反式-1,2-环己二醇的分离与提纯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对以环己烯为原料合成反式-1,2-环己二醇绿色工艺路线中目的产品的分离问题,以及与之相关的物性数据等进行研究,探索出了能耗低、节省原料、操作简便、适宜于工业化生产的分离工艺,为反式-1,2-环己二醇的大规模工业化生产奠定了基础。
     本文采用合成法和激光技术测定了反式-1,2-环己二醇在水和乙酸乙酯中及甲酸钠在水中的溶解度和超溶解度数据,得到了反式-1,2-环己二醇在水中的介稳区宽度与温度和搅拌速度的关系曲线,以及反式-1,2-环己二醇在乙酸乙酯中、甲酸钠在水中的介稳区宽度与温度的关系曲线。
     实验结果表明,反式-1,2-环己二醇在水中和乙酸乙酯中的溶解度、超溶解度和介稳区宽度AS皆随温度的升高而增加,且反式-1,2-环己二醇在水中的溶解度、超溶解度和介稳区宽度AS远远大于其在乙酸乙酯中的溶解度、超溶解度和介稳区宽度△S;而反式-1,2-环己二醇在水中的溶解度、超溶解度和介稳区宽度△S均随搅拌速度的提高而减小。反式-1,2-环己二醇在水中的介稳区宽度△θ,高速搅拌下为4℃左右,中速搅拌下为了℃左右;在乙酸乙酯中的介稳区宽度△θ为3℃左右。甲酸钠在水中的溶解度、超溶解度和介稳区宽度△S均随温度的升高而呈线性增加,介稳区宽度△θ在4~5℃之间。实验结果为反式-1,2-环己二醇的分离提纯、结晶工艺条件的优化以及结晶动力学、连续分步结晶工艺的进一步研究提供了必要的热力学基础。
     应用间歇减压精馏对热敏性、高沸点、高凝固点的有机物—反式-1,2-环己二醇进行分离、提纯,通过采用变压强、变回流比的方法,优化出了最佳的操作工艺条件。同时还对反式-1,2-环己二醇合成工艺中过量甲酸的回收进行了研究,得到了常压间歇精馏浓缩回收甲酸的工艺条件。从萃取液中除去乙酸乙酯的变压强、变回流比间歇精馏的操作条件是:加热电压140V,初期采用常压精馏,全回流开工时间30min;回流比0.3,塔釜温度达到85℃时,停止加热,降温;降温到40℃时,减压蒸馏,真空度0.078—0.080MPa,回流比0.3,直到釜中反式-1,2-环己二醇全部结晶为止。提纯粗品的变压强、变回流比减压间歇精馏的操作条件是:塔顶用温度为96℃左右的热水做冷凝剂;全回流开工时间2h;控制釜温180—185℃,分段恒真空度0.086—0.092MPa;分段恒回流比5→8→12。在此操作条件下所得产品的收率在87%以上,产品纯度可达98%以上,色泽较白。产品的红外光谱图与美国进口产品吻合较好,且熔点与文献值一致。
     通过甲酸回收实验证明,用88%的甲酸进行合成反应后回收的甲酸,不必经过浓缩,可直接用于合成反应,不影响反式-1,2-环己二醇的收率;用循环回收的甲酸进行合成反应,需经过精馏浓缩。精馏过程的回流比宜选择为6,全回流时间宜选择为0.5h。精馏后浓度可达75%以上,回收率在70%以上,且循环回收的甲酸用于合成反应也不影响反
    
    郑州大学硕士学位论文
    式一1,2一环己二醇的收率。
In this article the method of separation and purification of trans-1,2-cyclohexanediol and related thermodynamic data are studied based on the green synthesizing technique of trans-1,2-cyclohexanediol from cyclohexene which has been successfully developed in our laboratory. The separation technique was gained, which can save energy and raw materials and is convenient and fitted for industrial production. All these will make base for the industrial production of trans-1,2-cyclohexanediol.
    The saturate and supersaturate characters of trans-1,2-cyclohexanediol in water, ethyl acetate at different temperature and agitation rates were investigated with synthesis method and using laser technique, as well as those of sodium formate in water at different temperature. The crystallization metastable zone width of trans-1,2-cyclohexanediol and sodium formate was also obtained.
    The test results show that the solubility, supersolubility and crystallization metastable zone width (AS) of trans-1,2-cyclohexanediol in both water and ethyl acetate all increase with temperature growth, and those properties of trans-1,2-cyclohexanediol in water are larger more than those in ethyl acetate. While, the super-solubility and crystallization metastable zone width (AS) of trans-1,2-cyclohexanediol in water decrease with the raising of agitation rate. The crystallization metastable zone width ( ) of trans-1,2-cyclohexanediol in water is about 4C under high agitation rate, and about 7 C under middle agitation rate. The crystallization metastable zone width ( ) of trans-1,2-cyclohexanediol in ethyl acetate is about 3 C. The solubility, super-solubility and crystallization metastable zone width (AS) of sodium formate increase with temperature growth and the crystallization metastable zone width ( ) is between 4 C and 5C. These results offer necessary thermal data for the separation and purification o
    f trans-1,2-cyclohexanediol, the optimization of crystallization process of trans-1,2-cyclohexanediol and the study of crystallization kinetics and batch crystallization of trans-1,2-cyclohexanediol.
    Trans-1,2-cyclohexanediol which has heat sensitivity, high boiling point and high coagulating point was separated and purified with batch distillation under vacuum. The distillation was operated by changing pressure and reflux ratio strategy. The optimal operating condition was acquired. Meanwhile, the recycle of the excessive formic acid in the synthesis of trans-1,2-cyclohexanediol was studied and the recycle technique of formic acid by batch distillation under common pressure was got. The operating condition with changing pressure and changing reflux ratio of batch distillation which eliminate ethyl acetate from
    
    
    
    extracting liquid is that the operation pressure is latm at the beginning and heating voltage 140V, the beginning time of overall reflux 30 min, reflux ratio 0.3. Heating is stopped and the bottom temperature is lowered when it rises to 85 C. Vacuum distillation is employed after the bottom temperature comes down to 40 C. The vacuum distillation isn't stopped under the condition that vacuum is 0.078 ~ 0.080 MPa and reflux ratio 0.3, until all trans- 1,2-cyclohexanediol crystallizes. The operating condition with changing pressure and changing reflux ratio of batch distillation under vacuum which purifies raw trans-1,2-cyclohexanediol is that the beginning time of overall reflux is 2h and the bottom temperature 180~185C, the changing vacuum 0.086~0.092 MPa, the changing reflux ratio 5-8- 12. The production ratio of trans-1,2-cyclohexanediol is over 87% and the product purity is beyond 98% under the above operation condition. The product's color gets much more whiter than the raw's. The IR graph of the product
    is in agreement with that of sample imported from America, as well as it's melting point.
    By the recycle test, we have proved that the formic acid recycled firstly can be used for synthesis cyclically without concentration and has no effect on production ratio of trans-1,2-cyclohexanediol. The formic acid recycled cyclically is con
引文
[1] 李兰英.由环己烯制备邻苯二酚[J].湖南化工,1991,(1):63-64.
    [2] Caron G, Kazlauskas R J.An optimized sequential kinetic resolution of trans-1,2-cyclohexanediol[J]. Journal of Organic Chemistry, 1991,56(26):560.
    [3] Swift R J,Carter S F, Widdowson D A,et al.Expression of benzene dioxygenase from pseudomonas putida ML2 in cis-1,2 -cyclohexanediol degrading pseu-domonas[J].Applied Microbiology and Biotechnology,2001,55(6):721-726.
    [4] Bassas,J., Lamartine R.., Lanteri,P.,et al. New J Chem,1993,7(6):413-420.
    [5] Stull, D.R.,Westrum, E.F.,Sinke G.C., The chem.ical Therodynamics of Organic Compounds, McGraw-Hill,New york, 1969.
    [6] Organic Syntheses[M], New York: Academic Press, 1979.
    [7] Benson,S.W., Thermochemical Kinetics,2nd.ed.,Chap.2,Wiley, New york,1979.
    [8] Benson, S.W.,et al,J.Chem.Phys.[J],29, 1969.
    [9] Thinh,T.P.,Trong,T.K.,Can.J.Chem.Eng.[J],54, 1976.
    [10] Reid,R.C.,Prausnitz, J.M.,Poling,B.E.,The propertyes of Gases and ;liquids, 3rd.ed.,McGraw-Hill,New york, 1964.
    [11] Yuan, T.E,Stiel L.I.,Ind.Eng.Chem.Fundam.,9,1970.
    [12] Halm, R.L.,StieI,L.I,AIChE.J.,17,1971.
    [13] Rihani, K.N.,Doraiswamy I.K.,Ind.Eng.Ccchem.Fundam.,4,1965.
    [14] 周彩荣,蒋登高,王斐等.反式-1,2-环己二醇合成研究[J].四川大学学报,2002,34(5):85-88.
    [15] 朱家文,房鼎业.面向21世纪的化工分离工程[J]_化工生产与技术,2000,7(2):1-2.
    [16] 杨志才.化工生产中的间歇过程[M].第一版.北京:化学工业出版社,2001,267
    [17] 余国琮,杨志才,白鹏,莫志民.分批蒸馏优化策略与微机控制的研究(Ⅰ)分批蒸馏的优化策略[J].化工学报,1989,3(3):271-279.
    [18] 白鹏,张健,姜志,杨志才.间歇精馏新型操作方式的研究进展[J].化学工业与工程,2000,17(4):226-245.
    [19] Shinji Hasebe,Masaru Noda and Iori Hashimoto.Optimal operation policy for multi-effect batch
    
    distillation system[J].Computers Chem. Engng, Vol.21, Suppl., 1997,S1221 -S1226.
    [20] George A.Meski,Manfred Morari.Design and operation of a batch distillation column with a middle vessel[J].Computers Chem. Engng Vol.19, Suppl.,1995,S597-D602.
    [21] 徐锡恩,马瑞国,白庚辛.间歇精馏[J].石油化工,1987,16(11):809-816.
    [22] 贺江平,夏畅斌.间歇精馏塔持液量的研究[J].湘潭矿业学院学报,1996,11(3):63-66.
    [23] I.M.Mujtaba and S.Macchietto.Holdup issues in batch distillation-binary mixtures[J].Chemical Engineering Science,Vol.53,No. 14,1998,2519-2530.
    [24] Massimiliao Barolo,Gian Berto Guarise,Sergio A.Rienzi and Antonio Trotta.Understanding the dynamics of a batch distillation column with a middle vessel[J].Computers Chem.Engng Vol.22,Suppl.,1998,S37-S44.
    [25] 杨志才,莫志民,余国琮.同时改变压强与回流比的间歇精馏过程[J].石油化工,1987,16(4):281-287.
    [26] King,R.W.,British Chem.Eng., 1967,4(12):568
    [27] 李柏春,杨志才.热敏物料新精馏方法的研究[J].河北工学院学报,1994,23(2):84-90.
    [28] 特许公告(日),昭46-42764,1971.
    [29] 丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985.
    [30] Mullin J W .Crystallization 2nd[M] .London : Butterworths, 1992.
    [31] 应华炎.晶体生长技术[M].北京:机械工业出版社,1982.
    [32] Joachim Ulrich ,Chaistine Strege .Some aspects of metastable zone width and nucleation in industrial crystallizers [J].Journal of Crystal Growth ,2002, 237-239:2130-2135.
    [33] 陆杰,王静康.普鲁卡因青霉素的结晶热力学[J].高校化学工程学报,1999,13(3):189-193.
    [34] 周彩荣,彭国胜,章亚东,蒋登高,王斐.顺式-,反式-1,2-环己二醇热力学性质研究[J].高校化学工程学报,2002,16(3):237-241.
    [35] 刘光启,马连湘,刘杰.化学化工物性数据手册·有机卷[M].北京:化学工业出版社,2002.
    [36] Krell,E.(民主德国)著.陈甘棠译.实验室蒸馏指南[M].北京:化学工业出版社,1988.
    [37] 谭天恩,麦本熙,丁惠华编著.化工原理·下册[M].北京:化学工业出版社,1984.
    
    
    [38] 宁爱民,宛新生.基础化学实验[M].郑州:河南农业大学出版社,2002.
    [39] 徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1988.
    [40] 骆广生,伍方勇,朱慎林.渗析电解法提浓甲酸的研究[J].膜科学与技术,2000,20(4):1-4.
    [41] G.S.Luo,S.Pan and J.G.Liu.Concentration of a Formic Acid Solution[J]. Desalination, 2002,150(3):227-234.
    [42] 杨华等.国内外甲酸生产概况及对我公司的建议[J].化工生产与技术,1995,7(3):38~41.
    [43] 《通用化工产品分析方法手册》编写组.通用化工产品分析方法手册[M].北京:化学工业出版社,1999.
    [44] 周彩荣.博士学位论文.由环己烯制备反式-1,2-环己二醇的研究,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700