基于超声波的便携式泥浆密度测试仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺问题是世界上最严重的问题之一。目前几乎所有国家都把石油置于能源战略的核心位置。石油是工业的血液,而泥浆在石油的勘探开发中占有极其重要的地位。半个世纪以来,泥浆的性能和大部分相关技术一直在飞速的发展,但是对于泥浆密度的检测技术却一直发展很慢。密度是泥浆的一个重要参数,可是目前检测泥浆密度的仪器或者设备笨重,或者操作繁琐,这些都给现场测量带来了不便。
     本课题的目的正是为了改进泥浆密度测试系统检测时繁琐而不便的局面。系统采用了超声检测的方法。超声检测是目前世界上技术最为成熟的检测手段之一。超声检测不仅测量方便,而且能有效地减小测量设备的体积和重量,使简单而方便的检测泥浆密度成为可能。
     本论文对利用超声检测泥浆密度进行了比较全面的研究。首先对超声波换能器的特性进行了研究和分析。然后对超声检测的原理进行了介绍,其中着重分析了泥浆密度的变化对超声波信号的影响,并详细地探讨了超声波信号分别在低密度和高密度泥浆中传播时的衰减情况。其次,在此基础上设计了超声波泥浆密度测试系统并建立了泥浆密度与超声衰减的关系。系统主要包括超声波发射电路、接收电路以及实现电压信号的参数采集、处理和显示功能的数字电路部分。接着介绍了软件部分具体的程序设计以及所采用的控制策略。该方案基本实现了对1到1.5g/cm3范围内泥浆密度的测量。最后,论文对实验数据进行了分析,并指出了该系统目前存在的问题和不足,并提出了改进方法。
The energy shortage is one of the most serious problems in the world. At present, almost all of the countries set petroleum at the core position of the energy strategy. Petroleum is the blood of industry, and mud has an extremely important status in the petroleum exploration. In these 50 years, the development of the performance and most related technologies are continuously rapid, but the development of the mud density detection technology is very slow. Density is an important parameter of the mud, however, the existing equipments for detecting mud density are either ponderous or troublesome, and all of these bring inconvenience to the detection scene.
     The purpose of this paper is to improve the testing system. The system uses the ultrasonic testing. Ultrasonic testing is one of the most mature testing technologies. Ultrasonic testing is not only convenient, but also reduces the size and weight of testing equipments effectively, and it make testing mud density simple and convenient.
     Testing the mud density by ultrasonic is introduced in this thesis. First, the behaviors of the ultrasonic transducer are studied and analyzed. Next, the theory of ultrasonic detection is introduced. It gives emphasis on the relationship of the mud density and ultrasonic signal, as well as the different effects ultrasonic attenuation when ultrasonic signal transmits in the mud with different densities. Then, the mud density test system has been developed on the basis of them. The system includes emission circuit, receiving circuit and digital circuit which can acquire and process the voltage signal. And then, the software design and the control strategy are introduced. This scheme has realized the detection of mud density between 1 and 1.5g/cm3. At last, the experiment data are analyzed. The bugs are summarized, and further work for improving the quality of the system is indicated.
引文
1杨德凤,刘雨晴.我国钻井液标准现状及其采标分析.石油工业技术监督. 1999,15(4):29~31.
    2程显东.泥浆工艺在定向钻穿越中的作用.管道技术与设备. 2002,1:16~17.
    3管文剑,金伟明.新型泥浆池差压式密度计的设计与实现.传感技术学报. 2006,19(1):199~201.
    4佘新平,王宏远.γ射线式密度传感器及其在石油勘探中的应用.仪表技术与传感器. 1999,(4):26~28.
    5 Wu Ruisheng, Zhou Zhongping, Ren Zenhai. Nucl Electro Detect Tech. 2000,20(2):96~98.
    6李正平,吴瑞生,阴泽杰,王胡舰. Monte Carlo方法设计的泥浆密度测试系统.中国科学技术大学学报. 2005,35(5):639~644.
    7李相方.浮子式泥浆密度传感器设计研究.石油钻采工艺. 1990,(6):1~4.
    8刘润华,张红岩.小量程泥浆浓度测量仪的设计.仪表技术. 1998,(2):41~42.
    9杜功焕,朱哲民,袭秀芬.声学基础.上海科学技术出版社, 1981:185~193.
    10“国防科技工业无损检测人员资格鉴定与认证培训教材”编审委员会.超声检测.机械工业出版社, 2005:1~3.
    11 J.西拉德.超声检测新技术.陈积懋,余南廷译.科学出版社, 1991:415.
    12 Z.K.Hong, J.B.Han. Consideration on speckle pattern interferometry of ultrasonic speckles. Ultrasonics. 1997,35:329~332.
    13 F.R.Hess, K.W.Bedford. Acoustic backscatter system (ABSS): the instrument and some preliminary result. Marine Geology. 1985,66:357~397.
    14 P.D.Osborne, C.E.Vincent, B.Greenwood. Measurements of suspend sand concentrations in the nearshore field intercomparison of optical and acoustic backscatter sensors. Continental Shelf Research. 1994,14:159~174.
    15 P.D.Thorne, P.J.Hardcastle, R.L.Soulsby. Analysis of acoustic measurements of suspended sediments. J.Geop.Res. 1993,98:899~910.
    16 Zhang S. Progress in underwater acoustic geo-mapping technology. Acoustic Australia. 1996,24:47~51.
    17 Shi Z, Ren L, Ling H. Vertical suspension profile in the Changjiang Estuary. Marine Geology. 1996,13:29~37.
    18 Guo J, Li Y. Laboratory calibration of an acoustic monitoring device to measure suspended sand concentration. International Conference on Shallow-water Acoustics, China Ocean Press, Beijinng,1997:609~614.
    19 M.H.Orr, et al. Acoustic monitoring of industrial chemical waste released at deep water dump site 106. J.Geophs.Res. 1978,83:6145~6154.
    20 R.E.Pieper, et al. Acoustic measurements of zooplankton distributions in the sea. J.Cons.Int.Explor.Mer. 1984,41:226~238.
    21 S.R.Mclean. Theoretical modeling of deep ocean sediment transport. Marine Geology. 1985,66:243~285.
    22 R.J.Urick. Principles of underwater sound. McGraw-Hill Book Co., 1983.
    23 LAMB H.Hydrodynamics. 6thed, Cambridge: Cambridge University Press,661
    24 M.Teufel, D.Trimis. Determination of velocity profiles in oscillating pipe-flows by using laser Doppler velocimetry and ultrasonic measuring devices. Flow Meas.Instrum. 1992,3:95~101.
    25张叔英,李允武.声学悬浮泥沙观测系统的研制和应用.海洋学报. 1998,20:114~119.
    26张叔英,李允武.悬浮泥沙声学观测的原理分析.声学学报. 1994,24:269~274.
    27郭纪捷,任来法,李允武.声学悬浮泥沙观测数据的现场标定研究.海洋学报. 1998,20:120~125.
    28 L.J.Hamilton , Shi Zhong , Zhang Shu-ying. Acoustic backscatter measurements of estuarine suspended cohesive sediment concentration profiles. J Coast Res. 1998,14:1213~1224.
    29 Shi Zhong, Ren Lai-fa, Zhang Shu-ying, et al. Acoustic imaging of cohesive sediment resuspension and re-entrainment in the Changjiang Estuary, East China Sea. Geo-Mar Lett. 1997,17:162~168.
    30 D.M.Hanes, C.E.Vincent, D.A.Huntley, et al. Acoustic measurements of suspended sand concentration in the C2S2 experiment at Stanhope Edward Island. Marine Geology. 1988,81:185~196.
    31 P.D.Thorne, C.E.Vincent, P.J.Hardcastle, et al. Measuring suspendedsediment concentration using acoustic backscatter devices. Marine Geology. 1991,98:7~16.
    32 A.E.Hay, J.Sheng. Vertical profiles of suspended sand concentration and size from multi-frequency acoustic backscatter. J Geophys Res. 1992,97:1661~1677.
    33 C.Libicki, K.W.Bedford, J.F.Lynch. The interpretation and evaluation of a 3 MHz acoustic backscatter device for measuring benthic boundary layer sediment dynamics. J Acoust Soc Am. 1989,85:1501~1511.
    34张叔英,,钱炳兴.高浓度悬浮泥沙的声学观测.海洋学报. 2003,25(6):54~59.
    35同济大学声学研究室.超声工业测量技术.上海人民出版社,1977.
    36孙军华,董名利.钢轨高速探伤系统超声发射接收装置的设计. 2002,36(12):51~53.
    37会长善.超声工程.哈尔滨工业大学出版社. 1989:109~111.
    38岗村廸夫. OP放大电路设计.王玲,徐雅珍,李武平译.科学出版社, 2004:253~255.
    39 V.G.Dhananjay. Programming and customizing the AVR microcontroller. McGraw-Hill, 2001.
    40马潮.高档8位单片机ATmega128原理与开发应用指南(上).北京航空航天大学出版社, 2004:284~286.
    41佟长福. AVR单片机GCC程序设计.北京航空航天大学出版社, 2006:3~4.
    42应崇福.超声学.科学出版社, 1990:124~128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700