城市森林植被类型与PM_(2.5)等颗粒物浓度的关系分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以PM2.5(粒径2.5μg的颗粒物)为代表的颗粒物会对人体健康造成直接的危害。怎样利用城市森林植被或者城市森林系统来控制和阻滞大气颗粒物?一方面,应该控制PM的排放源头从而减少大气污染;另一方面,应该制定用于减少可造成空气中PM累计的合理而高效的方法。为优化利用城市植被阻滞PM的效果,本研究于2013年在北京奥林匹克公园选择5种常见的城市森林种类进行了研究。
     研究结果表明城市森林系统能够调控和吸收空气中的颗粒物。五种森林类型中,灌木林和阔叶林在叶片生长成熟后吸收空气中PM的效果最好。在冬季,常绿植被(针叶系统)和混交植被系统阻滞空气中的颗粒物效果最突出,并且与其他森林系统差异显著。在各类城市森林类型叶片的四个生长阶段研究发现,叶片通常在早上对空气中的PM2.5吸收量最高,下午和晚上相对较低。PM2.5的浓度在叶片萌芽阶段最高,在叶片成熟阶段下降,在落叶之前又有回升。
     PM浓度在夏、秋、冬三个季节之间差异显著。四种粒径类型的PM的浓度均为夏季最低。TSP和PM1o在9月份和11月份的浓度值明显高于其他月份,并且在三个季节之间没有显著差异。PM2.5和PM1的浓度在秋季最高,夏季最低,其中8月份达到最低,在冬季其浓度值介于夏秋两季之间,并且与夏季没有显著差别。
     5种城市植被类型和对照点的年均PM浓度悬浮效率排序是:阔叶林>混交林>灌木林>针叶林>对照>草地(TSP);阔叶林>针叶林>灌木林>混交林>对照>草地(PM1o)和针叶林>混交林>阔叶林>灌木林>对照>草地(PM2.s和PM1)。
     5种城市植被类型和对照点在叶片的4个生长阶段PM2.5吸收效率排序为:针叶林>阔叶林>灌木林>混交林>草地和对照.
     PM浓度日变化是早晚较高,白天较低。早晨和夜晚对比而言,PM浓度通常在夜晚偏低。早晚浓度较高的原因在于空气湿度较高。
     在不同时期,空气中PM浓度和城市森林类型之间的时间变化差异显著。
     草地不能阻滞悬浮在空气中的颗粒物,但是草地生长茂盛,能够降低由于风力扬起地面上的尘土造成的空气粉尘污染。因此,应该在其他森林系统中培育草地覆盖地面,从而提高防尘效果,降低空气污染。
     VOC, OC和EC在叶片不同生长阶段和不同的森林类型中有显著变化。在叶片生长成熟的阶段EC/TC值及OC/EC值相对于其他阶段更高。
     针叶林的VOC浓度比其他类型高,但是OC/EC比其他的低。OC和EC浓度在灌木林和草地中最高,在混交植被林和对照组中最低。
     通常,4种水溶性无机粒子贡献了1/3的PM2.5,NH4+, SO42-,NO3和口CV在落叶前阶段比其余阶段相对高一些。
     针叶林具有最高的PM25浓度,然而这4种水溶性无机粒子的浓度在PM2,5中并不高,混交植被林可以相对有效的阻滞SO42-和NO3-。阔叶林CV浓度比其他城市植被类型高。
     SO42-和C1-在植被萌芽阶段和叶片生长成熟阶段较高,NO3-在叶片生长阶段最高,在叶片发芽阶段最低。NH4+在落叶之前的阶段比其他时段显著高。
     OC指数总是高出EC指数水平的2-4.5倍。EC/OC值随地点变化而变化,反映出引起颗粒物污染的源头是变化的。
     所有树种吸附的颗粒物(PM)按照粒径分为:大的(10-100,μm),较粗的(3.0-10μm),细小的(0.4-3.0μm)三种类型。分别运用重量分析法来量化叶片表面积累和吸附的蜡层PM颗粒。研究发现不同的树种间存在显著差异。不同粒径的颗粒在不同的树种和不同的叶片表面存在差异,这一差异同样存在于不同的叶腊层。
     叶腊层PM的数量是由不同的物种及颗粒物粒径而决定的。在秋季,降雨量较小,叶片表明三种粒径类型的颗粒物都比夏季显著高
     研究发现,所选9种植物种捕获吸收颗粒物的能力显著不同。其中,Sophora japonica和Platycladus orientalis能力最强Iris lactea和Amygdalus persica能力最差。针叶科(Platycladusorientalis和Pinustabuliformis)表现出比其他树木,灌木和草地更强的吸收PM(所有三种粒径)的能力。
     Platycladusorientalis表现出比Pinustabuliformis混合植被更高的单位叶面积颗粒物量级,这表明Pinus tabuliformis混合植被的PM含量比针叶类高。PM在叶面和叶腊层的沉积过程取决于多种因素:沉积时间,降雨,风力。城市森林植被类型也对这种沉积过程有影响。
     在灌木林和阔叶林的研究中,PM25浓度与LAI之间呈中等程度的负相关。混交林中同样有类似的显著负相关关系,但是相关性弱于阔叶林和灌木林。针叶林中PM25浓度与LAI的相关关系最低。
     雾霾天后,混交林和灌木林的TSP-PM10的累积量高于其它森林类型。但是PM25和PM1在针叶林是最高的,其次是阔叶和灌木类型。草地和对照有良好条件,TSP和PM10的浓度表现出低于其它的森林类型。
Particulate matter (PM), especially, PM2.5causes harm directly to the health of people. How to use urban tree species or urban forest systems to control and prevent from atmospheric PM. On one hand, controlling the source emitting PM in order to minimize air pollution caused by PM is necessary. On the other hand, reasonable and highly effective methods for reduce available "in-the-air" PM accumulation must be defined. In order to optimise the effectiveness of particulate matter by reducing urban tree planting design, five commonly cultivated kinds of urban forest types were studied in Olympic park of Beijing city in2013year. Weighing method was used to collect PM2.5for PM2.5concentration and chemical composition analysis. TSP, PM10, PM2.5and PM1were measured by Air Dust-mate monitor. Chemical compositions of analyzed individual particles included carbonaceous and water-soluble inorganic ions. Particles on leaf surface and in-wax were used in water wash-off and chloroform wash-off methods.
     Results show that the urban forest systems are capable of storing and capturing dust from the air. The types of Shrub and Broadleaf tree have the ability to control particulate matter in the air most effectively at the stage when leaves are fully developed. During the leafless season, evergreen systems (for example coniferous types) and mixed tree systems (broad leaves and coniferous) are likely to be the most effective for preventing high aerosol PM2.5concentrations and have significant differences from other forest systems.
     The ability of year-PM concentration, absorption between no-tree system and with-tree systems shows Broadleaf treetype is highest (66.15%for TSP;35.32%for PM10), Conifertypeuptake is highest PM2.5(19.71%) and PM1(20.88%) compared to Control (no-tree). Grassland is mostly lower Control. And the ability of PM2.5concentration at four leaves growth stages shows high uptake for Conifer type up to:66.6%, followed closely by the Shrub and the Mixed tree type; with the Grassland lowest at33.6%. The concentration of PM2.5absorption between the models of urban forest at four leaves growth stages show Conifer are higher than the Control, and there is a significant difference with the remainder models.
     The PM concentrations suspend efficency of six urban forest types in year variation in descending order is Broadleaf tree> Mixed tree> Shrub> Conifer> Control> Grassland (with TSP); Broadleaf tree> Conifer> Shrub> Mixed tree> Control> Grassland (with PM10) and Conifer> Mixed tree> Broadleaf tree> Shrub> Control> Grassland (PM2.5and PM1). And the PM2.5capture efficency of six urban forest types at four growth stages of leaves is Conifer>Broadleaf tree>Shrub>Mixed tree> Grassland and Control.
     The year variation of the aerosol PM concentrations shows that PM concentrationsare highest in late spring, autumn and winter, and low in summer. The average for all urban forest types at the four stages of leaf growth and the different times of year studied, TSP, PM10, PM2.5and PM1capture in the morning and night air are high and low in the afternoon and evening.
     The experiment of this research does not show correlation of VOC, Cations, Anions and PM2.5concentration in the air clearly. Correlation analysis between VOC, OC, EC and PM2.5-mass showed:weak correlation between VOC and EC with increasing PM2.5-mass (R2=0.4364and R2=0.4422), and no significant correlation between OC, TC, NH4+, NO3-and PM2.5mass (R2=0.0646). There are correlation between the concentration of PM2.5and SO42-(R2=0.3181)/and Cl-(R2=0.3512), but no strong regression.
     Needle leaves and hairy-waxy leaves show their ability to deposit and capture PM content on the surface as well as in waxed layer. This project only focuses on the variation of PMs content at different seasons of a year. Necessary to replicate the experiment in subsequent studies or in further studies to be able to prove the result.
     Coniferous trees at different seasons show that PM content is highest in winter. Due to its long deposition process from previous months of the year, especially after rainy season. Small and rough needle leaves showan ability to capture large and coarst particles, but for fine particles, long and smooth needle leaves are more effective.Mixed tree urban forest type shows its effectiveness in capture PM concentration in comparison to monoculture forest type.
     The concentration of PM in air showed high correlation with humidity. In the morning, night or high humidity day, the aerosol PM concentration increases and varies in the same direction relative to humidity fluctuations.
     With haze pollution afterwards, the accumulation of TSP and PM10showed in Mixed tree and Shrub showed10is higher than in other models. But with PM2.5and PM1, Conifer showed the highest, followed by Broadleaf and Shrub systems. In Grassland and Control with favorable conditions, concentration of TSP, and PM10showed lower than remain forest types.
引文
1. Acero, A. J., Simon, A., Padro, A.,& Santa, O. C. Impact of local urban design and traffic restrictions on air quality in a medium-sized town [J]. Environmental Technology,2012,33(21), 2467-2477.
    2. Andrea, B., Francesco, B.,& et al. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China:a repeated-measure study [J]. Environmetal Health, 2011,10,108-118.
    3. Ariola, J. D., Carnahan, M. E.,& et. al. Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization [J]. Science,2006,312(5774),714-719.
    4. Bakker, I. M.,& et. al. Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species [J]. Environmental Toxicology and Chemistry,1999, (10),2289-2294.
    5. Beckett, K. P., Freer-Smith, P. H.,& Taylor, G. Particulate pollution capture by urban trees: effect of species and wind speed [J]. Global Change Biology,2000b,5(8),995-1003.
    6. Beckett, K. P., Freer-Smith, P.,& Taylor, G. Urban woodlands:their role in reducing the effects of particulate pollution [J]. Journal of Environmental Pollution,1998,99(3),347-360.
    7. Beckett, K. P., Freer-Smith, P.,& Taylor, G. Effective Tree Species for Local Air-Quality Management [J]. Journal of Arboriculture,2000a,26(1),12-19.
    8. Bond, C. T., Streets, G. D., Yarber, F. K.,& et. al. A technology based global inventory of black and organic carbon emissions from combustion [J]. Journal of Geophysical Research,2004,109, D14203.
    9. Burkhadt, J., Peters, K.,& Crossley, A. The presence of structural surface waxes on coniferous needles affects the pattern of dry deposition of fine particles [J]. Experimental Botany,1995,46, 823-831.
    10. Cao, J. J., Chow, C. J., Lee, C. S., Li, Y., Chen, W. S., An, Z., et al. Characterization and Source Apportionment of Atmospheric Organic and Elemental Carbon during Fall and Winter of 2003 in Xi'an, China [J]. Atmospheric Chemistry Physics,2005,5,3561-3593.
    11. Cao, J. J., Le, C. J., Ho, F. K., Zhang, Y. X., Zou, C. S., Fung, K. K., et al. Characteristics of Carbonaceous Aerosol in Pearl River Delta Region, China during 2001 Winter Period [J]. Atmospheric Environment,2003,37,1451-1460.
    12. Caricchia, M. A., Chiavarini, S.,& Pezza, M. Polycyclic Aromatic Hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy) [J]. Atmospheric Environment,1999, 33,3731-3738.
    13. Carlisle, J. A.,& Sharp, C. N. Exercise and outdoor ambient air pollution [J]. British Journal of Sports Medicine,2001,35,214-222.
    14. CBS-News. The Most Polluted Places On Earth.2010-01-08 [M]. Retrieved 2013-01-21:CBS News.
    15. Chen, X.,& Yu, Z. J. Measurement of Organic Mass to Organic Carbon Ratio in Ambient Aerosol Samples Using a Gravimetric Technique in Combination with Chemical Analysis [J]. Atmospheric Environment,2007,41,8857-8864.
    16. Cheng, T. M., Horng, L. C.,& Liu, C. Y. Characteristics of atmospheric aerosol and acidic gases from urban and forest sites in Central Taiwan [J]. Bull Environ. Contain Toxicol.,2007,79,674-677.
    17. China Meteorologycal Administration. The Specifications for the Earth's Surface Meteorological Observation [M],1979, in Chinese.
    18. Chow, C. J., Watson, G. J., Pritchett, C. L., Pierson, R. W., Frazier, A. C.,& Purcell, G. R. Thermal/Optical Reflectance Carbon Analysis System:Description, Evaluation and Applications in U.S. Air Quality Studies [J]. Atmostpheric Environment,1993,17,1185-1201.
    19. Chow, J. C, Watson, J. G., Louie, P. K., Chen, A. L.,& Sin, D. Comparison of PM2.5 carbon measurement methods in HongKong, China [J]. Environmental Pollution,2005,137,334-344.
    20. Christoforou, S. C, Salmon, G. L., Hannigan, P. M., Solomon, A. P.,& Cass, R. G. Trends in Fine Particle Concentration and Chemical Composition in Southern California [M].2000,50(1), 43-53.
    21. Cormier, S., Lomnicki, S., Backes, B.,& Dellingger, B. Origin and Health Impacts of Emissions of Toxic By Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes Mater [J]. Environmental Health Perspectives,2006,114(6),810-817.
    22. Darcey, J. G. China's environmental problems:is a specialized court the solution? [J]. Pacific Rim Law & Policy Journal Association,2009,18(1),155-187.
    23. Davies, K. Oxidative stress:the paradox of aerobic life [J]. Biochemical Society Symposia,1995, 61,1-31.
    24. Duan, F. K., He, K. B., Ma, Y. L., Jia, Y. T., Yang, F. M., Lei, Y., et al. Characteristics of Carbonaceous Aerosols in Beijing, China [J]. Chemosphere,2005,60,355-364.
    25. Dwyer, J. F., McPherson, E. G., Schroeder, H. W.,& Rowntree, R. A. Assessing the benefits and costs or the urban forest [J]. Journal of Arboriculture,1992,18(5),227-234.
    26. Dzierzanowski, K., Robert, P., Helena, G., Arne, S.,& Stanislaw, G. W. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species [J]. International Journal of Phytoremediation,2011,13,1037-1046.
    27. Englert, N. Fine Particles and Human Health:A Review of Epidemiological Studies [J]. Toxicology Letters,2004,149(1-3),235-242.
    28. Escobedoa, F. J.,& Nowak, D. J. Spatial heterogeneity and air pollution removal by an urban forest [J]. Landscape and Urban Planning,2009,90,102-110.
    29. Fang, C. G., Chang, N. C., Chu, C. C., Wu, S. Y., Peter, Fu, C. P., et al. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung [J]. The Science of The Total Environment,2003,308,157-166.
    30. Flower, D., Cape, J. N.,& Unsworth, M. H. Deposition of atmospheric pollutants on forests [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1989, 324,247-265.
    31. Freer-Smith, P. H., Beckett, K. P.,& Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X. trichocarpa'Beaupre', Pinus nigra and X. Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment [J]. Environmental Pollution,2005,133(1),157-167.
    32. Freer-Smith, P. H., El-Khatib, A. A.,& Taylor, G. Capture of Particulate Pollution by trees-a comparison of species typical of semi-arid areas (Ficus nitida and Eucalyptus globulus) with European and North American species [J]. Water, Air and Soil Pollution,2004,155,173-187.
    33. Gawronski, S. W.,& et. al. Accumulation of particulate matter by several plant species in regard to PM fractions, deposition on leaf surface and leaf waxes [J]. International Journal of Phytoremediation, [in preparation].
    34. Gehrig, R., & Buchmann, B. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data [J]. Atmospheric Environment,2003,37(19),2571-2580.
    35. Grodzinska, J. M. Conifer epicuticular wax as a biomarker of air pollution:An overview [J]. Acta Societatis Botanicorum Poloniae,1998,67(3-4),291-300.
    36. Guo, H., Lidia, M., He, C. R., Zhang, L. Y., Godwin, A.,& Cao, M. Characterization of particle number concentrations and PM 25 in a school:influence of outdoor air pollution on indoor air [J]. Environmental Science Pollution Research,2010,17,1268-1278.
    37. He, B. K., Yang, M. F., Ma, L. y., Zhang, Q.,& Yao, H. X. The characteristics of PM2.5 in Beijing, China [J]. Atmospheric Environment,2001,35,4959-4970.
    38. He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., et al. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities-insights into the formation of secondary inorganic aerosols [J]. Atmospheric Chemistry Physics,2012,12,1377-1395.
    39. Ho, K. F., Lee, S. C., Cao, J. J., Li, T. S., Chow, J. C., Watson, J. G., et al. Variability of Organic and Elemental Carbon, Water Soluble Organic Carbon, and Isotopes in Hong Kong [J]. Atmospheric Chemistry Physics,2006,6,1-8.
    40. Holler, R., Tohnoa, S.,& Kasaharaa, M. Long-term characterization of carbonaceous aerosol in Uji, Japan [J]. Atmospheric Environment,2002,36,1267-1275.
    41. Ingrid, R.,& Richard, V. Effects of PM2.5 on Children's health in Indiana [J]. Summit for Children's Environmental Health,2007, Issue paper.
    42. Jacobson, M. Z. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, Possibly the Most Effective Method of Slowing Global Warming [J]. Journal of Geophysical Research, 2002,107(D19),4410.
    43. Janne, R. V., Pasi, Y.-P., Holopainen, T., Jorma, J., Pertti, P.,& Minna, K. Soil drought increases atmospheric fine particle capture efficiency of Norway spruce [J]. Boreal Environment research, 2012,17,21-30.
    44. Jonhson, P. S.,& Graham, J. J. Fine Particulate Matter national Ambient Air Quality Standards: Public Health Impact on Populations in the Northeastern United States [J]. Environmental Health Perspectives,2005,113,1140-1147.
    45. Jouraeva, V. A., Johnson, D. L., Hassett, J. P.,& Nowak, D. J. Differences in accumulation of PAHs and metals on the leaves of Tilia x euchlora and Pyrus calleryana [J]. Environmental Pollution,2002,120,331-338.
    46. Kaupp, H., Blumenstock, M.,& McLachlan, M. S. Retention and mobility of atmospheric particle-associated organic pollutant PCDD/Fs and PAHs on maize leaves [J]. New Phytologist, 2000,148,473-480.
    47. Kim, E., Hopke, P. K., Larson, T. V.,& Covert, D. S. Analysis of ambient particle size distributions using UNMIX and positive matrix factorization [J]. Environmental Science and Technology,2004,55(1),202-209.
    48. Kim, Y. J., Kim, K. W., Leed, B. K.,& Han, J. S. Fine Particulate Matter Characteristics and Its Impact on Visibility Impairment at Two Urban Sites in Korea:Seoul and Incheon [J]. Atmospheric Environment,2006,40(2),593-605.
    49. Kim, Y. P., Moon, K.-C,& Lee, J. H. Organic and Elemental Carbon in Fine Particles at Kosan, Korea [J]. Atmospheric Environment,2000,34,3309-3317.
    50. Laden, F., Neas, L. M., Dockery, D.,& Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities [J]. Environmental Health Perspectives, 2000,108,941-947.
    51. Larson, S.,& Cass, G. Characteristics of Summer Midday Low-visibility Events in the Los Angeles Area [J]. Environmental Science and Technology,1989,23,281-289.
    52. Lecoeur, E., Seigneur, C., Terray, L.,& Page, C. Influence of Climate on PM2.5 Concentrations over Europe:a Meteorological Analysis using a 9-year Model Simulation [J]. Geophysical Research Abstracts,2012,14, EGU2012-1420.
    53. Levy, J. I., Hammitt, J. K.,& Spengler, J. D. Estimating the Mortality Impacts of Particulate Matter:What Can Be Learned from Between-Study Variability? [J]. Environmental Health Perspectives,2000,108,109-117.
    54. Li, F. W., Bai, P. Z., Liu, X. A., Chen, J.,& Chen, L. Characteristics of Major PM2.5 Components during Winter in Tianjin, China [J]. Aerosol and Air Quality Research,2009,9(1), 105-119.
    55. Li, L., Wang, W., Feng, L. J., Zhang, P. D., Li, J. H., Gu, P. Z., et al. Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China [J]. Journal of Environmental Sciences,2010,22(3),405-412.
    56. Li, P. H., Han, B., Huo, J., Lu, B., Ding, X., Chen, L., et al. Characterization, Meteorological Influences and Source Identification of Carbonaceous Aerosols during the Autumn-winter Period in Tianjin, China [J]. Aerosol and Air Quality Research,2012,12,283-294.
    57. Li, X., Yue, W., Iida, A., Li, Y.,& Zhang, G. A study of the origin of individual PM2.5 particles in Shanghai air with synchrotron X-ray fluorescence microprobe [J]. Nuclear Instruments and Methods in Physics Research,2007, B260,336-342.
    58. Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S.,& Kang, K. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature [J]. Atmospheric Chemistry Physics,2012,12,2007-2024.
    59. Lin, J.,& Tai, H. Concentrations and Distributions of Carbonaceous Species in Ambient Particles in Kaohsiung City, Taiwan [J]. Atmospheric Environment,2001,35,2627-2636.
    60. Lippmann, M.,& Ito, K. Contributions that epidemiological studies can make to the search for a mechanistic basis for the health effects of ultrafine and larger particles [J]. The Royal Society, 2000,358,2787-2797.
    61. Lippmann, M., Frampton, M., Schwartz, J., Dockery, D., Schlesinger, R., Koutrakis, P., et al. The US Environmental Protection Agency particulate matter health effects research centers program: A midcourse report of status, progress, and plans [J]. Environmental Health Perspectives,2003, 111,1074-1092.
    62. Litschke, T.,& Kuttler, W. On the reduction of urban particle concentration by vegetation-a review [J]. Meteorologische Zeitschrift,2012,17(3),229-240.
    63. Liu, M. D., Gao, P. S.,& An, H. X. Distribution and source apportionment of Polycyclic aromatic hydrocarbons from atmospheric particulate matter PM2.5 in Beijing [J]. Advances in Atmospheric Sciences,2008,25(2),297-305.
    64. Liu, R.,& Huza, M. A. Filtration and indoor air quality:a practical approach [J]. ASHRAE Journal,1995,37,18-23.
    65. Liu, S. Y., Shen, X. X., Mao, L. X.,& Chen, R. Indoor air levels of TSP, PM10, PM2.5 and PM1 at public places in Beijing during wintertime [J]. Acta Scientiae Circumstantiae,2004,24(2), 190-196.
    66. Liu, Y.,& Shao, M. Estimation and Prediction of Black Carbon Emissions in Beijing City [J]. Chinese Sciences Bulletin,2007,52,1274-1281.
    67. Matthew, R., David, A. T., Donald, C. R.,& Matthew, F. P. Daily, seasonal, and spatial trends in PM2.5 mass and composition in Southeast Texas [J]. Aerosol Science and Technology,2004, 3S(S1),14-26.
    68. McDonald, A. G., Bealey, W. J., Fowler, D., Dragosits, U., Skiba, U., Smith, R. I., et al. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations [J]. Atmospheric Environment,2007,41(38),8455-8467.
    69. McKendry, I. G. Background concentrations of PM2.5 and Ozone in British Columbia Canada [M]. Prepared for the British Columbia Ministry of Environment, March 2006.
    70. McPherson, G. Air Pollution Removal by Chicago's Urban Forest [M]. USDA Forest Service General Technical Report NE-186 Chapter 5,1994.
    71. Menon, S., Hansen, J., Nazarenko, L.,& Luo, F. Y. Climate Effects of Black Carbon Aerosols in China and India [J]. Science,2002,297,2250-2253.
    72. Mitchell, R., Maher, B. A.,& Kinnersley, R. Rates of particulate pollution deposition onto leaf surface:Temporal and inter-species magnetic analyses [J]. Environmental Pollution,2010, 158(5),1472-1478.
    73. Molnar, A., M6sazaros, E., Hansson, H. C., Karlsson, H., Gelencser, A., Kiss, G., et al. The importance of organic and elemental carbon in the fine atmospheric aerosol particles. Atmospheric Environment,1999,33(17),2745-2750.
    74. Namdeo, A.,& Bell, M. C. Characteristics and health implications of fine and coarse particulates at roadside, urban background and rural sites in UK [J]. Environment International,2005,31(4), 565-573.
    75. Nemitz, E., Gallagher, M. W., Duyzer, J. H.,& Fowler, D. Micrometeorological moorland vegetation [J]. Quarterly Journal of Royal Meteorological Society,2002,128,2281-2300.
    76. Nemitz, E., Milford, C.,& Sutton, A.M. A two-layer canopy compensation point model for describing bi-directional biophere-atmosphere exchange of ammonia [J]. Quarterly Journal of Royal Meteorological Society,127,815-833.
    77. Nowak, D. J. Air Pollution Removal by Chicago's Urban Forest". In:G.E. McPherson, D.J. Nowak, and R.E. Rowntree (Eds.) [M]. Forest Service, US Department of Agriculture. Chicago's Urban Forest Ecosystem:Results of the Chicago Urban Forest Climate Project,1994.
    78. Nowak, D. J. The effects of urban trees on air quality [M]. Syracuse, New York:USDA Forest Service,2007.
    79. Nowak, D. J.,& Crane, D. E. A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services [J]. Arboriculture & Urban Forestry,2008,34(6),347-358.
    80. Nowak, D. J., Crane, D. E.,& Steven, C. J. Air pollution removal by urban trees and shrubs in the United States [J]. Urban Forestry & Urban Greening,2006,4(3),115-123.
    81. Nowak, D. J., Crane, D. E., Walton, J. T., Twardus, D. B.,& Dwyer, J. F. Understanding and quantifying urban forest structure, functions, and value [M]. USDA Forest Service. Markham, Ontario:Proceeding of the 5th Canadian Urban Forest Conference,2003.
    82. Nowak, D. J., Satoshi, H., Allison, B.,& Robert, H. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects [J]. Environmental Pollution,2013,178,395-402.
    83. NPR. Air Pollution Grows in Tandem with China's Economy [M]. Retrieved 2013-01-21:NPR News,2013.
    84. Ottele, M., Bohemen, H. D.,& Fraaij, A. L. Quantifying the deposition of particulate matter on climber vegetation on living walls [J]. Ecological Engineering,2010,36(2),154-162.
    85. Ouyang, Y., Jiang, M. W.,& Liu, N. H. Study on the numerical simulation of PM2.5 using urban air quality model system [J]. Acta Scientiae Circumstantiae,2009,27(5),838-845.
    86. Pandis, S. N., Harley, R. A., Cass, G. R.,& Seinfeld, J. H. Secondary Organic Aerosol Formation and Transpor [J]t. Atmospheric Environment,1992,26(13),2269-2282.
    87. Pandis, S. N., Wexler, A. S.,& Seinfeld, J. H. Dynamics of Tropospheric Aerosols [J]. Journal of Physical Chemistry,1995,99(24),9646-9659.
    88. Pastuska, J. S., Wioletta, K. R.,& Elwira, Z. Z. Characterization of PM10 and PM2.5 and associated heavy metal at the crossroads and urban background site [J]. Environmental Monitoring and Assessment,2010,168(1-4),613-627.
    89. Peachey, C. J., Sinnett, D., Wilkinson, M, Morgan, G. W., Freer-Smith, P. H.,& Hutchings, T. R. Deposition and solubility of airborne metals to four plant species grown at vary distances from two heavily trafficked road in London [J]. Environmental Pollution,2009,157(8-9),2291-2299.
    90. Popek, R., Gawronska, H., Wrochna, M., Gawronski, S. W.,& Sabo, A. Particulate matter on foliage of 13 woody species:Deposition on surfaces and phytostabilisation in waxes-a 3-year study [J]. International Journal Phytoremediation,2013,15(3),245-256.
    91. Ram, K., Sarin, M. M.,& Hegde, P. Atmospheric Abundances of Primary and Secondary Carbonaceous Species at Two High-altitude Sites in India:Sources and Temporal Variability [J]. Atmospheric Environment,2008,42(28),6785-6796.
    92. Ramachandran, S., Rengarajan, R.,& Sarin, M.M. Atmospheric carbonaceous aerosols:issues, radiative forcing and climate impact. Science Curriculum Documents [J],2009,97,18-20.
    93. Reinap, A., Wiman, B. L., Svenningsson, B.,& Gunnarsson, S. Oak leaves as aerosol collectors: relationship with wind velocity and particle size distribution [J]. Experimental results and their implications,2009, Tree 23,1263-1274.
    94. Reynolds-Henne, C. E., Langenegger, A., Mani, J., Schenk, N., Zumsteg, A.,& Feller, U. Interactions between temperature, drought and stomatal opening in legumes [J]. Environmental and Experimental Botany,2010,68(1),37-43.
    95. Rosa, I. D., Pereira, J. M.,& Tarantola, S. Atmospheric emissions from vegetation fires in Portugal (1990-2008):estimates, uncertainty analysis and sensitivity analysis [J]. Atmospheric Chemistry Physics,2011,11,2625-2640.
    96. Rundell, K., Hoffman, J., Caviston, R., Bulbulian, R.,& Hollenbach, A. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function [J]. Inhalation Toxicology,2007, 19(2),133-140.
    97. Sabo, A., Popek, R., Nawrot, B., Hanslin, H. M., Gawronska, H.,& Gawronski, S. W. Plant species differences in particulate matter accumulation on leaf surfaces [J]. Science of the Total Environment,2012,427-428,347-354.
    98. Santosh, K. P. Ecological effect of airborne particulate matter on plants [J]. Environmental Skeptics and Critics,2012,1(1),12-22.
    99. Schwartz, J.,& Hayward, S. (2007). Air Quality in America:A Dose of Reality on Air Pollution Levels, Trends, and Health Risks. American Enterprise Institute for Public Policy Research.
    100. Schwartz, J.,& Zanobetti, A. Using meta-smoothing to estimate dose-response trends across multiples studies, with application to air pollution and daily death [J]. Epidemiology,2000,11, 666-672.
    101. Seinfeld, J. H.,& Pandis, S. N. Atmospheric Chemistry and Physics:From Air Pollution to Climate Change [M]. John Wiley & Sons, New Jersey (2nd Edition), July 2006.
    102. Shanni, G. A., Fukushima, T.,& Sharma, R. C. Anticipated air pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in india:an overview [J]. International Journal of "Environmental Studies,2004,61(2),125-137.
    103. Shen, Z. X., Wang, X., Zhang, R. J., Ho, K. F., Cao, J. J.,& Zhang, M. G. Chemical Composition of Water-Soluble Ions and Carbonate Estimation in Spring Aerosol at a Semi-Arid Site of Tongyu, China [J]. Aerosol and Air Quality Research,2011,11,360-368.
    104. Smith, W. H.,& Staskawicz, L. S. Removal of atmospheric particles by leaves and twigs of urban trees:Some preliminary observations and assessment of research needs [J]. Journal of Environmental Management,1977,1(4),317-330.
    105. Souch, C. A.,& Souch, C. The effect of trees on summertime below canopy urban climates:a case study Bloomington, Indiana [J]. Journal of Arboricultural,1993,19(5),303-312.
    106. Sternberg, T., Viles, H., Cathersides, A.,& Edwards, M. Dust particulate absorption by Ivy on historic walls in urban environments [J]. Science of the Total Environment,2010,409(1),162-168.
    107. Tallis, M., Taylor, G., Sinnett, D.,& Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments [J]. Landscape Urban Planning,2011,103(2),129-138.
    108. The Stationary Office. Air Quality Strategy for England, Scotland and Wales[M]. The Stationary Office,2000.
    109. Thurston, G. D., Ito, K., Hayes, C., Bates, D. V.,& Lippmann, M. Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario:consideration of the role of acid aerosols [J]. Environmental Research,1994,65(2),271-290.
    110. Tian, H. J., Duan, C. J., Ha, B. K., Ma, L. Y., Duan, K. F., Chen, Y., et al. Chemical characteristics of PM2:5 during a typical haze episode in Guangzhou [J]. Journal of Environmental Sciences,2009,21,774-781.
    111. Tiwari, S., Chate, D. M., Pragya, P., Kaushar, A.,& Bisht, D. S. Variations in Mass of the PM10 PM2.5 and PM1 during the Monsoon and the Winter at New Delhi [J]. Aerosol and Air Quality Research,2012,12,20-29.
    112. Turpin, B. J.,& Huntzicker, J. J. Identification of secondary aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS [J]. Atmospheric Environment,1995,29(23),3527-3544.
    113. Turpin, B. J., Saxena, P.,& Andrews, E. Measuring and simulating particulate organics in the atmosphere:problems and prospects [J]. Atmospheric Environment,2000,34(18),2983-3013.
    114. Vedal, S. Ambient particles and health:Lines that divide [J]. Journal of Air Waste Management Association,1997,47(5),551-581.
    115. Villeneuve, P. J., Goldberg, M. S., Krewski, D., Burnett, R. T.,& Chen, Y. Fine particulate air pollution and all-cause mortality within the Harvard six-cities study:variations in risk by period of exposure [J]. Annals of Epidemiology,2002,12(8),568-576.
    116. Wang, H. X., Bi, H. X., Guo, Y.,& Fu, M. J. Chemical composition and sources of PM10 and PM 2.5 aerosols in Guangzhou china [J]. Environmental Monitoring and Assessment,2006,199, 425-439.
    117. Wang, H. X., Bi, H. X., Sheng, Y. G.,& Fu, M. J. Chemical composition and sources of PM10 and PM 2.5 aerosols in Guangzhou China [J]. Environmental Monitoring and Assessment,2006, 199,425-439.
    118. Wang, L. H., Zhou, M. Y., Zhuang, H. Y., Wang, K. X.,& Hao, P. Z. Characterization of PM2.5, PM2.5-10 and source tracking in the juncture belt between urban and rural areas of Beijing [J]. Chinese Science Bulletin,2009,54,2056-2515.
    119. Wang, L., Liu, L. Y., Gao, S. Y., Eerdun, H.,& Wang, Z. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing [J]. Journal of Environmental Sciences,2006,18(5),921-926.
    120. Wang, X. M., Zhang, J. R.,& Pu, F. Y. Recent Researches on Aerosol in China [J]. Advances in Atmospheric Sciences,2001,18,576-586.
    121. Watson, J. G. (2002). Visibility:Science and Regulation [J]. Journal of the Air and Waste Management Association,2002,52(6),628-713.
    122. Watson, J. G., Chow, J. C., Lowenthal, D. H., Pritchett, L. C, Frazier, G. R., Clifton, A., et al. Differences in the Carbon Composition of Source Profiles for Diesel-and Gasoline-powered Vehicles [J]. Atmospheric Environment,1994,25,2493-2505.
    123. Wellenius, G. A., Schwartz, J.,& Mittleman, M. A. Particulate Air Pollution and Hospital Admissions for Congestive Heart Failure in Seven United States Cities [J]. American Journal of Cardiology,2006,97,404-408.
    124. Wen, G. Y., Lian, W. Z., Ye, J. X.,& Li, L. Relationship between outdoor and indoor PM2.5, PM10 and PM1 in apartment and office buildings [J]. Journal of Donghua University (Eng. Ed.), 2008,25(3),334-339.
    125. Whitlow, T. H., Hall, A., Zhang, K. M.,& Anguita, J. Impact of local traffic exclusion on near-road air quality:Findings from the New York City "Summer Streets" campaign [J]. Environmental Pollution,2011,159,2016-2027.
    126. Wiman, B. B., Unsworth, M. H., Lindberg, S. E., Bergkvist, B., Jaenicke, R.,& Hansson, H. C. Perspectives on aerosol deposition to natural surfaces:interactions between aerosol residence times, removal processes, the biosphere and global environmental change [J]. Journal of Aerosol Sciences,1995,21,313-333.
    127. Wiman, B. L. B.,& Lannefors, O. H. Aerosol characteristics in a mature coniferous forest methodology, composition, sources and spatial concentration variations [J]. Atmospheric Environment,1990,19,349-362.
    128. Winkler, P. The growth of atmospheric aerosol particles with relative humidity [J]. Physica. Scripta.,1998,37,223-230.
    129. World Health Organization (WHO). Air Quality Guidelines for Europe [M]. Copenhagen:WHO (second ed.),2000.
    130. Wu, Z., Wang, C., Xu, J.,& Hu, L. Air-borne anions and particulate matter in six urban green spaces during the summer [J]. Journal of Tsinghua University (Sciences and Technology),2007, 47(12),2152-2157.
    131. Xiao, M. J., Wang, C., Wu, P. Z.,& Hou, X. J. Variations of Air PM10 Concentration in Different Greenlands in Tsinghua University [J]. Scientia Silvae Sinicae,2009,145,15.
    132. Yang, F., Huang, L., Duan, F., Zhang, W., He, K., Ma, Y., et al. Carbonaceous species in PM2.5 at a pair of rural/urban sites in Beijing,2005-2008 [J]. Atmospheric Chemistry Physics,2011,11, 7893-7903.
    133. Yang, J., McBride, J., Zhou, J.,& Sun, Z. The urban forest in Beijing and its role in air pollution reduction [J]. Urban Forestry & Urban Greening,2005,3(2),65-78.
    134. Yu, Z. J., Tung, T. J., Wu, M. A., Lau, H. A., Louie, K. P.,& Fung, H. J. Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10 [J]. Atmospheric Environment,2004,35(10),1511-1521.
    135. Zhang, J. R. Characterization of Atmospheric Organic and Elemental Carbon of PM2.5 in a Typical Semi-Arid Area of Northeastern China [J]. Aerosol and Air Quality Research,2012,12, 792-802.
    136. Zhang, J. R., Ho, F. K., Cao, J. J., Han, W. Z., Zhang, G. M., Cheng, Y., et al. Organic Carbon and Elemental Carbon Associated with PM10 in Beijing during Spring Time [J]. Journal of Hazardous Materials,2009,172,970-977.
    137. Zhang, M. K.,& Wexler, A. A hypothesis for growth of fresh atmospheric nuclei [J]. Journal of Geophysical Research,2002,15-21.
    138. Zhang, M. K., Wexler, A., Zhu, F. Y., Hinds, C. W.,& Sioutas, C. Evolution of particle number distribution near roadways. Part II:the'Road-to-Ambient'process [J]. Atmospheric Environment, 2004,38,6655-6665.
    139. Zhang, W. F., Chen, S. J., Qiu, X. T., Yin, Q. L., Chen, Q. X.,& Yu, S. J. Pollution Characteristics of PM2.5 during a Typical Haze Episode in Xiamen, China [J]. Atmospheric and Climate Sciences,2013,3,427-439.
    140. Zhou, X.,& Kang, P. X. Study on Dust-retention Ability of Different Green Plants on Campus [J]. Journal ofAnhui Agricultural Sciences,2008,36(24),10431-10432.
    141.任启文,王成,&郄光发.城市绿地空气颗粒物及其与空气微生物的关系[J].城市环境与城市生态,2006(5),22-25.
    142.刘阳生,沈兴兴,毛小苓,&陈睿.北京市冬季公共场所室内空气中TSP-PM10-PM2.5和PMl污染研究[J].环境科学报ACTA SCIENTIAE CIRCUMSTANTIAE,2004,24(2).
    143.吴志萍.城市不同类型绿地空气颗粒物浓度变化规律的研究[T].中国林业科学研究院,2007,硕士论文.
    144.吴志萍,王成,侯晓静,&等.6种城市绿地空气PM2.5浓度变化规律的研究[J].安徽农业大学学报,2008(4),494-498.
    145.吴志萍,王成,许积年,&胡立香.六种城市绿地内夏季空气负离子与颗粒物[J].清华大学学报(自然科学版),2007,47(12),2153-2157.
    146.吴海龙.PM2.5特征及森林植被对其调控研究进展[J].中国水土保持科学,2012,10(6),1 16-122.
    147.周晓炜,&亢秀萍.几种校园绿化植物滞尘能力研究[J].安徽农业科学,2008,36(24),10431-10432.
    148.徐敬,丁国安,&等.北京地区PM2.5的成分特征及来源分析[J].应用气象学报,2007(5),645-654.
    149.杨复沫,贺克斌,马永亮,StevenH.Cadle, TaiChan, & PatriciaA.Mulawa.北京市大气PM2.5中矿物成分的污染特征[J].环境科学,2004,25(5),26-30.
    150.杨瑞卿,&肖杨.徐州市主要园林植物滞尘能力的初步研究[J].安徽农业科学,2008,36(20),8576-8578.
    151.校建民,王成,吴志萍,杨伟伟,&侯晓静.清华大学校园内不同绿地地类型空气PM10浓度变化规律[J].林业科学,2009,145(15),153-156.
    152.江胜利,金荷仙,&许小连.园林植物滞尘功能研究概述[J].林业科技开,2011,25(6),5-9.
    153.王蓉丽,方英姿,&马玲.金华市主要城市园林植物综合滞尘能力的研究[J].浙江农业科学,2009(3),574-576.
    154.王赞红,&李纪标.城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J].生态环境,2006,15(2),327-330.
    155.贾海红,王祖武,&张瑞荣.关于PM2.5的综述[J].污染防治技术,2003,S1,135-138.
    156.郑少文,邢国明,李军,&等.北方常见绿化树种的滞尘效应[J].山西农业大学学报:自然科学版,2008,28(4),383-387.
    157.陈圆.北京林业大学校区大气 PM10, PM2.5的理化特性与分形分析[T].北京:北京林业大学,2008,硕士论文.
    158.韩敬,陈广艳,&杨银萍.临沂市滨河大道主要绿化植物滞尘能力的研究[J].湖南农业科学,2009(6),141-142.
    159.高金晖.北京市主要植物滞尘影响机制及其效果研究[T].北京:北京林业大学,2007,硕士论文.
    160. British Standards Institution Workplace atmospheres-pumps for personal sampling of chemical agents-requirements and test methods. BS EN 1232 BSI 1997 ISBN 0 580 28328 3.
    161. Determination of total and respirable dust using filtration-weighing method on workstations.
    162. HJ 618-2011 (Replace GB 6921-86). Determination of atmospheric articles PM10 and PM25 in ambient air by gravimetric method (China).
    163. International Standards Organisation-ISO 7708:1995 Air quality-Particle size fraction definitions for health-related sampling.
    164. GB3095-2012 (Replace GB 3095-1996 and GB 9137-88). Ambient Air Quality Standards
    165. MDHS-14/3-Methods for the determination of hazardous substances Health and Safety Laboratory-General methods for sampling and gravimetric analysis of respirable and inhalable dust. Health and Safety Executive, February 2000.
    166. PN-Z-04008-7:2002+Az 1:2004. Air purity protection. Sampling. Ways of sample collection on workstations and result interpretation.
    167. PN-91/Z-04030/05. Air purity protection. Dust content testing. Matching of total dust on workstations with filtration-weighing method.
    168. PN-91/Z-04030/06. Air purity protection. Dust content testing. Matching of respirable dust on workstations with filtration-weighing method.
    169. TCVN 5067:1995. Air quality-Weighing method for determination of dust content (Vietnam).
    170. http://en.wikipedia.org/wiki/Urbanforestry
    171. http://news.flanders-china.be/reducing-pm2-5-top-priority-for-beijing
    172. http://www.spraytec.com/category/spray-applications
    173. http://www.epa.gov/pmdesignations/faq.htm
    174. http://politicolonel.com.
    175. http://www.chinadaily.com.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700