and permeation properties as affected by acid,plasticizer,and storage[J].Journal of Science,1998,63(6):1049-1053.
    [130]Chirkov S.N.,Il'na A.V.Effect of chitosan on systemic viral infection and some efense responses in potato plants[J].Plant Physiology,2001,48(6):774-779.
    [131]Chandy T.,Sharma C.P.Biodegradable chitosan matrix for the controlled release of steroids[J].Biomater Artif Cells Immobilization Biotechnol,1991,19(4):745-746.
    [132]Chun H.K.,So Y.K.,Kyuuk C.Synthesis and antibac serial activity of water-soluble chitin derivatives[J].Polymers of Advanced Technologies,1997,(8):319 -325.
    [133]Chen X.G.,Zheng L.,Wang Z.,et al.Molecular affinity and permeability of different molecular weight chitosan membranes[J].Agricultural and Food Chemistry,2002,50:5915-5918.
    [134]Devlieghere F.,Vermeulen A.,Debevere J.Chitosan:antimicrobial activity,interactions with food components and applicability as acoating on fruit and vegetables[J].Food Microbiology, 2004,21(6):703-714.
    [135]Du J.M.,Gemma H.,Iwahori S.Effects of chitosan coating on the storage of peach.Japanese pear,and kiwifruit[J].Journal of the American Society of Horticultural Science,1997,66(1):15-22.
    [136]Dunn E.,Ahang X.,Sun D.,et al.Synthesis of N-(sminoalkyl) chitosan for microcapsules[J].Journal of Applied Polymer Science,1993,(50):353-365.
    [137]Ghaouth A.,Arul J.,Ponnampalam R.Use of chitosan coating to reduce weight loss and maintain quality of cucumbers and bell pepper fruits[J].Journal of Food Processing and Preservation,1991,(15):359-368.
    [138]Ghaouth A.,Ponnampalam R.,Castaigne F.,et al.Chitosan coating to extend the storage life of tomatoes[J],Hort Science,1992,27(9):1016- 1018.
    [139]Francisco A.,Francisco G.,Jos M.,et al.Physiological responses of tomato fruit to cyclic intermittent temperature regimes[J].Postharvest Biology and Technology,1998,(14):283-296.
    [140]Fanny L.Different ways for grafting ester derivatives of poly(ethylene glycol) onto chitosan:related characteristics and potential properties[J].Polymer,2005,(46):639-651.
    [141]Haeyong K.,Hyur C.H.,Yong H.P.Physical properties of silk fibroin/chitosan blend films [J].Journal of Applied Polymer Science,2001,80(7):928-934.
    [142]Huang Y.C.,Li L.,Guo S.Y.,et al.Characteristics of chitosan degradation by papain[J].Journal of South China University of Technology(Natural Science Edition),2003,31(6):71-75.
    [143]Jeon Y.J,Park P.J.,Kim S.K.Antimicrobial effect of chitooligosaccharides produced by bioreactor[J].Carbohydrate Polymers,2001,(44):71-76.
    [144]Jiang Y.M.,Yao L.H.,Lichter A.,et al.Postharvest biology and technology of litchi fruit [J].Journal of Food,Agriculture and Environment,2003,1(2):76-81.
    [145]Jiang Y.M.Bole of antliocyanins,polyplienol oxidase and plienols in lycliee pericarp browniy[J].Journal of the Science of Food and Agriculture,2000,(80):305-310.
    [146]Juan F.B.,Heredia A.,Blanca V.Changes in cell-wall-degrading enzyme activities in stored olives in relation to respiration and ethylene production[J].Lebensm Unters Forsch,1997(204):293-299.
    [147]Jiang Y.M.,Li Y.B.Effects of low temperature acclimation on browning of litchi fruit in relation to shelf life[J].Journal of Horticultural Science and Biotechnology,2003,(78):437-440.
    [148]Keisake K.Chemistry and application of chitin and chitsoan[J].Polym Degradation and Stability,1998,(59):17-121.
    [149]Konan Y.N.,Cerny R.,Favet J.,et al.Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl) porphyrin-loaded nanopanicles for photodynamic therapy[J].European Journal Pharm Biopharm,2003,55(1):115-124.
    [150]Kittur F.S.,Saroja N.Tharanathan R.N.Polysaccharide-based composite coating formulations for shelf-life extension of fresh Banana and Mango[J].European Food Research and Technology,2001,(213):306-311.
    [151]Kaifu K.,Nishi N.,Komai T.,et al.Studies on chitin:V,formulation,propriorylation,and butyrylation of chitin[J].Polymer,1981,13(3):241.
    [152]Liu X.F.,Guan Y.L.,Yang D.Z.Antibacterial action of chitosan and carboxymethylated chitosan[J].Applied Polied Science,2001,(79):1324-1335.
    [153]Liu H.,Du Y.M.,Wang X.H.,et al.Chitosan K bacteria through cell membrane damage[J].International Journal of Food Microbiology,2004,(95):147-155.
    [154]Lam C.W.,James J.T.,Cluskey R.,et al.Pulmonary toxicity of singlewall carbon nanotubes inmice 7 and 90 days after intratracheal instillation[J].Toxicological Sciences,2004,(77):126-134.
    [155]Muller R.H.,Mder K.,Gohla S.Solid lipid nanopartic for controlled drug delivery-a review of the state of the art[J].European Jouranl of Pharmaceutics and Biophar moceutics,2000,(50):161-177.
    [156]Mukoma P.,Jooste B.R.,Vosloo H.C.M.Synthesis and characterization of cross-linked chitosan membranes for application as alternative protonange membrane materials in fuel cells[J].Journal of Power Sources,2004,(136):16-23.
    [157]Mima S.,Miya M.,Iwamoto R.Highly deacetylated chitosan and its properties[J].Journal of Applied Polymer Science,1983,28(3):1909-1917.
    [158]Muzzarelli R.A.A.,Tanfani F.,Zmanuelli M.,et al.N-(carboxymethylidene) chitsoans and N-(carboxymethyl) chitosana:Novel checating polyampholytes obtained form chitosanglyox-ylate [J].Carbohydrate Research,1982,(107):199-203.
    [159]Mark A.R.,Carlos H.C.,David T.G.,et al.Temperature,length of cold storage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit[J].Postharvest Biology and Technology,1999,(15):107-115.
    [160]Mustafa E.,Chien Y.W.,Donald T.K.UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue[J].Environmental and Experimental Botany,2001,(45):1-9.
    [161]Mascia L.,Tang T.Curing and morphology of epoxyresin-silica hybrids[J].Journal of Materials Chermmistry,1998,8(11):2417- 2421.
    [162]Mohan,M.,Gujar,G.T.Toxicity of Bacillus thuringiensis strains and commercial formulations to the diamondback moth Plutella xylostel-la[J].Crop Protection,2001,20:311-316.
    [163]Macharia,I.L.B.,DeGroote,H..Assessing the potential impact of biological control of Plutella xylostella(diamondback moth)in cab-bage production in Kenya[J].Crop Protection,2005,24:981-989.
    [164]Norman S.A.,Michele E.,Amaya O.,et al.Behaviour of nanoparticles(ultrafine) titanium dioxide pigments and stability of water based acrylic and isocyanate based acylic coating[J].Polymer Degradation and Stability,2004,(85):927-946.
    [165]Nishinari K.,Fujita S.,Ito T.Inhibition of apple polyphenoloxidase by ascorbic acid,citric acid sodium chloride[J].Phyto chemistmy,1993,17(1):21-30.
    [166]Yaman L.,Bayyndrly.Effects of an edible coating,ungicide and cold storage on microbial spoilage of Cherries[J].Europe Food Research and Technol,2001,(213):53-55.
    [167]Pearson F.G.,Marchessault R.H.,Liang C.Y.Infrared spectra of crystalline polysaccharides v.chitin[J].Journal of Polymer Science,1960,43(2):101-116.
    [168]Paola A.,Joseph H.H.Review of antimicrobial food packaging[J].Innovative Food Science & Emerging Technologies,2002,(3):113-126.
    [169]Reddy M.V.B.,Belkacemi K.,Corcuff R.,et al.Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit[J].Postharvest Biology and Technology,2000,20(1):39-51.
    [170]Rong H.C.,Jun H.L.Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted filmes[J].Carbohydrate Polymers,1994,(24):41-46.
    [171]Beaudry R.M.,Effect of O_2 and CO_2 partial pressure on selected phenomena affecting fruit and vegetable quality[J].Postharvest Biology and Technology,1999,(15):293-303.
    [172]Rong M.Z.,Zhang M.Q.,Zeng H.M.Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites[J].Polymer,2001,42(1):167-183.
    [173]Kumar R.,Majeti N.V.Review of chitin and chitosan applications[J].Reactive and Functi-onal Polymers,2000,46(1):1-27.
    [174]Ronghua H.,Yumin D.,Lianshuang Z.,et al.A new approach to chemically modified chitosan sulfates and study of their influences on the inhibition of Escherichia coli and Staphylococcus aureus growth[J].Reactive & Plinctional Polymer,2003,(11):1-11.
    [175]Service R.F.,Show sins of toxicity[J].Science,2003,300(11):243.
    [176]Smith S.,Greeson J.,Stow J.Producion of modified atmospheres in deciduous fruits by the use of films and coatings[J].Hort Science,1987,(22):72-76.
    [177]Samuels R.J.Solid state characterization of the structure of chitosan films[J].Journal of Polymer Science:Polymer Physics Edition,1981,19(7):1080-1105.
    [178]Shibata Y.,Foster L.A.,Metzger W.J.,et al.Alveolar macrophage priming by intravenous administration of chitin particles,polymers of N-acetyl-D-glucosamine,inmice[J].Infection and Immunity,1997,65(5):1734-1741.
    [179]Silver C.C.,Lima C.G.A.,Pinheiro A.J.On the piezoelectricity of collagen-chitosan films [J].Journal of Physical Chemistry,2001,3(18):4154-4157.
    [180]Sung J.P.,Kuen Y.L.,Wan S.H.Structural changes and their effect on mechanical proper-ties of silk fibroin chitosan film[J].Journal of Applied Polymer Science,1999,74(11):2571-2575.
    [181]Teofil J.,Jolanta Z.,Andrzej K.,et al.Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification[J].Applied Surface Science,2003,205:212-224.
    [182]Tomasula P.M.,Yee W.C.,Parris N.Oxygen permeability of films made from CO_2precipit- ate casein and modified casein[J].Agricultural and Chemistry,2003,51(3):63-643.
    [183]Talekar,N.S.,Shelton,A.M..Biology,ecology,and management of the diamondback moth[J].Annual Review of Entomology,1993,38:275-301.
    [184]Uragami T.Preparation and characteristics of chitosan membranes chitin Handbook[M].Italy:European chitin society,1997,451-455.
    [185]Wen Y.,Du Y.M.,Li Z.Preparation and properties of chitosan/TiO_2 nanoparticles compos-ite films[J].Journal of Wuhan university,2002,48(16):701-704.
    [186]Xiao F.L.,Yun L.G.,Dong Z.Y.,et al.Antibacterial action of chitosan and Yamasa H,Imoto T.A convenient synthesis of glycolchitin,a substrate of lysozyme[J].Carbohydrate Research,1981,(92):160-162.
    [187]Yonemoto Y.,Higuchi H.,Kitano Y.Effects of storage temperature and wax coating on ethylene production,respiration and shelf-life in cherimoya fruit[J].Journal of the Japanese Society for Horticultural Science,2002,(71):643-650.
    [188]Dong Y.M.,Mian W.,Wu Y.S.spectroscopic determinations of chitosan derivatives[J].Journal of Cellulose Science and Technology.2001,9(2):42-55.
    [189]Yonezawa T.,Toshima N.Advanced functional molecules and polymers[M].Nalwa H.S.:Overseas Publishers Association,2001,25-29.
    [190]Zuo M.X.,Huang Z.J.,Zhang Y.M.,et aL The Scatter Function of Nano-SiOx in the Paint [J].New Chemical Materials,2000,28(12):22-24.
    [191]Zhang D.L.,Quantick P.C.Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi(Litehi chinensis Sonn) fruit[J].Postharvest Biology and Technology,1997,12(2):199-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700