改性活性污泥处理含铬废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含铬废水来源广泛、毒性大,严重危害了自然环境和人类健康。目前,处理含铬废水主要是物理化学法,例如吸附法,离子交换法,化学沉淀法,但这些方法存在二次污染严重,成本高等不足。近年来,人们开始研究采用新方法来处理含铬废水,利用硫酸盐还原菌(SRB)处理含铬废水即是当前研究的热点之一。目前SRB处理含铬废水的工艺研究仅限于纯种微生物法,尽管这种方法在实验室和中试取得了良好的效果,但纯种法存在着操作条件苛刻,菌种流失大等问题,亟待改进。
     活性污泥作为一种良好的载体,能为微生物提供一个相对稳定的环境,有利于减少微生物的流失及抵抗外界水质的变化。传统上认为SRB是种严格的厌氧细菌,只能采用来源极为有限的厌氧污泥作为接种污泥,并很少见于含铬废水的处理。针对这些问题,本文对好氧活性污泥进行厌氧改性培养,考察了改性活性污泥中SRB的生长数量与硫酸根去除率之间的关系以及SRB的最佳培养条件,研究了改性厌氧污泥处理含铬废水的工艺过程及动力学,分析了厌氧污泥中铬的存在形态和分布状况,并讨论了改性污泥体系去除铬的有关机制。
     通过好氧活性污泥的厌氧改性培养,成功获得了富含SRB的改性活性污泥。研究了硫酸根去除率与SRB生长之间的关系,结果表明体系中硫酸根去除率能有效地反映出SRB的生长情况,可以利用硫酸根去除率作为污泥活性的判断标准。由间歇试验获得了厌氧污泥体系中SRB培养的最佳条件:乳酸钠为碳源,pH为7,3g/LSO_4~(2-),COD/硫酸根比为1.45,通入N_2。并在此条件下,进行了半连续试验。反应器中厌氧污泥培养5天后,即可以在8h内使3 g/LSO_4~(2-)的去除率达到90%以上,从而达到了在低COD/硫酸根比的条件下,快速起动反应器和处理高浓度硫酸根废水的目的。
     在连续进料的方式下,考察了不同铬(Ⅵ)浓度、硫酸根浓度、COD浓度、水力滞留时间和多种重金属共存对污泥体系处理含铬废水的影响。结果表明,当硫酸根浓度Ig/L,COD浓度为2g/L,水力滞留时间为16h,体系能有效处理200mg/L铬(Ⅵ)的废水达标,同时出水中硫酸根浓度也能达标。在Fe,Cu,Zn,Ni四种重金属离子浓度小于20mg/L时,对体系处理含铬废水影响不大,且这些重金属也同时可以去除。通过分析可知,体系对铬(Ⅵ)的处理过程是多种细菌共同作用的结果,其中SRB的还原作用占主导地位。针对厌氧污泥体系处理含铬废水的
    
    硕士学位论文
    摘要
    过程,建立了基质降解与硫酸根还原之间的动力学方程,其式如下:
    m二里上玉些里丝兰型圣燮
     2 Se
     本研究选用逐级提取法对处理含铬废水的污泥进行研究,考察了硫酸根浓
    度,Cr(Vl)浓度以及多种重金属共存时对铬迁移的影响。结果表明,硫酸根浓度,
    Cr(Vl)浓度能影响体系的铬还原率,从而进一步影响到铬在污泥中的化学形态和
    分布。铬(VD的分布受条件影响比较大,没有明显的规律。铬(III)主要以残渣态
    存在,占总量的99%以上,这表明污泥中铬(1II)相当稳定,不易迁移。当浓度低
    于smg/l时,Fe、Cu、Ni、 Zn对铬的处理和迁移没有明显影响。铬(VI)的还原既
    可以发生在细胞外也可以发生在细胞内。体系中铬(Vl)主要是被HZS还原成铬
    (lII)。通过对污泥XRD的分析,可以初步推断铬在水体中发生了如下反应:
     35’一+CrlO子一+14H‘。ZCr’‘+35+7厅20
     Cr’‘+HZO分Cr(OH)。+3H‘
    改性污泥对铬(VD的吸附作用相对较小。铬(111)可向细胞内迁移,同时细胞分泌
    出的胞外聚合物也可吸附部分铬(III),但这两种作用都相对较弱。体系中pH范
    围为7一8,此时绝大部分铬(lII)以沉淀的形式从水中去除。
Hexavalent chromium-containing wastewater(HCCWW), which was harmful to natural environment and human being health, has widespread sources and great toxicity. At present, physicochemical methods are the major ones to treat this wastewater, such as adsorption, ion exchange, and chemical precipitation. However, these methods will produce secondary pollution and own the shortcoming of high cost. In recent years, people started to adopt new methods to deal with HCCWW. Sulfate-reducing bacteria (SRB) available to treat wastewater were a highlight in this field. SRB can reduce sulfate to hydrogen sulfide, which would produce insoluble metal sulfides with heavy metals. So the heavy metals in the HCCWW will be drastically cleared by this characteristic. Technical research of HCCWW by SRB limits pure bacteria. Although good results can be obtained at lab and pilot scales, this method should be modified because there were some problems need to be resolved such as exacting operation terms, large loss of bacteria, and so
     on.
    Activated sludge, as a good carrier, was able to provide a stable environment for bacteria growth and benefit for decreasing the loss of bacteria and resisting the change of HCCWW. It's traditionally known that SRB was a strict anaerobic bacterium, so only anaerobic sludge with finite sources can be used as inocula, which seldom were used to treat HCCWW. Some researches in recent years revealed that SRB could survive with oxygen and even use oxygen to grow. In order to solve these problems, activated sludge should be anaerobically modified. The Relation of quantities of SRB and rate of sulfate removal, best conditions of SRB growth, efficiency of chromium removal by sludge, occurrence and distribution of chromium in sludge, technical process and dynamics of Cr(VI) removal were investigated based on the successfully modification of activated sludge. Finally the mechanism of chromium removal by sludge was discussed.
    Anaerobic sludge containing high concentration SRB was obtained by anaerboically modification of activated sludge. The study on the relation of rate of sulfate removal and growth of SRB in sludge proved that the rate of sulfate reduction can act as an index to assess the conditions of SRB growth.In batch experiments, the ability of sulfate reduction of the modified sludge was researched by monitoring rate
    
    
    
    
    of sulfate reduction. Best conditions of SRB culture were yielded as follows: i.e. 3 g/Lsulfate, COD/sulfate ratio of 1.45, ferrous ion free, blasting N2 at pH of 7, with addition of sodium lactate. Under the conditions mentioned above, the semi-continuous experiment was carried out with the result that reactor can get more than 90% rate of 3 g/L sulfate removal after only 5 days culture. Therefore the modified sludge can be activated quickly for removing high concentration of sulfate at low COD/sulfate ratio.
    Effects of concentration of hexavalent chromium, sulfate and COD, hydraulic retention time and occurrence of other heavy metals on ability of sludge of chromium removal were investigated in the continuous experiments. The results indicated that the sludge can effectively remove 200mg/L Cr(VI) in wastewater at the conditions of 1g/L sulfate, 2g/LCOD and 16h HRT, and that at same time the sulfate concentration in the effluent was superior to National standard, and that below 20mg/L, other metals, i.e. Fe, Cu, Zn, Ni, had no great effect on the Cr removal and also can be effectively removed by sludge. The process of chromium removal by sludge was due to the cooperation of various microbes, out of which SRB played the most important role. Dynamical equation of degradation of substances and sulfate removal was built for the process of Cr removal by anaerobic sludge. The equation as follow:
    The sludge that treated HCCWW was investigated by sequential extraction method in order to understand the effect of concentration of sulfate and Cr (VI) and occurrence of other metals on the transportation of chromium in the reactor. The results revealed that the concentration of sulfate and Cr (VI) c
引文
[42]刘涛.S7—200系列PIC与PC问自由口通讯的实现.现代电子技术.2003年第4期
    [43]David G. Johnson. Programmable Controllers for Factory Automation. New York and Basel: Marcel Dekker Inc, 1987
    [44]廖常初.PLC梯形图的顺序控制设计方法与顺序功能图.电工技术杂志,2001(10)
    [45]马维笛,周泽魁.利用自由通信口模式实现PLC与远程数据终端的信息传送.机电工程.2002年第19卷第6期
    [46]范逸之编著.Visual Basic与RS232串行通讯控制.北京:中国青年出版社,2000年8月第1版
    [47]范逸之、陈立元编著.Delphi与RS-232串行通信控制.北京:清华大学出版社,2002年第1版
    [48]SIENENS AG.SIMATIC S7-200 Programmale Controller System Manual.2000
    [49][美]Marco Cantu著,王辉、李澎东等译.Delphi5从入门到精通.北京电子工业出版社,2000年5月第1版
    [50]黄军熊勇等.Dephi串口通信编程.人民邮电出版社.2001年8月第1版P56
    [51]刘艺编著.Delphi5企业级解决方案及应用剖析.北京:机械工业出版社,2000年9月第1版
    [52]孙增圻.智能控制理论与技术.清华大学出版社,2000
    [53]廖常初.周林.PLC的功能指令.电子技术,1999(7)-2000(4)
    [54]张海卿、张占军编.Delphi 7编程技巧与实例精解.北京:国防工业出版社,2003年1月第1版
    [55]《SIEMENSS7-200P1C用护指南》,SIEMENS,1998
    [56]Karnopp D. Comput. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems. Journal of Dynamic Systems, Measurement and Control, 2000,10?:100-103
    [57]M. Tomizuka. Zero Phase Error Tracking Algorithm for Digital Control. ASME Journal of Dynamic Systems, Measurement, and Control, 2001,109:65-68
    
    
    [1] 夏良正.数字图像处理.南京:东南大学出版社,1999.3~4,198~224
    [2] 王耀南,李树涛,毛建旭.计算机图像处理与识别技术.北京:高等教育出版社2001.1~5
    [3] 王绍霖.数字图像处理.长沙:国防科技大学出版社,1987.1~15
    [4] 张远鹏,董海,周文灵.计算机图像处理技术基础.北京:北京大学出版社,1996. 1~30
    [5] [瑞典]N.艾布拉母森.全息图的摄制与估算.北京:科学出版社,1988.1~10
    [6] 王积分,张新荣.计算机图像识别.北京:中国铁道出版社,1988.82~98,126~152
    [7] 李月景.图像识别技术及其应用。北京:机械工业出版社,1985.166~169
    [8] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Second Edition Volume 1, New York.. Academic Press, 1982. 53~55, 237~244
    [9] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Second Edition Volume 2, New York: Academic Press, 1982. 98~102
    [10] 崔屹.数字图像处理技术与应用.北京:电子工业出版社,1997.93~100,121~148
    [11] 陆宗骐,孙灵.微机计算机图像基础。上海:华东理工大学出版社,1997.20~22,34~39,80~107
    [12] 田捷,沙飞,张新生。实用图像分析与处理技术.北京:电子工业出版社,1995.3~6,124~128
    [13] 吴维聪.计算机图像处理.上海:上海科学技术出版社,1989.55~63,93~98
    [14] 宁书年.遥感图像处理与应用.北京:地震出版社,1995.25~28
    [15] Zhang Xiao-fei, Liu Cheng-Kang, Yuan Xiag-Hui. Infrared real-timethermal system based on DSP. SPAT, 2001, 7(2): 70~75
    [16] Jie Tian, Huiguang He. 3-D Industrial-CT Image Analysis and Process System Base on PC. Proceedings of Second International Conference on Computer Aided Industrial Design and Conceptual Design, 1999, 3(4): 79~84
    [17] Myron Flickner. Query by image and video content:The QBIC System. IEEE Computer Magzine, 1995, 2(3) :23~30
    [18] Shinji Ozawa.Image processing for intelligent transport systems. IEICE Transaction Information&System, 1999, 82(3): 629~636
    [19] Chang-Su Kim, Rin-Chul Kim and Sang-Uk Lee. Fractal coding of video sequence using circular prediction mapping and noncontradiction interframe mapping, IEEE Trans. On Image Processin, 1998, 7(4):601~604
    
    
    [20][美]R.C.冈萨雷斯,P温茨著,李叔梁等译.数字图像处理.北京:科学出版社出版,1981.126~134
    [21]王润生.图像理解.长沙:国防科技大学出版社,1995.39~45
    [22]Aftab A.Mufti. Elementary Computer Graphics. Reston Publishing Company, 1983. 201~210
    [23]李新友.计算机图像综合技术(CAD/CAM工程师必读).北京:机械工业出版社,1997.7~12
    [24]Ekstrand S.Fiorella M, Ripple w J. Analysis of conifer use forest regeneration using landsite thematic mapper data. Photo cram metric Engineering & Remote sensing, 1993, 59(9): 1383~1388
    [25]Daugman J G. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal and Machine Intell, 1993, 15 (11): 1148~1161
    [26]孙仲康,沈振康.数字图像处理及其应用.北京:国防工业出版社,1985.166~173
    [27](苏)雅罗斯拉斯基著 施有秋译.数字图像处理.北京: 电子工业出版社,1990.26~34
    [28]Behrouzi P. & McGuirk J. Particle image velocimetry for intake ingestion in short takeoff and landing aircraft. Journal of Aircraft, 2000, 37(6): 994~1000
    [29]Yeung A.F.K. & Lee B.H.K.. Particle image velocimetry study of wing-tip vortices. Journal of Aircraft, 1999, 36(2): 482~484
    [30]Park W.K, etal. Measuring maximum late wood density by image analysis at the cellular level. Wood and fiber Science, 1993, 25(4):326~332
    [31]田涛,吴君.图像处理在铸造工业中的应用.测控技术,1999,18(8):42~45
    [32][美]赵亦林著,谭国真译.车辆定位与导航系统.北京:电子工业出版社,1999.6~12
    [33]张石,郑春清,张宏勋.用图像识别法在线判断烧结矿FeO含量等级的研究.钢铁,1998,33(5):1~4
    [34]N.O.E. Vischer, P.G. Hils, R.I. Ghauharali, G.J. Brakenhoff, N. Nanninga and C.L. Woldringh. Image eytometrie method for quantifying the relative amount of DNA in bacterial nucleoids using Escherichia coli. Journal of Microscopy, 1999, 196(1): 61~68
    [35]陈冠群,方盛国.DNA指纹图微机图像处理的初步研究.四川师范大学学报(自然科学版),1994,17(3):80~84
    [36]胡匡祜,苏万芳,李翊华,黄文菊.运动红细胞形变结构的图像自动定量分析的研究.生物物理学报,1994,10(3):387~392
    [37]安红宇,江丕栋,傅世.利用数字图像技术观察蛋白质的结晶过程.生物物理学
    
    报,1996, 12(2):371~376
    [38]李平阳,王江成,谭润初,李永龙,贺奇才,黄耀熊.对地贫红细胞的显微激光散射和图像分析.生物化学与生物物理进展,1999(3):25~28
    [39][美]A.罗森菲尔德,陈彩廷等译.数字图像分析.北京:科学出版社,1987.100~164,234~250
    [40]Van Latum L. Computed topographic imaging of a dense media cyclone. Applied Research in the minerals Industry, 1992. 65~73
    [41]Louis O, Kaufman L and Osteaux M. Quantitative ultrasound of the calcareous with parametric imaging. Correlation with bone mineral density at different sites and with anthropometric data in menopausal women. European Journal of Radiology, 2000, 35(1): 65~69
    [42]张艳,费耀平,伍晓平,廖志宁,常小荣.一种对胃窦B超图像进行自动分割的方法.计算机应用研究,2000,(1):71~73
    [43]刘盛东,李承华.煤层内断层在双巷声波CT重建图像中的表现.煤炭学报,2000,(3): 230~233
    [44]Marchant J A, Onyango C M, Street M J. High speed sporting of potatoes using computer vision. ASAE, 1988, 88:3540
    [45]Howarth. Secrecy inspection of fresh market carrots by machine vision. ASAE, 1992, 18:106~111
    [46]Heinemann P. Grading of mushrooms using a machine vision system. ASAE, 1994, 37:1671~1677
    [47]Heyne L. Unklesbay computerized image analysis and protein quality of simulated pizza crusts. Food sci tech, 1985, 18: 168~173
    [48]Sapirstein H D. Instrumental measurement of bread crumb by digital image Analysis. Cereal Chem, 1994, 71(4):383~391
    [49]Zayas I Y. Image analysis for texture pattern recognition of hard and soft wheat brand. Cereal Food Worlk, 1996, 34:751
    [50]Chris Brock, Branscn. Technology Report. 1996. 100~120
    [51]Travis A J. A computer based system for the recognition for seed shape, seed sci, tech, 1985, 13:813~820
    [52]Zayas I Y. Discrimination between arthur and arkan wheats by image analysis. Cereal Chem, 1985, 62 (1):478~480
    [53]Neuman M R. Wheat grain color analysis by digital image processing, ceral sci, 1989, 10: 183~188
    [54]Mcdonald T P, Chen Y R. Separating connected muscle tissues in image of beef
    
    carcass ribeyes. ASSE 1992, 33(6): 2059~2065
    [55]吴社华,陈宝树.GIANTS微机数字图像分析系统及其在地学中的应用.铀矿地质,1952,(2):110~113
    [56]索建军.TM图像在新疆找矿预测中的应用探讨.新疆工学院学报,1997,(2):90~92
    [57]李卉,李莲花.利用比值图像提取与金矿相关的信息.鞍山钢铁学院学报,1997,(4): 90~92
    [58]蔡则健.郯庐断裂带中南段金、金刚石找矿的TM数据图像信息提取与找矿预测.江苏地质,1996,(1):24~27
    [59]陈建平,王成善,黄卫.雅鲁藏布江缝合带演化过程的遥感图像统计分析.地球物理学报,1998,(1):108~114
    [60]蓝青叁.显微图像识别及其在粒度分析中的应用.[硕士学位论文].长沙:中南大学,2002
    [61]Petruk,W, Pinard, R.G, Finch, J. Relationship between observed mineral liberations in screened fractions and in composite samples. Minerals & Metallurgical Processing, 1986, 3(1):60~62
    [62]Sutherland David N. Image analysis for off-line characterization of mineral particles and prediction of processing properties. Particle & Particle Systems characterization: Measurement and Description of Particle Properties and Behavior in Powders and other Disperse Systems, 1993, 10(5): 271~274
    [63]邱道伊,张咏梅,王龙辉.基于图像识别在线推断烧结矿产量的研究.郑州工业大学学报,2000,21(1):46~48
    [64]M.Agus, G.Bonifazi and EMassacci. Image texture analysis based procedure to characterize and recognize coal minerals Minerals Engineering, 1994, 7 (9): 1127~1147
    [65]王凡.煤泥浮选柱泡沫的图像处理与识别.[博士学位论文].北京:中国矿业大学,2001
    [66]谢广元.选矿学.江苏徐州:中国矿业大学出版社,2001.388~389
    [67]Moolman, D.WAldrich, Van Deventer, J.S.J. & Stange. Digital image analysis as a tool for on-line monitoring of forth in flotation plants. Minerals Engineering, 1994, 7(9): 1149~1164
    [68]N.Kiryati, A.Bruckstein. Gray-Levels can improve the performance of binary image digitizers. IEEE The computer society conference on computer vision and pattern recognition, 1988, 2:562~567
    [69]G. Bonifazi, P. Massacci and A. Meloni. Prediction of Complex Sulfide Flotation
    
    Performances by a combined 3D fractal and colour analysis of the froths. Minerals Engineering, 2000, 13(7): 1127~1147
    [70]王麓雅,唐文胜,刘相滨.浮选中泡沫图像的分割算法.湖南师范大学学报,2002,25(2):23~26
    [71]N.Sadr-Kazemi, J.J. Cilliers. An image processing algorithm for measurement of flotation froth bubble size and shape distributions. Minerals Engineering, 1997, 10(10): 1075~1083
    [72]曾荣.浮选泡沫图像边缘检测方法的研究.中国矿业大学学报,2002,31(5):421~425
    [73]LU Mai-xi, WANG Fan, LIU Xiao-Ming. Analysis of Texture of Froth Image in Coal Floatation. Journal of China University of Mining & Technology, 2001, 11(2): 100~103
    [74]路迈西,王勇,王凡,刘文礼.利用阈值分割技术提取煤泥浮选泡沫图像的物理特征.煤炭科学技术,2002,30(8):34~37
    [75]刘文礼,路迈西,王勇,王凡.煤泥浮选泡沫数字图像处理研究(之一).中国矿业大学学报,2002,31(2):120~123
    [76]刘文礼,路迈西,王勇,王凡.煤泥浮选泡沫数字图像处理研究(之二).中国矿业大学学报,2002,31(3):233~236
    [77]曾荣,沃国经.图像处理技术在镍选矿厂中的应用.矿冶,2002,11(1):37~41
    [78]C.Aldrich and D.Femg. The effect of frothers on bubble size distributions in flotation pulp phases and surface froths. Minerals Engineering, 2000, 13 (10) : 1049~1057
    [79]Cipriano A, Guarini M, Vidal R, et al. A real time visual sensor for supervision flotation cells. Minerals Engineering, 1998, 11 (6): 489~499
    [80]M.瓜里尼,左焕莹译.图像处理技术用于评估矿物浮选过程的质量.国外金属矿选矿1999,36(12):38~41
    [81]A.西普利安诺,毛益平 译.采用数字图像处理的浮选专家管理系统.国外金属矿选矿,1998,35(10):44~47
    [82]J.S.J.范德文特,D.W.墨尔曼.具有泡沫特征的神经计算机视觉在线显像浮选过程.国外金属矿选矿,1999,36(7):14~19
    [83]Moolman D.W., etal. The classification of froth structures in copper flotation plant by means of a neural net . Inter .J. of Miner Process, 1995, 43(3/4): 193~208
    [84]J.M. Hargrave, N.J. Miles and S.T. Hall. The use of gray level measurement in predicting coal flotation performance. Minerals Engineering, 1996, 9(6): 667~674
    [85]J.M. Hargrave and S.T. Hall. Diagnosis of concentrate grade and mass flow rate in tin flotation from color and surface texture analysis. Minerals Engineering, 1997, 10(6):
    
    613~621
    [86]E.Barros, M.M. Machado Leite, A.A.T Cavalheiro (Portugal). The use of ore microscopy data for flotation process control by means of a liberation model a case study. The CanadianMiningandMetallurgicalBulletin, 2000, 93(1039): 55~59
    [87]E. Ventura-Medina and J.J. Cilliers. Calculation of the specific surface area in flotation. Minerals Engineering, 2000, 13(3): 265~275
    [88]陈子鸣,茹青.使用多媒体技术研究浮选泡沫现象的初步探索.矿冶工程,第17卷增刊3,1997.247~248
    [89]李珍香,罗宏宇.浮选泡沫的计算机图像处理与识别方法.煤炭技术,1999,18(6):17~19
    [90]李珍香,罗宏宇.一种基于PC机的煤泥浮选自动识别系统.电脑开发与应用,2000,13(2):29~30
    [91]刘富强,钱建生,王新红,宋金铃.基于图像处理与识别技术的煤矿矸石自动分选.煤炭学报,2000,25(5):534~537
    [92]刘文礼,陈子彤,路迈西.煤泥浮选泡沫的数字图像处理.燃料化学学报,2002,30(3): 198~203
    [93]王晓晨,张奕奎,郑士芹.泡沫图像特征与浮选精煤指标关系的研究.淮南工业学院学报,2001,21(1):41~43
    [94]曾荣,沃国经.图像处理技术在浮选过程中的应用.有色金属,2001,53(4):70~72
    [95]张奕奎,陈凌,王飞.基于图像识别的浮选控制系统.工矿自动化,2002,(1):14~16
    [96]何斌,马天予,王运坚,朱红莲.Visual C++数字图像处理.北京:人民邮件出版社,2001.12~13
    [97]尹蒂,李松仁。选矿数学模型.长沙:中南工业大学出版社,1993.2~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700