南海天然气水合物的早期成岩作用和地球化学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物已在近些年成为热点研究领域。根据已有的资料,我国最有希望实现此领域突破的海区是南海陆坡区。在分析了天然气水合物成矿背景和成矿条件的基础上,确定了沉积速率高、沉积物巨厚、地质构造独特的南海存在台西南盆地、珠江口盆地、西沙海槽、琼东南盆地、东沙海域等水合物远景区。
     本文对琼东南盆地T1、尖峰北盆地T2、台西南盆地GC10、HD196A和HD319的五个站位大型重力活塞柱沉积物样品,及九龙甲烷礁的TVG-1和TVG-11两个站位的电视抓斗样品,通过自生矿物组分,孔隙水化学成分异常,有机碳含量,沉积速率,顶空气甲烷含量以及烃类化合物等分析,对南海天然气水合物的早期成岩作用和地球化学特性做了系统的研究。最后,结合前人的研究成果,指出南海北部陆坡特别是台西南盆地和琼东南盆地是天然气水合物成藏的有利远景区。其中,主要成果和认识有:
     1.XRD和扫描电镜观察表明,在琼东南盆地、台西南盆地和尖峰北盆地的沉积物样品中普遍存在对天然气水合物有指示意义的自生碳酸盐、硫酸盐、和草莓状黄铁矿。其中文石~高镁方解石的显微结构特征与冷泉沉积物类似,属微生物成因,特别是九龙甲烷礁。
     2.从九龙甲烷礁的自生矿物组合和显微结构构造,可以确认TVG-1和TVG-11所代表的地质体与冷泉活动有关,流体中的CH_4/Ba~(2+)比值高,与墨西哥湾和黑海的冷泉类似。甲烷礁样品的超显微结构表明,碳酸盐沉淀与微生物活动有直接关系。TVG-1形成较早,文石已转化为方解石,但仍保留文石假象,TVG-11形成较迟,文石尚未变化。
     3.琼东南盆地和台西南盆地的孔隙水成分分析结果显示,孔隙水中的离子浓度随深度有明显的变化。随着深度加深,SO_4~(2-)含量急剧降低,较浅的硫酸根-甲烷界面(SMI)深度,Ca~(2+)、Mg~(2+)、Sr~(2+)浓度显著降低,Mg~(2+)/Ca~(2+)、Sr~(2+)/Ca~(2+)比值急剧增加等地球化学特性与世界上天然气水合物产区的浅表层沉积物孔隙水中离子浓度异常吻合较好,暗示这些地方很可能是深水油气或海底天然气水合物的产出位置。
     4.台西南盆地沉积物中有机碳含量丰富,HD196A站位大部分在1%以上,可以满足天然气水合物形成的气源条件。台西南盆地在晚更新世以来的沉积速率都较高,在16.7-20.8cm/ka之间。柱状沉积物底部甲烷含量急剧增加,可能和来自深部的烃渗漏有关。因此台西南盆地,特别是HD196A站位,是天然气水合物形成的有利地区。
     5.台西南盆地HD196A站位沉积物的烃类化合物主要为:正构烷烃、类异戊二烯烃、支链烷烃、多环芳烃等化合物。根据正构烷烃分布曲线的形状、碳数范围、主峰位置以及CPI值和OEP值,说明沉积物中的有机质主要来源是大陆高等植物、海洋浮游生物藻类和细菌源共存,并以陆源高等植物来源占优势。在样品中检测到角鲨烯,验证了这一地区的生物甲烷合成和细菌作用,具有生成油气及天然气水合物可能性。样品中普遍存在菲系列化合物、屈系列化合物、苝和惹烯化合物等,均表明沉积物中的多坏芳烃主要来自陆源高等植物。其中含量丰富的苝指示了陆源有机物质的快速堆积和还原环境。芳烃的甲基化和甲基重排作用,显示沉积物中有机质的热演化程度较高,有机质处于较成熟状态。从柱状样品的中部到底部,S_8相对浓度的急剧增加,结合孔隙水中SO_4~(2-)浓度异常和顶空气甲烷含量的异常,暗示沉积物底部已接近SMI界面。可以认为HD196A站位是海底油气和天然气水合物勘探的有利地区。
     6.综合考虑南海尖峰北盆地、琼东南盆地和台西南盆地都是水合物有利地区,巨厚的沉积物和高含量的有机质,有利于天然气水合物形成的气源条件、温压条件和良好的圈闭条件,说明这些海域是天然气水合物的有利勘探远景区。尤其是台西南盆地采样点附近的海域,存在天然气水合物的可能最大,琼东南盆地次之,而尖峰北盆地采样点有待进一步的考察研究。
Gas hydrate is becoming one of the most exciting research fields in the world within three decades as its great gas resources. According to the known gas hydrate reserves, the South China Sea (SCS) has the most favourable settings for gas hydrate to occur around offshore of the South China Sea. Based on the geological background and conditions for gas hydrate formation, such as high sedimentation rate, thick sediments, distinctive geological structure in these area, it has indicated that Taixinan Basin, Pearl River Mouth Basin, Xisha Trough, Qiongdongnan Basin and Dongsha Area in the South China Sea are very probable for gas hydrate reserves.
     In this paper, the marine core sediments of site T1 in Qiongdongnan Basin, site T2 in Jianfengbei Basin, sites CG10, HD196A and HD319 in Taixinan Basin, and other sediments of sites TVG-1 and TVG-11 in Jiulong Methane Reef were collected. We have researched the early diagenesis and the geochemistry characteristics systematically of the gas hydrate in the South China Sea by analyzing the authigenic mineral compositions, chemical compositions in pore water, content of organic carbon, sedimentation rate, methane concentrations in the headspace of sediments, hydrocarbon compounds and so on. Finally, in the light of some indicators inferred from the above methods and some results collected from the former research, some prospective gas hydrates are briefly pointed out in the northern slope of South China Sea, especially in Taixinan Basin and Qiongdongnan Basin. The main achievements are giver as follows:
     1. Complicated authigenic minerals were identified by XRD and SEM, such as miscellaneous carbonates, sulphates and frambiodal pyrite in the sediment samples from Qiongdongnan Basin, Taixinan Basin and Jianfengbei Basin. These authigenic minerals consistently indicate the gas hydrate to occur in the area. The assemblage and fabric characters of carbonates are similar to what being found in cold-seep sediments, which is thought to be related with microorganisms fueled by dissolved methane, especially found in Jiulong Carbonate Reef.
     2. The cold-seep evidences have been found in TVG-1 and TVG-11 samples from the authigenic minerals assemblage and microstructure tectonics in Jiulong Methane Reef. Their high value of CH_4/Ba~(2+) values are very similar to the cold-seeps in Gulf of Mexico and Black Sea. The microstructure in the sediments of Methane Reef shows that carbonate deposition is related with microorganisms. The sample TVG-1 was formed earlier than the TVG-11, because aragonite has been found in TVG-11, and aragonite had transformed into calcite in TVG-1.
     3. Results of chemical compositions analysis in pore water of sediment samples from Qiongdongnan Basin and Taixinan Basin, show that the concentrations of SO_4~(2-) decrease sharply in pore water, and the depths of SMI (Sulfate-methane interface) are shallow. The concentrations of Ca~(2+)、Mg~(2+)、Sr~(2+) decrease clearly, and the ratios of Mg~(2+)/Ca~(2+)、Sr~(2+)/Ca~(2+) increase sharply as the depth increased. These geochemical characteristics are similar to chemical compositions abnormalities in pore water of the shallow sediments where the gas hydrate occurs in the world. Those results strongly indicate there should be gas hydrates or deep water oil (gas) reservoirs underneath.
     4. Abundant organic carbon content in Taixinan Basin sediments, special in the site HD196A, which is over 1% in most of its sediments. That indicates that there are enough gas resources to form gas hydrate. The deposition rate in the Taixinan Basin is fast, ranges from 16.7 to 20.8 cm/ka since the Late Pleistocene. Methane concentration in the headspace of sediments increases sharply in the bottom of core samplem, which indicates that there is positively a hydrocarbon reserviors underneath the sampling site. Therefore, Taixinan Basin, special the site HD196A, is a positive area for gas hydrate formation.
     5. The main hydrocarbon compounds in the core sediments of HD196A from Taixinan Basin are: n-alkanes, isoprenoid, branched alkanes, polycyclic aromatic hydrocarbons (PAHs), etc. Based on the distribution curve of n-alkanes, range of carbon chains, the position of their main peaks and the value of CPI and OEP, it is believed that organic matter in the sediments was a mixture of terrestrial plants, marine phytoplankton, algae and bacteria, but dominated by terrestrial higher plants. Squalene was identified in sample, which show that biological methane synthesizing and bacteria function were occurrence in this area. The ubiquity of phenanthrene series, chrysene series compounds, perylene and retene compounds in the sediment indicate that PAHs came from terrestrial higher plants. Abundance of perylene designates fast accumulation of terrestrial organic matter and reductive condition. The methylation and methyl reset of PAHs indicate that the organisms in the sediment were higher therm-evolvement and were matured in this area. Relative concentration of S_8 increases sharply from the middle to the bottom of the core sample, and the abnormality of SO_4~(2-) concentrations in pore water and methane concentrations in the headspace of sediments, which all imply that the bottom of the core is close to the sulfate-methane interface (SMI). These evidences all indicate that the researched area is rather optimistic for oil, gas and/or gas hydrate resources.
     6. In summary, because of thick sediments, abundance organic matters, the gas resources for gas hydrate, temperature and pressure conditions, entrapped basin and so on, Jianfengbei Basin, Qiongdongnan Basin and Taixinan Basin in the South China Sea all have the most favourable conditions for gas hydrate to occur. Overall Taixinan Basin has the best chance for gas hydrate formation, and then Qiongdongnan Basin. Gas hydrate is a very complicated reservoir system, and there is much investigation and research on gas hydrate need to be carried out.
引文
蔡乾忠.中国海域油气地质学[M].北京:海洋出版社,2005:161-167
    
    陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球 物理学报,2004,47:483-489
    
    陈多福,苏正,冯东,等.海底天然气渗漏系统水合物成藏过程及控制因素[J].热带海洋学 报,2005,24(3):38-46
    
    陈多福,徐文新,吴时国,等.美国天然气水合物研究计划介绍[J].地球科学进展,2003,18 (2):321-321
    
    陈多福,姚伯初,徐文新.美国天然气水合物研究概况及我国的研究对策[J].海洋地质,2002, 2:1-6
    
    陈义才,沈忠民,罗小平.石油与天然气水合物有机地球化学[M].北京:科学出版社,2007, 1-193
    
    陈忠,黄奇瑜,颜文,等.南海西沙海槽的碳酸盐结壳及其对甲烷冷泉活动的指示意义[J]. 热带海洋学报,2007,26(2):26-33
    
    陈忠,颜文,陈木宏,等.海底天然气水合物分解与甲烷归宿研究进展[J].地球科学进展, 2006,21(4):394-400
    
    陈忠,颜文,陈木宏,等.南海北部大陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的 新证据[J].科学通报,2006,51(9):1065-1072
    
    邓辉,阎贫,刘海岭.南沙海域天然气水合物地震特征[J].海洋地质与第四纪地质,2004,24 (4):89-94
    
    邓辉,阎贫,刘海岭.台湾西南海域似海底反射分析[J].热带海洋学报,2005,24(2):79-85
    
    邓希光,付少英,黄永祥,等.南海北部东沙群岛HD196站位地球化学特征及其水合物的指 示[J].现在地质,2006,20(1):92-102
    
    丁巍伟,陈汉林,王渝民,等.台湾增生楔天然气水合物的地震特征[J].海洋与湖沼,2006, 37(1):90-96
    
    段毅,罗斌杰,钱吉盛,等.南沙海洋沉积物中脂肪酸地球化学研究[J].海洋地质与第四纪 地质,1996,16(2):23-31
    
    段毅,周世新.塔里木盆地石炭系烃源岩热模拟实验研究~*--Ⅱ.生物标志化合物的组成和演化 [J].石油与天然气地质,2001,22(1):13-16
    
    樊栓狮,刘锋,陈多福.海洋天然气水合物的形成机理探讨[J].天然气地球科学,2004,15(5): 524-530
    
    方银霞,金翔龙,杨树锋.冲绳海槽西北边坡天然气水合物的初步研究[J].海洋学报,2000, 22(增刊):49-52
    
    冯东,陈多福,苏正,等.海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J].现代 地质,2005,19(1):26-32
    
    付少英.烃类成因对天然气水合物成藏的控制[J].地学前缘,2005,12(3):263-267
    
    龚再升,李思田.南海北部大陆边缘盆地油气成藏动力学研究[M].北京:科学出版社,2003, 9-29
    
    郭平,刘士鑫,杜建芬.天然气水合物气藏开发[M].北京:石油工业出版社,2006,1-22
    
    韩舞鹰.南海海洋化学[M].北京:科学出版社,1998,10-45
    
    郝沪军,林鹤鸣,杨梦雄,等.潮汕坳陷中生界——油气勘探的新领域[J].中国海上油气 (地质),2001,15(3):157-163
    
    何家雄,夏斌,孙东山,等.琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J].石油勘 探与开发,2006,33(1):53-58
    
    何家雄.天然气水合物研究进展和南海北部勘探前景初探[J].海洋石油,2003,23(1):57-64
    
    黄保家.琼东南盆地天然气潜力及有利勘探方向[J].天然气工业,1999,19(1):34-40
    
    黄惠玉,王慧中.南极Bransfield海峡海水沉积物中的自生石膏[J].同济大学学报,1994,22 (1):121-125
    
    蒋国盛,王达,汤凤林,等,天然气水合物的勘探与开发[M].武汉:中国地质大学出版社, 2002,1-102
    
    蒋少涌,凌洪飞,杨竞红,等.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识 别标志[J].海洋地质与第四纪地质,2003,23(1):87-94
    
    蒋少涌,凌洪飞,杨竞红,等.同位素新技术方法及其在天然气水合物研究中的应用[J].海 洋地质动态,2001,7:24-29
    
    蒋少涌,杨涛,薛紫晨,等.南海北部海区海底沉积物中孔隙水的Cl~-和SO_4~(2-)浓度异常特征 及其对天然气水合物的指示意义[J].现代地质,2005,19(1):45-54
    
    金庆焕,张学光,杨木壮,等.天然气水合物资源概论[M].北京:科学出版社,2006,1-6, 53-60,90-100
    
    李安春,陈丽蓉,申顺喜,等.冲绳海槽东坡表层沉积物中自生铁方解石的发现与研究[J]. 岩石矿物学杂志,1998,17(3):241-249
    
    李绪宣,朱光辉.琼东南盆地断裂系统及其油气输导特征[J].中国海上油气,2005,17(1): 1-7
    
    林卫东,周永章,沈平,等.南海深水海域近代沉积物中饱和烃的地球化学特征及其来源[J]. 中山大学学报(自然科学版),2005,44(6):123-126
    
    刘坚,陆红锋,廖志良,等.东沙海域浅层沉积物硫化物分布特征及其与天然气水合物的关 系[J].地学前缘,2005,12(3):258-262
    
    刘学伟,李敏锋,张聿文,等.天然气水合物地震响应研究——中国南海HD152测线应用实 例[J].现代地质,2005,19(1):33-38
    
    卢鸿,孙永革,彭安平.单甲基支链烷烃的单体碳同位素研究[J].沉积学报,2003,21(2): 360-365
    
    陆红锋,陈芳,刘坚,等.南海北部神狐海区的自生碳酸盐岩烟囱——海底富烃流体活动的 记录[J].地质论评,2006,52(3):352-357
    
    陆红锋,陈芳,刘坚,等.天然气水合物沉积环境的自生矿物特点及其在瀚海的发育情况[J]. 南海地质研究,2006,1:93-104
    
    陆红锋,刘坚,陈芳,等.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气 水合物存在的主要证据之一[J].地学前缘,2005,12(3):268-276
    
    孟宪伟,刘保华,石学法,等.冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析[J]. 沉积学报,2000,18(4):629-633
    
    邱中建,龚再升.中国油气勘探(第四卷近海油气区)[M].北京:地质出版社,石油工业出版 社,1999:911-963
    
    史斗,孙成权,朱岳年.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992,1-88
    
    史斗,郑军卫.世界天然气水合物研究开发现状和前景[J].地球科学进展,1999,14(4): 330-339
    
    宋海斌,耿建华,Wang How-King,等.南海北部东沙海域天然气水合物的初步研究[J].地球 物理学报,2001,44(5):687-695
    
    宋海斌,松林修.日本德天然气水合物地质调查工作[J].天然气地球科学,2001,12(1): 46-53
    
    宋海斌.天然气水合物体系动态演化研究(Ⅱ):海底滑坡[J].地球物理学进展,2003,18(3): 374-383
    
    宋金明.中国近海生物地球化学[M].山东科学技术出版社,2004,468-488
    
    苏新,陈芳,于兴河,等.南海陆坡中新世以来沉积物特性与气体水合物分布初探[J].现代 地质,2005,19(1):1-13
    
    苏新.国外海洋气水合物研究的一些新进展.地学前缘,2000,7(3):257-265
    
    苏新.海洋天然气水合物分布与“气-水-沉积物”动态体系-大洋钻探204航次调查初步结果 的启示[J].中国科学(D辑),2004,34(12):1091-1099
    
    孙春岩,牛滨华,文鹏飞,等.海上E区天然气水合物地质、地震、地球化学特征综合研究与 成藏远景预测[J].地球物理学报,2004,47(6):1076-1085
    
    孙春岩,吴能友,牛滨华,等.南海琼东南盆地气态烃地球化学特征及天然气水合物资源远 景预测[J].现代地质,2007,21(1):95-100
    
    唐勇,方银霞,高金耀,等.冲绳海槽天然气水合物稳定带特征及资源量评价[J].海洋地质 与第四纪地质,2005,25(4):79-84
    
    唐运千,卢冰,徐濂.南海北部沉积物的萘、菲和芴化合物[J].海洋通报,1994,13(4):41-49
    
    唐运千,杨展雄,徐鲁强,等.浙江近海沉积物中某些类脂物的分布特征[J].海洋学报,1987, (3):385
    
    唐运千,郑士龙,龚敏,等.南海和冲绳海槽沉积物的生物标记化合物[J].热带海洋,1993, 12(1):57-63
    
    唐运千,龚敏,林壬子,等.长江口外沉积物中多环芳烃结构类型的分布[J].东海海洋,1991, 9(1):52-59
    
    王宏斌,张光学,杨木壮,等.南海陆坡天然气水合物成藏的构造环境[J].海洋地质与第四 纪地质,2003,23(1):81-86
    
    王宏斌,梁劲,龚跃华,等.基于天然气水合物地震数据计算南海北部陆坡海底热流[J].现代 地质,2005,19(1):67-73
    
    王家生,Suess E,Rickert D.东北太平洋天然水合物伴生沉积物中自生石膏矿物[J].中国科 学(D辑),2003,33(5):433-441
    
    王建桥,祝有还,吴必毫,等.南海ODP1146站位烃类气体地球化学特征及其意义[J].海洋 地质与第四纪地质,2005,25(3):53-60
    
    王昆山,石学法,李珍,等.东海DGKS9617岩心重矿物及自生黄铁矿记录[J].海洋地质与 第四纪地质,2005,25(4):41-45
    
    王万春,淘明信,张小军,等.李雅庄煤矿媒岩中C_(25)、C_(30)等无环类异戊二烯烷烃的检出及其 地球化学意义[J].沉积学报,2006,24(6):897-900
    
    王秀娟,刘学伟,吴时国.基于热弹性理论的天然气水合物和游离气饱和度估算[J].石油物 探,2005,44(6):545-550
    
    吴必豪,马开义,陈邦彦,等.西太平洋天然气水合物矿藏找矿远景刍议[J].矿床地质,1998, 17(增刊):741-74.
    
    吴德云,程桂英.我国滨海现代沉积物的有机地球化学特征及其与油气关系的探讨[J].海洋 地质与第四纪地质,1984,4(4):1-9
    
    吴进民.新生代盆地图[M].海南地质地球物理图集,广州:广东地图出版社,1987,1-26
    
    吴能友,王宏斌,陆红锋,等.地质-生物系统中的甲烷研究[J].海洋地质动态,2006,22(5): 1-7
    
    吴能友,曾维军,宋海斌,等.南海区域构造沉降特征[J].海洋地质与第四纪,2003,23(1): 55-65
    
    吴时国,张光学,郭常升,等.东沙海区天然气水合物形成及分布的地质因素[J].石油学报, 2004,25(4):7-12
    
    吴莹,张经,唐运千.中国海洋有机地球化学研究的若干进展[J].地球科学进展,1999,14 (3):256-261
    
    向明菊,史继扬,周友平,等.同类型沉积物中脂肪酸的分布、演化和生烃意义[J].沉积学报, 1997,15(2):84-88
    
    许红,黄君权,夏斌,等.最新国际天然气水合物研究现状及资源潜力评估(下)[J].天然气工 业,2005,25(6):18-23
    
    许红.德国联邦地学研究中心与全德天然气水合物研究[J].海洋地质动态,2006,22(10): 20-21
    
    颜文,陈忠,王有强.南海NS93-5柱样的矿物学特征及矿物沉积序列[J],矿物学报,2000,20 (2):143-149
    
    杨涛,蒋少涌,葛璐,等.南海北部陆坡两沙海槽XS-01站位沉积物孔隙水的地球化学特征 及其对天然气水合物的指示意义[J].2006,26(3):442-448
    
    杨涛,薛紫晨,杨竞红,等.南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征 [J].地球学报,2003,24(6):511-514
    
    杨文达,陆文才.东海陆坡冲绳海槽天然气水合物初探[J].海洋石油,2000,4:23-28
    
    姚伯初,南海的天然气水合物矿藏[J].热带海洋学报,2001,20(2):20-28
    
    姚伯初,曾维军,等.中美合作调研南海地质专报[M].武汉:中国地质大学出版社,1994: 11-102
    
    姚伯初.南海北部陆缘天然气水合物初探[J].海洋地质与第四纪地质,1998,18(4):11-18
    
    姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪,2005,25(2):81-90
    
    于兴河,张志杰,苏新,等.中国南海天然气水合物沉积成藏条件初探及其分布[J].地学前 缘,2004,11(1):311-315
    
    张春晖.俄罗斯天然气水合物研究现状[J].地质与资源,2003,12(3):192-192
    
    张光学,黄永样,祝有海,等.南海天然气水合物的成矿远景[J].海洋地质与第四纪,2002, 22(1):75-81
    
    张光学,祝有海,徐华宁.非活动大陆边缘的天然气水合物及其成藏过程评述[J].地质评论, 2003,49(2):181-186
    
    张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,34 (6):953-961
    
    郑丽.南海北部九龙甲烷礁冷泉自生碳酸盐岩特征[D].[硕士学位论文],中国地质大学(北 京),2007,1-33.
    
    中国科学院南海海洋研究所海洋地质构造研究室编,南海地质构造与陆缘扩张[M].北京: 科学出版社,1988,21-68
    
    钟广见,易海,林珍,等.尖峰北盆地地质构造及油气勘探潜力[J].海洋地质与第四纪地质, 2008,28(1):105-110
    
    钟志洪,王良书,李绪宣,等.琼东南盆地古近纪沉积充填演化及其区域构造意义[J].海洋 地质与第四纪地质,2004,24(1):29-36
    
    周怀阳,彭晓彤,叶瑛.天然气水合物[M].北京:海洋出版社,2002,1-92
    
    周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000,442-450
    
    朱而勤,王琦,海洋自生矿物[M].北京:出版社,1988,9-10
    
    朱光辉,陈刚,刁应护.南盆地温压场特征及其与油气运聚的关系[J].中国海上油气(地质), 2000,14(1):29-36
    
    祝有海,刘亚玲,张永勤.连山多年冻土区天然气水合物的形成条件[J].地质通报,2006,25 (1/2):58-63
    
    祝有海,吴必豪,卢振权.中国近海天然气水合物找矿前景[J].矿床地质,2001,22(5):6-0.
    
    祝有海,张光学,卢振权,等.海天然气水合物成矿条件与找矿前景[J].石油学报,2001, 22(5):6-10
    
    祝有海.加拿大马更些冻土区天然气水合物试生产进展与展望[J].地球科学进展,2006,21 (5):513-520
    
    Aizenshtat Z. Perylene and its geochemical significance [J]. Geochimica et Cosmochimica Acta,1973,37:559-567
    
    Albrecht P, Vandenbroucke M., Mandengue M. Geochemical studies on the organic matter fromthe Douala Basin (Cameroon)-I : Evolution of the extractable organic matter and theformation of petroleum [J]. Geochimica et Cosmochimica Acta, 1976,40: 791-799
    
    Alfonso P, Prol-Ledesma R M, Canet C, et al. Sulfur isotope geochemistry of the submarinehydrothermal coastal vents of Punta Mita, Mexico [J]. Journal of Geochemical Exploration,2003,78-79:301-304
    
    Aloiss G, Wallmann K, Bollwerk S M, et al. The effect of dissolved barium on biogeochemicalprocesses at cold seeps [J]. Geochimica et Cosmochimica Acta, 2004, 68 (8): 1735-1748
    
    Audino M, Grice K, Alexander R, et al. Unusual distribution of monomethylalkanes inBotryococcus braunii-rich samples: origin and significance [J]. Geochimica et CosmochimicaActa, 2001,65: 1995-2006
    
    Baker P A, Bums S J. The occurrence and formation of dolomite in organic-rich continentalmargin sediments [J]. AAGP Bull, 1985, 69: 1917-1930
    
    Berecz E, Balla-Achs M. Gas Hydrate (Studies in Inorganic Chemistry 4) [M]. Plksy L Tran,Amsterdam Elsever Scinece Publishers B V.\, 1983,1-100
    
    Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation [J].Philosophical Transactions of the Royal Society of London, 1985, A315: 25-38
    
    Bishop J K B. The barite-opal-organic carbon association in oceanic paniculate matter [J]. Nature1988,332:341-343
    
    Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon Shelf [J]. Geochimica etCosmochimica Acta, 1995, 59: 3707-3715
    
    Boetius A, Ravenschlag K, Schubert C J, et al. Microscopic identification of a microbialconsortium apparently mediating anaerobic methane oxidation above marine gas hydrate [J].Nature, 2000,407: 623-626
    
    Bohrmann G, Suess E, Greinert J. Gas hydrate carbonates from Hydrate Riage, CascadiaConvergent Marige: Indicators of near-seafloor clathrate deposits [C]. Proceeding of Fourth Intomational Conference Gas Hydrates, 2002:102-107
    Borowski W S, Hoehler T M, Alperin M J, et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the black ridge gas hydrate [C], In: Paull C K, Matsumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program, Scientific results, College Station, Texas, Ocean Drilling Program, 2000,179-191
    Borowski W S, Paull C K, Ussier III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999,159:131 - 1541
    Borowski W S, Paull C K, Ussier III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996,24 (7): 655-658
    Bottcher M E, Lepland A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures [J]. Journal of Marine Systems, 2000,25:299-312
    Brassell S C, Dumitrescu M. Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific [J]. Organic Geochemistry, 2004, 35 (2): 181-188
    Brassell S C, Wardroper A M, Thompson I D, et al. Specific acyclic isoprenoids as biological markers of methanogenic bacteric in marine sediments [J]. Nature, 1981,290: 693-696
    Bray E E, Evans E D. Distribution of n-paraffins as a clue to recognition of source beds [J]. Geochimica et Cosmochimica Acta, 1961,22 (1): 2-15
    Briskin M, Schreiber B C. Authigenic gypsum in marine sediments [J]. Marine Geology, 1978,28: 37-49
    Burns S J. Early diagenesis in Amazon Fan sediments [J]. In: Flood R D, Piper D J W, Klaus A, et al, eds. Proceeding ODP, Scientific Results, 155: College Station, TX (Ocean Drilling Problem), 1997,497-504
    Butler I B, Rickard D. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide [J]. Geochimica et Cosmochimica Acta, 2000, 64 (15): 2665-2672
    Cavagna S, Clari P, Martire L. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy) [J]. Sedimentary Geology, 1999, 126: 253-270.
    Cherkis N Z, Max M D, Vogt P R, et al. Large scale mass wasting on the north Spitsbergen continental margin, Arctic Ocean [J]. Geo-Marine letters, 1999,19: 131-142
    Chi W C, Donald L R, Liu C S, et al. Distribution of the bottom simulating reflector in the Offshore Taiwan Collision Zone [J]. TAO, 1998,9 (4): 779-794
    Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments, in Natural Gases in Marine Sediments [M]. Kaplan I R. eds. Plenum Pub. Co., 1974,99-139
    Clennell M B, Hovland M, Booth J S, et al. Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties [J]. Journal of Geophysical Research, 1999, 104: 22985-23003
    Collett T S, Ladd J. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Black Ridge with electrical resistivity log data [C]. In: Miller C M, Reigel R. eds. Proceeding of the Ocean Drilling Program, Scientific Results, 2000,164: 179-191
    Collett T S. Natural gas hydrate of the Prudhoe Bay and Kupruk River area, North Slope, Alask [J]. AAPG Bulletin, 1993, 77 (5): 793-812
    Conte M H, Eglinton G. Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature [J]. Deep Sea Research Part I : Oceanogrphic Research Papers, 1993,40 (10): 1935-1961
    Dachs J, Bayona J M, Fowler S W, et al. Evidence for cyanobacterial inputs and heterotrophic alteration of lipids in sinking particles in the Alboran Sea (SW Mediterranean) [J]. Marine Chemistry, 1998, 60: 189-201
    Dallimore S R, Collett T S. Summary and implication of the Mallik 2002 gas hydrate production research well program [C]. In: Dallimore S R, Collett T S. eds. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin, 2005,585: 1-36
    Dehairs F, Chesselet R, Jedwab J. Discrete suspended particles of barite and the barium cycle in the ocean [J]. Earth Planet. Sci Lett, 1980,49,528-550
    Dembitsky V M, Dor I, Shkrob I, et al. Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev Desert [J]. Russian Journal of Bioorganic Chemistry, 2001, 27: 110-119
    Dickens G R, O'Neil J R, Rea D C, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10: 965-971
    Dickens G R, Paull C K, Wallance P, et al. Direct measurement of in situ methane quantities in a large gas hydrate reservoir [J]. Nature, 1997, 385 (6615): 427-428
    Ehrlich H L. Microbial formation and degrafation of carbonates [M]. Geomicrobiology, 4~(th) edition, Marcel Dekker, Inc., New York, 2002,183-228
    Etiope G New Directions: GEM—Geologic Emissions of Methane, the missing source in the atmospheric methane budget [J]. Atmospheric Environment, 2004, 38: 3099-3100
    Garrigues P, Saptorahardjo A, Gonzalez C, et al. Biogeochemical aromatic markers in the sediments from Mahakam delta (Indonesia) [J], Organic Geochemistry, 1986 (4), 10: 959-964
    Geihard B, Suess E, Jens G, et al. Gas hydrate carbonates from Hydrate Ridge, Cascadia Convergent Margin: indicators of near-seafloor clathrate deposits [C]. Proceedings of the Fourth International Conference on Gas Hydrate, Yokohama, 2002, 19 (23): 102-107
    Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution and origin of authigenic lithologies [C]. In: Paull C K, Dillon W P. eds. Natural Gas Hydrates: Occurrence, Distribution and Detection. Washington DC: American Geophysical Union, 2001,124: 99-113
    Guptha M V S. Authigenic gypsum in a deep sea core from southeastern Arabian sea [J]. Journal Geological Society of India, 1980,21: 568-571
    Han X, Suess E, Sahlin H, et al. Fluid venting activity on the Costa Rica marine: new results from authigenic carbonates [J]. Int J Earth Sci (Geol Rundsch), 2004,93: 596-611
    Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrate in 70- A -radius silica-gel pores [J]. J Phys Chem, 1992, 96: 8599-8603
    Hase A, Hites R A. On the origin of polycyclic aromatic hydrocarbons in recent sediments: biosynthesis by anaerobic bacteria [J], Geochimica et Cosmochimica Acta, 1976, 40 (9): 1141-1143
    Hesse R, Haddison W E. Gas hydrate (clathrates) causing pore-water freshening and oxygen istope fractionation in deep-water sedimentary sections of terrigenous continental margins [J]. Earth and Planetary, 1981, 55 (3): 453-462
    Hicks K S, Compton J S, McCrachen S, et al. Origin of diagenetic carbonate minerals, recovered from the New Jersey continental slope [C]. In: Mountain G S, Miller K G, Blum P, et al. eds. Proceeding ODP, Scientific Results, 150: College Station, TX (Ocean Drilling Progam), 1996, 311-323
    Hoehler S P, Grocke D R, Jenkynes H. C. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event [J]. Nature, 2000,406 (6794): 392-395
    Hong L, Ping'an P, Yongge S, Molecular and stable carbon isotope composition of monomethylalkanes from one oil sand sample: source implications [J]. Organic Geochemistry, 2003, 34: 745-754
    Huang B, Xiao X, Zhang M. Geochemistry, grouping and origins of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea [J]. Organic Geochemistry, 2003, 34: 993-1008
    
    Huang Y Y, Suess E, Wu N Y. Geological settings and evidences of gas-hydrate occurring in the Northeast Dongsha area of South China Sea Proceedings of Gas Hydrate Colloquium Between Taiwan and Motherland [J].Taiwan, 2005, Jan 17-18: 3-4
    Jackson M J, Powell T G, Summons R E, et al. Hydrocarbon show and petroleum source rocks in sediments as old as 1.7×10~9 years [J]. Nature, 1986, 322: 727-729
    
    Jenden P D, Kaplan I R. Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon: implication for the origin of natural gas [J]. Application Geochemistry, 1983,1: 631-646
    Jiang H C, Ye Y, Dong H L, et al. Microbial Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea [C]. Western Pacific Geophysics Meeting, Beijing: 2006, July 24-27
    Jin C, Wang J. A preliminary study of the gas hydrate stability zone in the South China Sea [J]. Acta Geologica Sinica, 2002, 76 (4): 423-428
    Jorgensen N O. Methane-derived carbonate cementation of marine sediments from the Kattegat, Denmark: geochemical and geological evidence [J]. Marine Geology, 1992,103: 1-13
    Joye S B, Orcutt B N. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical geology, 2004,205: 219-238
    Kenig F, Simons D H, Crich D, et al. Structure and distribution of branched aliphatic alkanes with quaternary carbon atoms in Cenomanian and Turonian black shales of Pasquia Hills (Saskatchewan, Canada) [J]. Organic Geochemistry, 2005, 36: 117-138
    Kenig F, Simons D J H, Anderson K B. Distribution and origin of ethyl-branched alkanes in a Cenomanian transgressive shale of the Western Interior Seaway (USA) [J]. Organic Geochemistry, 2001, 32: 949-954
    Kenig F, Simons D J H, Crich D, et al. Branched aliphatic alkanes with quaternary susbtituted carbon atoms in modern and ancient geologic samples [C]. Proceedings of the National Academy of Sciences of the USA, 2003,100: 12554-12558
    Kenig F, Sinninghe Damste J S, Dalen A C K, et al. Occurrence and origin of monomethylalkanes, dimethylalkanes, and trimethylalkanes in Modem and Holocene cyanobacterial mats from Abu-Dhabi, United-Arab-Emirates [J]. Geochimica et Cosmochimica Acta, 1995, 59: 2999-3015
    Kenig F. C_(16)-C_(29) homologous series of monomethylalkanes in the pyrolysis products of a Holocene microbial mat [J]. Organic Geochemistry, 2000, 31: 237-241
    Kennicutt M C, Brooks J M, McDonald T J. Origins of hydrocarbons in Bering Sea sediments -1. Aliphatic hydrocarbons and fluorescence [J]. Organic Geochemistry, 1991, 17 (1): 75-83
    Koster J, Volkman J K, Rullkotter J, et al. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum [J]. Organic Geochemistry, 1999, 30: 1367-1379
    Kulm L D, Suess E, Moore J C, et al. Oregon subduction zone: venting, fauna and carbonates [J]. Sciences, 1986,231:561-566
    
    Kvenvolden K A, Barnard L A. Gas hydrate of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76 [C]. In: Sheridan R E, Gradstein F M, et al. eds. Init. Repts. DSDP, 76: Washington (U. S. Govt. Printing Office), 1983, 353-365
    Kvenvolden K A, Ginsburg G, Solov Yev V. Worldwide Distribution of Subaquatie Gas Hydrates [J]. Geomarine Letters, 1993,13: 32-40
    Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate [J]. Organic Geochemistry, 1995, 23 (11-12): 997-1008
    Kvenvolden K A. Comparison of marine gas hydrate in sediments of an active and passive margin [J]. Marine and Petroleum Geology, 1985,2: 65-71
    Kvenvolden K. Methane hydrates and climate change [J]. Global Biogeochemical Cycles, 1988, 2: 221-229
    Laflamme R E, Hites R A. The global distribution of polycyclic aromatic hydrocarbons in recent sediments [J]. Geochimica et Cosmochimica Acta, 1978,42 (3): 289-303
    Lin S, Huang K, Chen S. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments [J]. Continental Shelf Research, 2000,20:619-635
    Lorenson T D, Leg 164 Shipboard Scientists. Graphic summary of gas hydrate occurrence by proxy measurements across the Blake Ridge [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000,164: 247-252
    Ludmann T, Wong H K, Wang P X. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea [J]. Marine Geology, 2001, 172: 331-358
    Ludmann T, Wong H K. Characteristic of gas hydrate occurences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk [J]. Marine geology, 2003,210: 269-286
    MacDonald I R, Guinasso N J, Sassen R, et al. Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexica [J]. Geology, 1994, 22 (8): 699-702
    Majorowicz J A, Osadetz K G, 梁劲. 加拿大天然气水合物分布和数量[J]. 海洋地质, 2003, 3: 21-38, 54
    Matsumoto T, Kimura M, Nishida S, et al. Chemosynthetic communities and surface ruptures discovered on the Kuroshima Knoll south of Yaeyama Islands (NT97-14 Cruise) [C]. JAMSTEC J. Deep Sea Res, 1999, 14: 447-491
    Matsumoto T. Occurrence, distribution and the amount of methane of natural methane hydrates [J]. Aquabiology, 2001,23 (5): 439-445
    McDonnell S L, Max M D, Cherkis N Z. et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan [J]. Marine and Petroleum Geology, 2000, 17: 929-936
    McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy [J]. Geochim. Cosmochim. Acta. 1998, 62: 3453-3473
    
    Mountain G S, Tucholke B E. Mesozoic and Cenozoic Geology of the U. S. Atlantic Continental Slope and Rise [C]. In: Poag C W. eds. Geologic Evolution of the United States Atlantic Margin. New York: Van NosErand Reinhold, 1985,293-241
    Naehr T H, Rodriguez N M, Bohrmann G, et al. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid eventing above the Blake Ridge diaper [C]. In: Paull C K, Matsumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program, Scientific results, 164: College Station, Texas, Ocean Drilling Program, 2000,285-300
    Nisbet E G, Piper D J W. Giant submarine landslides [J]. Nature, 1998,392: 329-330
    Orcutt B N, Luqo S K. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrate [J]. Chemical Geology, 2004,205: 239-251
    Paull C K, Brewer P G, Ussier W, et al. Evaluation of marine slumping as a mechanism to transfer
    ??methane from seafloor gas hydrate deposits into the upper ocean and atmosphere [C].Proceedings of the Fourth International Conference on gas hydrate, 2002,19-23
    
    Paull C K, Buelow W J, et al. Increased continental-margin slumping frequency during sea-levellowstands above gas hydrate-bearing sediments [J]. Geology, 1996,24 (2): 143-146
    
    Paull C K, Matsumoto R, Wallace P J, et al. Proc. ODP, Init. Repts., 164, Ocean Drilling Program,Texas A&M University,College Station, TX [C]. 1996,164: 1-318
    
    Paull C K, Ussier III W, Borowski W S, et al. Methane-rich plumes on the Carolina continentalrise: associations with gas hydrates [J]. Geology, 1995,23 (1): 89-92
    
    Paull C K, Ussier W, Dillon W P. Is the extent of glaciations limited by marine gas hydrate? [J].Geophys. Result Letters, 1991, 18: 432-434
    
    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from thenorthwestern Black Sea [J]. Marine Geology, 2001,177: 129-150
    
    Peckmann J, Thiel V, Carbon cycling at ancient methane-seeps [J]. Chemical Geology, 2004, 205:443-467
    
    Peckmann J, Walliser O H, Riegel W, et al. Signatures of Hydrocarbon Venting in a MiddleDevonian Carbonate Mound (Hollard Mound) at the Hamar Laghdad (Antiatlas Morocco) [J].Fades, 1999,40:281-296
    
    Peters K E, Moldowan J M. The biomarker guide: Interpreting molecular fossils in petroleum andancient sediments [M]. Prentice Hall, Inc. 1993,104-110,144
    
    Pierre C, Rouchy J M, Gaudichet A. Diagenesis in the hydrate sediments of the Blake Ridge:mineralogy and stable isotope compositions of the carbonate and sulfide minerals [C]. In:
    
    Paull C K, Matsumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program,Scientific results, 164: College Station, Texas, Ocean Drilling Program, 2000,139-146
    
    Pierre C, Rouchy J M. Isotopic compositions of diagenetic dolomites in the Tortonian marls of thewestern Mediterranean margins: evidence of past gas hydrate formation and dissociation [J].Chemical Geology, 2004, 205: 469-484
    
    Raiswell R. Chemical model for the origin of minor limestone-shale cycles by anaerobic methaneoxidation [J]. Geology, 1988, 16: 641-644
    
    Reeburgh W S. Rates of biogeochemical processes in anoxic sediments [J]. Annu. Rev. EarthPlanet Sci., 1983,11:269-298
    
    Reitner J, Peckmann J, Blumenberg M, et al. Concretionary methane-seep carbonates andassociated microbial communities in Black Sea sediments [J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2005, 227: 18-30
    
    Rice D D, Claypool G E. Generation, accumulation and resource potential of biogenic gas [J].AAPG Bulletin, 1981,65: 5-25
    
    Rika T, Hideaki M, Ryo M. Methane seep, chernosynthetic communities, and carbonate crusts onthe Kuroshima Knoll, offshore Ryukyu islands [C]. Proceedings of the Fourth InternationalConference on Gas Hydrates, Yokohama, 2002,19-23, 97-101
    Ritger S, Carson B, Suess E. Methane-drived authigenic carbonates formed by subduction-induced pore-water explusion along the Oregon/Washington margin [J]. Geological society of America Bulletin, 1987,98:147-156
    Roberts H H, Aharon P. Hydrocarbon-derived carbonate buildups of the Northern Gulf of Mexico continental slope - a review of submersible investigations [J]. Geomarine Letters, 1994, 14 (2-3): 135-148
    Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern North America [C]. In: Paull C K, Matsumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program 164, Scientific Results. College Site, Texas: Texas A & M University (Ocean Drilling Program), 2000: 301-312
    Rothwell R G, Thomson J, Kahler G. Low sea level emplacement of a very large Late Pleistocene megaturbidite in the western Mediterranean Sea [J]. Nature, 1998, 392: 377-380
    Rothwell R G. Minerals and mineraloids in marine sediments—an optical identification guide [M]. Elsevier AppliedScience, 1989: 161-166
    Samman N, Ignasiak T, Chen C J, et al. Squalene in Petroleum asphaltenes [J]. Science, 1981, 213: 1381-1383
    Sassen R., Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes [J]. Chemical Geology, 2004, 205: 195-217
    Schoell M, Multiple origin of methane in the Earth [J]. Chemical Geology, 1988, 71: 1-10
    Scholle D P, Ulmer-Scholler S D. A color guide to the petrograph of carbonate rocks: grains, textures, porosity, diagenesis [M]. Published by the American Association of Petroleum Geologisrs Tusa, Oklahoma, U. S.A., 2003, 51-72
    Schoonen M A A. Mechanisms of sedimentary pyrite formation [J]. In: Amend J P, Edwards K. J, Lyons T W. eds. Sulfur biogeochemistry: past and present. Colorado. The Geological Society of America, Inc., 2004,117-134
    Shiea J, Brassell S C, Ward D M. Midchain branched monomethyl and dimethyl alkanes in hot-spring cyanobacterial mats - a direct biogenic source for branched alkanes in ancient sediments [J]. Organic Geochemistry, 1990,15: 223-231
    
    Sloan E D. Clathrate hydrates of natural gases [M]. Marcel Bekker Inc., New York, 1990, 1-641
    Sloan E D. Conference Overview [C]. Sloan E D, Happel J, Hantow M A. eds. International on Natural Gas Hydrates, Annals of the New York Academy of Sciences, 1994, 715: 1-23
    Stakes D S, Paduan J B. Cold-seeps and authigenic carbonate formation in Monterey Bay, California [J]. Marine geology, 1999, 159: 93-109
    Suess E, Crason B, Ritger S D, et al. Biologuical communities at vent sites along the subduction zone off Oregon, in the hydrothermal vents of the eastern pacific: an overview [J]. Bull Biol Soc Wash, 6: 475-484
    Suess E, Tones M, Bohrmann G, et al. Gas hydrate destabilization: enhanced dewatefing, benthic material turnover an dlarge methane plumes at the Cascadia convergent margin [J]. Earth and Planetary Science Letters, 1999, 170: 1-15
    Suess E, Torres M E, Bohrman G, et al. Sea floor methane hydrate at hydrate Ridge, Cascadia Margin [C]. In: Paul C K, Dillon W P, eds. Natural Gas Hydrates: Occurrence, Distribution, and Detcetion. Washington, DC: American Geophysical Union: 2001,87-98
    Summons R E, Walter M R. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments [J]. American Journal of Science, 1990, 290A: 212-244
    Taylor B, Hayes D E. The tectonic evolution of the South China Sea [M]. A. GU, Washington D. C, 1980, 23: 89-140
    Taylor K G, Curtis C D. Stability and facies association of early diagenetic mineral assemblages: an example from a Jurassic ironstonemudstone succession [M]. UK. J. Sediment. Petrol., 1995, A65: 358-368
    Teichert B M A, Bohrmann G, Suess E. Chemoherms on Hydrate Ridge-Unique microbially-mediated carbonate build-ups growing into the water column [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227: 67-85
    Ten Haven H L, De Leeuw J W, Rullkotter J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator [J]. Nature, 1988, 330: 641-643
    Torres M E, Bohrmann G, Suess E. Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone [J]. Earth and Planetary Science Letters, 1996a, 144: 469-481
    Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996b, 127: 125-139
    Van Lith Y, Warthmann R, Vansconcelos C, et al. Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation [J]. Sedimentology, 2003, 50: 237-245
    Volkman JK.A review of sterol marker for marine and terrigenous organic matter [J]. Organic Geochemistry, 1986,9 (2): 83-99
    Wang P, Prell W L, Blum P, et al. Shipboard Scientific Party Leg 184 summary: Exploring the Asian monsoon through drilling in the South China Sea [M]. Proceedings of the Ocean Drilling Program, Initial Report. College Site, Texas: Texas A &M University (Ocean Drilling Program), 1999: 1-77
    Wang P, Prell W, Blum P, et al. Proceeding of the Ocean Drilling Program [J]. Init. Report.College Station TX, 2000, 184
    Warton B, Alexander R, Kagi R I. Identification of some single branched alkanes in crude oils [J]. Organic Geochemistry, 1997,27: 465-476
    Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments [J]. Geochemical Journal, 1998,32 (3): 143-157
    Wehner H, Teschner M, Bosecker K. Chemical reactions and stability of biomarkers and stable isotope ratios during in vitro biodegradation of petroleum [J]. Organic Geochemistry, 1986, 10 (1-3): 463-471
    
    Wells A J. Recent dolomite in the Persian Gulf [J]. Nature, 1962,194: 274-275
    Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O_2-H_2S redox transition [J]. Geochimica et Cosmochimica Acta, 2001, 65 (9): 1399-1416
    William D, Michael M. Seismic reflections identify finite differences in gas hydrate resources [J]. offshore, 1999, November: 115-116
    Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications [J]. Sedimentology, 2005, 52: 987-1008
    Wu S G, Zhang G X, Huang Y Y, et al. Gas hydrate occurrence on the continental slope of the northern South China Sea [J]. Marine and Petroleum Geology, 2005, 22: 403-412
    Wu Y, Zhang J, Tang Y. Geochemistry of n-alkanes and polycylic aromatic hydrocarbons in the sediments from South China Sea [J]. Journal of Ocean University of Qingdao, 1999, 29 (1): 112-120
    Xu W, Ruppel C. Predicting the occurrence,distribution and evolution of methane gas hydrate in porous marine sediments [J]. J of Geophys. Res., 1999,104 (3): 5081-5095
    Youngblood W W, Blumer M. Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments [J], Geochimica et Cosmochimica Acta, 1975, 39 (9): 1303-1314
    Zhang H, Yang S, Wu N, et al. China's first gas hydrate expedition successful. Fire in the Ice: Methane Hydrate Newsletter, National Energy Technology Laboratory, U.S Department of Energy, GMGS-1 science team [J]. 2007, Spring/Summer issue: 1
    Zhu Y, Huang Y, Matsumoto Y, et al. Geochemical and stable istopic composition of pore fluids and authigenic siderite concretions from Site, ODP Leg 184: implications for gas hydrate [C]. In: Prell W L, Wang P X, Blum P, et al. eds. Processings of the ocean Drilling Progam, Scientific Results, 2003,184: 1-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700