不同磷饱和度土壤中胶体态磷迁移特征及其对磷素流失潜能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于胶体在污染物分布特征及元素循环中的作用以及富营养化的日益加剧,胶体态磷以其流失量大,生物利用性高等特点逐渐成为面源磷污染研究的新热点。本研究以浙江嘉兴地区典型水稻土为对象,通过长期田间小区试验、径流模拟试验、室内淋溶试验、静态批处理试验研究了不同磷饱和度的土壤中胶体细颗粒物及胶体态磷的分布特征;考察了化肥和有机肥施用的胶体态磷流失源强及其径流、淋溶迁移特征,为全面认识磷素流失和有效评价磷素流失的环境风险提供了依据。通过田间小区试验研究了施肥对不同粒径土壤磷素的分布与流失贡献的影响;探讨了稻田胶体态磷素流失特征及其施肥效应;研究了猪粪有机肥释放的水分散性胶体对不同类型土壤胶体态磷的活化迁移影响;通过模拟试验分析了稻田磷素流失的形态及主控因子。主要研究结果如下:
     1.土壤各粒级组分在理化性质上有显著差异,不同组分吸附磷的环境学归宿也显著不同。以嘉兴典型水稻土不同施肥处理的试验小区土壤为对象,研究了不同粒级组分(粘粒<2μm,粉粒2-20μm,细砂粒20-200μm,粗砂粒200-2000μmm)中磷的分布及等温吸附曲线,得出了各组分对土壤吸附磷的贡献率,并采用SPSS软件对影响吸附的因子进行了回归分析。结果表明,各粒级组分中总磷的分布为:粘粒(52.84%±0.93%)>细砂粒(24.85%±2.47%)>粗砂粒(16.72%±2.69%)>粉粒(9.09%±1.48%);速效磷占总磷比例随粒径的增大而减小,粘粒组分中磷含量最高,约50%以上的总磷和69%以上的速效磷吸附在粘粒组分上。不同粒级组分对磷的吸附量在各处理土壤中均表现为:粘粒>粉粒>粗砂粒>细砂粒,粘粒对磷的最大吸附量分别是粉粒的1.30倍、细砂粒的1.61倍和粗砂粒的1.40倍。粒级、有机质、有效铁均对土壤吸附磷有较大影响。
     2.通过田间小区试验研究了土壤的磷素状况与环境磷素间的相互关系,考察了土壤胶体态磷和溶解态磷在土壤剖面的迁移情况,建立了磷素淋失的评价指标。结果表明,土壤全磷(TP)、胶体态磷(Colloidal P)、水溶性磷(Dissolved P)、速效磷(Olsen P)在土壤剖面上均存在较大的变幅,磷素在土壤中积累量均随施肥量增大而增大,有机肥处理中磷素向下迁移的趋势更加明显。通过分段线性模型分析了土壤剖面上胶体态磷与DPSox、水溶性磷与DPSox、Olsen-P与DPSox的关系,结果表明,水溶性磷和Olsen-P分别在DPSox为9%和12%时存在明显的突变,超过该突变点,则水溶性磷和Olsen-P明显有向下迁移的趋势。而分段线性模型中DPSox与胶体态磷的没有发现明显的突变点,但二者之间存在极显著的线性相关。由相关性分析可见,虽然土壤剖面上的胶体浓度与土壤pH(正相关)及离子强度(负相关)呈显著的线性相关,但土壤pH及离子强度与胶体态磷浓度相关性不显著。尽管底层土壤中土壤磷饱和度较低,但底层土壤中胶体态磷含量仍然较高,这可能是由于受底层土壤中较高pH及较低的离子强度的影响,大量土壤胶体仍可从土壤固相释放出来,而胶体态磷也被土壤胶体携带释放。可见,土壤磷饱和度对胶体态磷迁移有重要的影响。而高的pH、低的离子强度对底层土壤胶体和胶体态磷的释放影响也不易忽略。
     3.通过模拟降雨试验研究了土壤胶体态磷与溶解磷的径流流失特征,并分析了土壤中初始磷(非当季施肥入的磷肥)和新施入的肥料磷对径流流失磷的贡献。结果表明:在所有处理中,施肥量、土壤初始磷与总磷流失负荷均存在显著正相关关系;在未施入新肥料磷的处理中,有机肥处理的土壤中流失的磷明显高于无机肥处理土壤,而在实验前24h分别施入有机和无机磷肥后,无机肥土壤中流失的磷量显著增加并超过有机肥土壤中各形态磷素的流失磷量。其中胶体态磷(0.1-1μm)占流失总磷42-62%,而总溶解磷(TDP) (<0.45μm)占总磷的60%以上,是流失磷的主要形态。与不施无机肥的对照组相比,新施入无机肥的处理中,胶体态磷和溶解态磷流失量均显著增加,二者占总磷的比例也显著增加;与不施有机肥的对照组相比,新施入有机肥的处理中,胶体态磷和溶解态磷流失均有所增加,但占流失总磷的比例变化略有减小。此外,线性回归分析表明了土壤新施入的磷肥是流失负荷中磷素的主要来源。
     4.利用土柱模拟试验,在饱和流条件下研究了外源水分散性有机肥胶体、pH、离子强度对水稻土中胶体态磷素活化迁移(Colloid Facilitated Transport)的影响。结果表明,与去离子水作为淋入液的处理相比,在初始阶段,有机肥胶体的输入明显抑制了溶解态磷的迁移,溶解态磷的淋出浓度远远小于去离子水处理中的浓度,待土柱中吸附点位被饱和后,淋滤液溶解态磷的淋出浓度迅速增加,并最终接受有机肥胶体悬浮液中磷的浓度;而淋出液中胶体态磷的变化则不同,随有机肥胶体的输入不断增加,淋滤液胶体态磷浓度也不断增加。整个实验过程中,淋滤液胶体态磷浓度始终较去离子水处理中的淋滤液胶体态磷浓度高,且与胶体态铁存在着显著的线性关系。铁化合物可能是胶体态磷运输的主要载体。此外,研究也表明,高的DPSox不仅会促进溶解态磷的迁移,同时会促进胶体态磷的垂直迁移;流入液中pH的增加、离子强度的降低有利于土壤中胶体态磷的释放。
     5.通过田间小区试验和静态培养实验,研究了不同施磷水平对嘉兴水稻土中磷素积累、土壤磷饱和度以及流失水体中磷的影响。结果表明,DPSM3和DPSox两种土壤饱和度计算方法、几种有效磷之间具有较好的相关性。两种饱和度对于供试土壤饱和度的预测都是可行的。DPSox作为土壤磷素水平和固磷能力的综合指标,代表了土壤吸附磷素和释放能力的强弱,在研究土壤磷素径流流失对地表水质的潜在影响时,不仅能很好地表征土壤磷素向环境迁移流失的潜能,也能有效的表征土壤剖面中磷素的淋失和土壤胶体态磷的流失潜能。
Considering the role of the colloid in the pollution distribution and elements cycling, the presence of colloids in runoff is very important to understand the colloidal phosphorus (P) transport process. Therefore, the transport of colloidal P in soils has received considerable attention in non-point pollutions in recent years, because colloid-facilitated phosphorus has been proved as a significant contributor to eutrophication. The overall objectives of this research has been to assess the effect of drying-flooding cultivation on the potential of P distribution, and to discover the characteristics of P release to water bodies from the paddy field in field scale. In the present work, a long-term experiment was set-up in 2005. From the experiment, the distribution of P in soil profile of the paddy field can be monitored, including the mobilization of colloidal phosphorus, dissolved P and Olsen P from topsoils to subsoil. Batch experiments were also conducted to investigate the equilibrium sorption isotherms for P onto particle-sized fractions. Besides, to determine the effect of water dispersible colloids derived from swine manure on the leaching of phosphorus from paddy soils, leaching experiment in saturated-flow columns packed with aggregate-sand mixture materials were investigated using manured soil and unmanured soil. The detailed results are as follows.
     (1) Batch experiments were conducted to investigate the equilibrium sorption isotherms for P onto particle-sized fractions (<2μm,2~20μm,20~200μm, and 200~2000μm) which were named clay, silt, fine sand and coarse sand according to international system respectively) derived from a series of long-term paddy field of Jiaxing in China. The results showed that the ratio of total P (TP) in each fraction to total P in the bulk soil followed by the order:clay (52.84%±0.93%)> fine sand (24.85%±2.47%)> coarse sand (16.72%±2.69%)> silt (9.09%±1.48%). All of he percent of TP and Olsen P adsorbed by clay of the three soils exceeded 50% and 69% of the soil, respectively. The adsorption of P by these fractions could be described by the Langmiur equation and Frendlich equation. The maximum adsorption of P (Cm) and distribution coefficient (Kd) decreased with the following order:clay>silt>coarse sand>fine sand in the three soils. By choosing particle size, organic matter, iron oxide and equilibrium pH value as parameters, multivariate statistical analysis in SPSS were employed to build the regression model of adsorption of P and to evaluate the effect of these factors on it. The results showed that particle-size fraction, organic matter have much more significantly effect on the adsorption of P than available iron.
     (2) Application of P with animal manure and fertilizer in amounts exceeding removal with crops leads to accumulation of P in soil, making them potential long-term diffuse sources of P loss to water. The impact of a range of manuring and fertilization practices on the TP, Olsen P, distribution of dissolve phosphorus and colloidal P, and degree of phosphorus saturation (DPS) of soil were investigated in field study. In the present work, the overall comparison of all sites with a wide range of DPS has been investigated. The results indicated that DPS was an important factor in controlling the concentration of dissolved P and colloidal P in soil. The change points at 9% and 12% DPS were noted by using a split-line model, above which Olsen P (10.8 mg P kg-1) and dissolved P (3.1 mg P kg-1) in soil profile began to rapidly increase and potentially mobile downward. Therefore, it is supposed that the leaching of dissolved P can not be neglected as a widespread environmental problem. Compare with dissolved P, colloidal P was the dominant fraction of P in water-dispersible colloid suspension of the soil profile. The significant decrease of ionic strength and the increased pH value from topsoils to subsoils can explain the high release of soil colloid. And the soil colloid was the important carriers of collidal P. Therefore, colloidal P was also high in the subsoil despite DPS was low in subsoils. Overall, the high DPS induced by manuring and fertilization was the main factor of the transportation of colloidal P. But the effect of pH value, EC on the release of colloidal P in the soil also can not be overlooked.
     (3) The objective of this study was to test whether new application of fertilization 24 h before an intense rainstorm or the intial P in the soil is the main source of P loss in runoff water. A rainfall simulation study compared TP, colloidal P, total dissolve phosphorus (TDP), and total particulate phosphorus (TPP) concentrations and losses in runoff water after swine manure and inorganic fertilizer were broadcast. The results showed that P loss increased with applications fertilizer or manure and initial soil P of the soil, with most occurring as TDP accounted for more than 60% of total P in the fraction<0.45μm. Colloidal P also account for 42-62% of total P in the fraction 0.1-1μm. In comparison with IP1-C and IP2-C of group 1 (without application of fertilizer), the concentration of Colloidal P, TDP were much higher after using inorganic fertilizer in IP1 and IP2 treatments of group 2, respectively. And the ratio of colloidal P and TDP to TP also increased relatively in these treatments, respectively. Howerer, in comparison with OP1-C and OP2-C of group 1 (without application of manure), the concentration of Colloidal P, TDP were also increased after the application of maure in OP1 and OP2 treatments of group 2, respectively. But the ratio of colloidal P and TDP to TP decreased relatively in these treatments, respectively. The linear regression equation analysis demonstrated that new applied fertilizer and manure were the main source of runoff P rather than intial P in soils.
     (4) To investigate the effect of water-dispersible colloids derived from swine manure on the potential risks of P, migration behavior of P in saturated-flow columns were compared in the presence and absence of water-dispersible colloids of manure in the inflow. It was found that total dissolved P (TDP) accounted for a majority of total P (65%-98%) in the effluent with deionized water treatments, while only accounted for 21%-45% to total P in the leachate in the manure colloid treatments. In manured soils, with the inflow of manure colloidal suspension, colloidal P in the effluent were 26.7 times higher than that of deionized water treatment (PM+W) and 1.9 times more than that of unamended soil treated with manure colloid (PO+M) in the end of the leaching experiment, respectively. Despite the initial reduction of TDP concentrations in the effluent with the presence of manure colloid, the TDP concentrations still increased smoothly and continued to transport with the effluent throughout the breakthrough experiment. This suggested that P sorption sites of the soil and the added manure colloid in the column were fastly saturated during initial stage of the experiment. The good linear correlation between colloidal P and colloidal Fe indicated that Fe hydroxides could be served as a main medium for the transportation of colloidal P. Moreover, colloidal P exhibited greater mobility under higher pH and lower ionic strength.
     (5) In a series of laboratory soil incubation experiments, the effect of applied phosphorus on soil test phosphorus, degree of phosphorus saturation (DPS), dissolve phosphorus in water were discussed. During the experiment, two types of degree of phosphorus saturation had an obvious increase as a result of applied phosphorus. In a series of laboratory soil, DPSox increased from 11.2% to 34%, while DPSM3 increased from 2.72% to 17.98%. In addition, in both of the surface runoff of P and mobilization of P in soil profile, the statistics analysis found significant relationships between the differient DPS and soil test phosphorus. Therefore, the DPS was a good indicator of environmental impacts of P loss potential from agricultural soils to waters.
引文
Abdu N. Soil-phosphorus extraction methodologies:A review[J]. African Journal of Agricultural Research.2006,1(5):159-161.
    Agbenin JO, Tiessen H. Phosphorus forms in particle- size fractions of a toposequence from northeast Brazil[J]. Soil Science Society of America Journal.1995, 59:1687-1693.
    Ait Baddi G, Hafidi M, Cegarra J. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw[J]. Bioresource Technology.2004,93:285-290.
    Bake I, Pitt W. Colloid-facilitated radionuclide transport in fractured porous rock[J]. Waste Management.1996,16(4):313-325.
    Barton CD, Karathanasis AD. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths[J]. Water Air and Soil Pollution.2003,143: 3-21.
    Beauchemin S, Simard RR. Soil phosphorus saturation degree:Review of some indices and their suitability for P management in Quebec[J]. Canadian Journal of Soil Science.1999,79:615-625.
    Blake L, Hesketh N, Fortune S, Brookes P. Assessing phosphorus 'Change-Points' and leaching potential by isotopic exchange and sequential fractionation[J]. Soil Use and Management.2002,(3):199-207.
    Boers PCM. Nutrient emissions from agriculture in The Netherlands, causes and remedies[J]. Water Science and Technology.33(4-5):183-189.
    Borggaard OK, Szilas C, Gimsing AL, Rasmussen LH. Estimation of soil phosphate adsorption capacity by means of a pedotransfer function[J]. Geoderma.2004,118: 55-61.
    Bradford SA, Tadassa YF, Pachepsky YA. Transport of giardia and manure suspensions in saturated porous media[J]. Journal of Environmental Quality.2006,35: 749-757.
    Breeuwsma A. Silva S. Phosphorus fertilization and environmental effects in the Netherlands and the Po region (Italy). Winand Staring Centre for Integrated Land, Soil, and Water Research, Agric. Res. Dep. Rep.57, Wageningen, The Netherlands. 1992:39.
    Breuning-Madsen H, Ehlers CB, Borggaard OK. The impact of perennial cormorant colonies on soil phosphorus status[J]. Geoderma.2008,148:51-54.
    Brock EH, Ketterings QM, Kleinman PJA. Measuring and predicting the phosphorus sorption capacity of manure-amended soils. Soil Science[J].2007,172:266-278.
    Buffle J, de Vitre RR, Perret D, Leppard GG. Physico-chemical characteristics of colloidal iron phosphate species formed at the oxic-anoxic interface of an eutrophic lake[J]. Geochimica et Cosmochimica Acta.1989,53:399-408.
    Cade-Menun BJ, Navaratnam JA, Walbridge MR. Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy[J]. Environmental Science & Technology.2006,40:7874-7880.
    Carpenter SR, Caraco NF, Correl DL, Howarth RW, Sharpley AN, Smith VH. Nonpoint pollution of surface with phosphorus and nitrogen[J]. Ecological Applications.1998,8:559-568.
    Casson JP, Bennett DR, Nolan SC, Olson BM, Ontkean GR. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta[J]. Journal of Environmental Quality.2006,35:2212-2221.
    Chambers BJ, Garwood TWD, Unwin R. Controlling soil water erosion and phosphorus losses from arable land in England and Wales[J]. Journal of Environmental Quality.2000,29:145-150.
    Chardon WJ, Aalderink GH, van der SC. Phosphorus Leaching from cow manure patches on soil columns[J]. Journal of Environmental Quality.2007,36:17-22.
    Chardon WJ, McDowell RW. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications[J]. Journal of Environmental Quality.2007,36:305-315.
    Cheng JH, Zhang HJ, Zhang YY, Shi YH, Cheng Y. Effects of preferential flow on soil-water and surface runoff in a forested watershed in China[J].2009,4(2):132-139.
    Chrysostome M, Nair VD, Harris WG, Rhue RD. Laboratory validation of soil phosphorus storage capacity predictions for use in risk assessment[J]. Soil Science Society of America Journal.2007,71(5):1564-1569.
    Corwin DL. Non-point pollution modeling based on GIS[J]. Soil and Water Conservation.1998,1:75-88.
    Cox FR, Hendricks SE. Soil test phosphorus and clay content effects on runoff water quality[J]. Journal of Environmental Quality.2000,29:1582-1586.
    Daniel TC, Sharpley DR, Edwards DR. Minimizing surface water eutriophication from agriculture by phosphorus management[J]. Journal of Soil and Water Conservation.1994,49:30-38.
    Daniel TC, Sharpeley AN, Lemunyon JL. Agricultural phosphorus and eutrophication: a symposium overview[J]. Journal of Environmental Quality.1998,27:251-257.
    De Jager PC, Claassens AS. Long-term phosphorus desorption kinetics of an acid sand clay soil from Mpumalanga, south Africa[J]. Communications in Soil Science and Plant Analysis.2005,36:309-319.
    De Jonge LW, Kjaergaard C, Moldrup P. Colloids and colloid-facilitated transport of contaminants in soils:An introduction[J]. Vadose Zone Journal.2004,3 (2):321-325.
    De Jonge LW, Moldrup P, Rubaek GH, Schelde K, Djurhuus J. Particle leaching and particle-facilitated transport of phosphorus at field scale[J]. Vadose Zone Journal. 2004,3:462-470.
    DeNovio NM, Saiers JE, Ryan JN. Colloid movement in unsaturated porous media: Recent advances and future directions[J]. Vadose Zone Journal.2004,3:338-351.
    Dou Z, Knowlton KF, Kohn RA, Wu Z, Satter LD, Zhang G, Toth JD, Ferguson JD. Phosphorus characteristics of dairy feces affected by diets[J]. Journal of Environmental Quality.2002,31(6):2058-2065.
    Elliott HA, O'Connor GA. Phosphorus management for sustainable biosolids recycling in the United States. Soil Biology & Biochemistry.2007,39:1318-1327.
    Flury M, Harsh JB, Mathison JB. Miscible displacement of salinity fronts: Implications for colloid mobilization[J]. Water Resources Research.2003,39:1373.
    Gburek WJ, Sharpley AN, Heathwaite L, Folmar GJ. Phosphorus management at the watershed scale:a modification of the phosphorus index [J]. Journal of Environmental Quality.2000,29:130-144.
    Ghodrati M, Jury w A. A field study of the effect of soil structure and irrigation method on preferential flow of pesticides in unsaturated soil [J]. Journal of Contaminant Hydrology.1992,11:101-125.
    Gillingham AG, Thorrold BS. A review of New Zealand research measuring phosphorus in runoff from pasture[J]. Journal of Environmental Quality.2000,29: 88-96.
    Goldberg S, Lebron I, Suarez DL. Soil colloidal behavior. In M.E. Sumner (ed) Handbook of soil science. CRC Press, Boca Raton, FL.2000:195-240.
    Goyne KW, Jun HJ, Anderson SH, Motavalli PP. Phosphorus and nitrogen sorption to soils in the presence of poultry litter-derived dissolved organic matter[J]. Journal of Environmental Quality.2008,37(1):154-163.
    Grolimund D, Borkovec M, Barmettler K, Sticher H. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:A laboratory column study[J]. Environmental Science & Technology.1996,30:3118-3123.
    Grolimund D, Elimelech M, Orkovec M. Transport of in situ mobilized colloidal particles in packed soil columns [J]. Environmental Science & Technology.1998,32: 3262-3569.
    Guan XH, Shang C, Chen GH. Competitive adsorption of organic matter with phosphate on aluminum hydroxide[J]. Journal of Colloid and Interface Science.2006, 296:51-58.
    Guppy CN, Menzies NW, Blarney FPC, Moody PW. Do decomposing organic matter residues reduce pPhosphorus sorption in highly weathered soils? [J]. Soil Science Society of America Journal.2005,69(5):1405-1411.
    Hartikainen H. Potential mobility of accumulated phosphorus in soil as estimated by the indices of Q/I plots and by extractant[J]. Soil Science.1991,152:204-209.
    Haygarth PM, Chapman PJ, Jarvis SC. Phosphorus budgets for two contrasting grassland farming systems in the UK [J]. Soil Use and Manage.1998,14:160-167.
    Haygarth PM, Jarvis SC. Transfer of phosphorus from agricultural soils[J]. Advances in agronomy.1999.66:195-247.
    Haygarth PM, Warwick MS, House WA. Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution[J]. Water Research.1997,31: 439-448.
    Haynes RJ, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions:a review[J]. Nutrient Cycling in Agroecosystems.1998,51:123-137.
    He ZL, Wilson Md, Campbell CO. Distribution of phosphorus in soil aggregate fractions and its significance with regard to phosphorus transport in agricultural runoff[J]. Water Air and Soil Pollution.1995,83(1-2):69-84.
    Heathwaite L, Haygarth P, Matthews R, Preedy N, Butler P. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources[J]. Journal of Environmental Quality.2005,34:287-298.
    Hens M, Merckx R. Functional characterization of colloidal phosphorus species in the soil solution of sandy soils[J]. Environmental Science & Technology.2001,35: 493-500.
    Hens M, Merckx R. The role of colloidal particles in the speciation and analysis of dissolved phosphorus[J]. Water research.2002,36:1483-1492.
    Herlihy M, Carthy JM. Association of soil-test phosphorus with phosphorus fractions and adsorption characteristics[J]. Nutrient Cycling in Agroecosystems.2006,75: 79-90.
    Hesketh N, Brookes PC. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality.2000,29:105-110.
    Hooda PS, Moynagh M, Svoboda IF, Edwards AC, Anderson HA, Sym G. Phosphorus loss in drainflow from intensively managed grassland soil[J]. Journal of Environmental Quality.1999,28:1235-1242.
    Hooda PS, Rendell AR, Edwards AC, Withers PJA, Aitken MN, Truesdale VW. Relating soil phosphorus indices to potential phosphorus release to water[J]. Journal of Environmental Quality.2000,29:1166-1171.
    Hooda PS, Truesdale VW, Edwards AC, Withers PJA, Aitken MN, Miller A, Rendell AR. Manuring and fertilization effects on phosphorus accumulation in soils and potential implications[J]. Advances in Environmental Research.2001,5:13-21.
    Horta M, Torrent CJ. The Olsen P method as an agronomic and environmental test for predicting phosphate release from acid soils[J]. Nutrient Cycling in Agroecosystems. 2007,77:283-292.
    Hu SP, Chen XC, Shi JY, Chen YX, Lin Q. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain[J]. Chemosphere.2008,71:2091-2097.
    Ige DV, Akinremi OO, Flaten DN. Environmental index for estimating the risk of phosphorus loss in calcareous soils of Manitoba[J]. Journal of Environmental Quality. 2005,34:1944-1951.
    Ilg K, Dominik P, Kaupenjohann M, Siemens J. Phosphorus-induced mobilization of colloids:model systems and soils[J]. European Journal of Soil Science.2008,59: 233-246.
    Ilg K, Siemens J, Kaupenjohanm M. Colloidal and dissolved phosphorus in sandy soils as affected by phosphorus saturation [J]. Journal of Environmental Quality.2005, 34:926-935.
    Jacobsen OH, Moldrup P, Larsen C, Konnerup L, Petersen LW. Particle transport in macropores of undisturbed soil columns[J]. Journal of Hydrology.1997,196: 185-203.
    Jarvis NJ, Villholth KG, Ulen B. Modelling particle mobilization and leaching in macroporous soil[J]. European Journal of Soil Science.1999,50:621-632.
    Jin XS, Wang SR, Pang Y, Wu CF. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution.2006,139(2):288-95.
    Kaiser K, Zech W. Nitrate, sulfate and biphosphate retention in acid forest soils affected by natural dissolved organic carbon[J]. Journal of Environmental Quality. 1996,25:1325-1331.
    Karathanasis AD, Johnson DM, Matocha CJ. Biosolid colloid-mediated transport of copper, zinc and lead in waste-amended soils[J]. Journal of Environmental Quality. 2005,34(4):1153-1164.
    Karathanasis AD. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Science Society of America Journal.1999,63:830-838.
    Kleinman PJA, Bryant RB, Reid WS, Sharpley AN, Pimentel D. Using soil phosphorus behavior to identify environmental thresholds[J]. Soil Science.2000, 165(12):943-950.
    Kleinman PJA, Sharpley AN, Wolf AM, Beegle DB, Moore PAJr. Measuring water extractable phosphorus in manure as an indicator of phosphorus in runoff [J]. Soil Science Society of America Journal.2002,66(6):2009-2015.
    Kleinman PJA, Sharpley AN. Effect of Broadcast Manure on Runoff Phosphorus Concentrations over Successive Rainfall Events[J]. Journal of Environmental Quality. 2003,32(3):1072-1081.
    Klitzke S, Lang F, Kaupenjohann M. Increasing pH releases colloidal lead in a highly contaminated forest soil[J]. European Journal of Soil Science.2008,59:265-273
    Koopmans GF, Chardon J, McDowell RW. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications[J]. Journal of Environmental Quality.2007,36:305-315.
    Koopmans GF, Chardon WJ, Ehlert PAI, Dolfing J, Suurs RAA, Oenema O, WH van Riemsdijk. Phosphorus Availability for Plant Uptake in a Phosphorus-Enriched Noncalcareous Sandy Soil[J]. Journal of Environmental Quality.2004,33:965-975.
    Kreller DI, Gibson G, Novak W, van Loon GW, Horton JH. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects.2003,212:249-264.
    Kretzschmar R, Borkovec M, Grolimund D, Elimelech M. Mobile subsurface colloids and their role in contaminant transport[J]. Advances in Agronomy.1999,66:121-193.
    Kretzschmar R, Robarge WP, Amoozegar A. Influence of natural organic matter on colloid transport through saprolite[J]. Water Resources Research.1995,31(3): 435-445.
    Laboski CAM, Lamb JA. Changes in soil test phosphorus concentration after application of manure or fertilizer[J]. Soil Science Society of America Journal.2003, 67(2):544-554.
    Laubel A, Jacobsen OH, Kronvang B, Grant R, Andersen HE. Subsurface drainage loss of particles and phosphorus from field plot experiments and a tile-drained catchment[J]. Journal of Environmental Quality.1999,28:576-584.
    Lehmann J, Lan Z, Hyland C, Sato S, Solomon D, Ketterings QM. Long-term dynamics of phosphorus forms and retention in manure-amended soils[J]. Environmental Science & Technology.2005,39:6672-6680.
    Leinweber P, Lunsmann F, Eckhardt KU. Phosphorus sorption capacities and saturation of soils in two regions with different livestock densities in northwest Germany[J]. Soil Use Management.1997,13:82-89.
    Liang XQ, Liu J, Chen XY, Li H, Ye YS, Nie ZY, Su MM, Xu ZH. Effect of pH on the release of soil colloidal phosphorus[J]. Journal of soils and sediments 2010,10 (8): 1548-1556.
    Lienemann CP, Monnerat M, Dominik J, Perret D. Identification of stoichiometric iron-phosphorus colloids produced in a eutrophic lake[J]. Aquatic Sciences.1999,61: 133-149.
    Liu D, Elimelech M. Colloid deposition dynamics in flow through porous media: role of lectrolyte concentration [J]. Environmental Science & Technology.1995,29: 2963-2973.
    Maguire RO, Edwards AC, Wilson MJ. Influence of cultivation on the distribution of phosphorus in three soils from NE Scotland and their aggregate site fractions[J]. Soil Use and Management (Supplement).1998,14:147-153.
    Maguire RO, Foy RH, Bailey JS, Sims JT. Estimation of the phosphorus sorption capacity of acidic soils in Ireland[J]. European Journal of Soil Science.2001,52: 479-488.
    Maguire RO, Sims JT. Soil testing to predict phosphorus leaching[J]. Journal of Environmental Quality.2002,31:1601-1609.
    Makarov MI, Haumaier L, Zech W, Malysheva T. Organic phosphorus compounds in particle-size fractions of mountain soils in the northwestern Caucasus[J]. Geoderma. 2004.118(1-2):101-114.
    Makris KC, Grove JH, Matocha CJ. Colloid-mediated vertical phosphorus transport in a Waste-amended soil[J]. Geoderma.2006,136:174-183.
    Marshall SK, Laboski CAM. Sorption of Inorganic and Total Phosphorus from Dairy and Swine Slurries to Soil [J]. Journal of Environmental Quality.2006,35(5): 1836-1843.
    Mathews BW, Carpenter JR, Sollenberger LE, Tsang S. Phosphorus in Hawaiian kikuyugrass pastures and potential phosphorus release to water[J]. Journal of Environmental Quality.2005,34:1214-1223.
    Mayer TD, Jarrell WM. Assessing colloidal forms of phosphorus and iron in the Tualatin river basin [J]. Journal of Environmental Quality.1995,24:1117-1124.
    McBride MB, Baveye P. Diffuse Double-Layer Models, Long-Range Forces, and Ordering in Clay Colloids[J]. Soil Science Society of America Journal.2002,66(4): 1207-1217.
    McCarthy JF, McKay LD. Colloid transport in the subsurface:past, present and future challenges[J]. Vadose Zone Journal.2004,3:326-337.
    McCarthy JF, Williams TM, Liang LY, Jardine PM, Jolley LW, Taylor DL, Palumbo AV, Cooper LW. Mobility of natural organic matter in a sandy aquifer [J]. Environmental Science & Technology.1993,27 (4):667-676.
    McDowell R, Sharpley A, Brookes P, Poulton P. Relationship between soil test phosphorus and phosphorus release to solution[J]. Soil Science.2001,166(2): 137-149.
    McDowell R, Sharpley A, Withwers P. Indicator to the movement of phosphorus from soil to subsurface flow [J]. Journal of Environmental Quality.2002,31:217-227.
    McDowell RW, Scott JT, Stewart I, Condron LM. Influence of aggregate size on phosphorus changes in a soil cultivated intermittently:analysis by 31P nuclear magnetic resonance[J]. Biology and Fertility of Soils.2007,43:409-41.
    McDowell RW, Scott JT, Stewart I. Condron LM. Influence of aggregate size on phosphorus changes in a soil cultivated intermittently:analysis by 31P nuclear magnetic resonance [J]. Biology and Fertility of Soils.2007,43(4):409-415.
    McDowell RW, Sharpley AN, Withers P. Indicator to predict the movement of phosphorus from soil to subsurface flow[J]. Environmental Science & Technology. 2002,36:1505-1509.
    McDowell RW, Sharpley AN. Approximating phosphorus release from soils to surface runoff and subsurface drainage[J]. Journal of Environmental Quality.2001,30: 508-520.
    McDowell-Boyer LM, Hunt JR, Sitar N. Particle transport through porous media[J]. Water Resources Research.1986,22:1901-1921.
    Mishurov M, Yakirevich A, Weisbrod N. Colloid transport in a heterogeneous partially saturated sand column[J]. Environmental Science & Technology.2008,42: 1066-1071.
    Moreira CS. Nickel adsorption in two Oxisols and an Alfisol as affected by pH, nature of the electrolyte, and ionic strength of soil solution[J]. Journal of Soils and Sediments. 2008,8:442-451.
    Motoshita, M., T. Komatsu, P. Moldup, L.W. de Jonge, N. Ozaki and T. Fukushima. Soil constituent facilitated transport of phosphorus from a high P surface soil[J]. Soils Found.2003,43:105-114.
    Murphy J, Riley JR. A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta.1962,27:31-36.
    Nair VD, Portier KM, Gractz DA, Walter ML. An environmental threshold for degree of phosphorus saturation in sandy soils[J]. Journal of Environmental Quality.2004,33: 107-113.
    Nelson N, Parsons JE, Mikkelsen R. Field-scale evaluation of phosphorus leaching in acid sandy soils receiving swine waste [J]. Journal of Environmental Quality.2005, 34:2024-2035.
    Neri U, Diana G, Indiati R. Change point in phosphorus release from variously managed soils with contrasting properties[J]. Communications in soil science and plant analysis.2005,36:15-16.
    Novak J M, Watts D W, Hunt P G, Stone K C. Phosphorus movement through a coastal plain soil after a decade[J]. Journal of Environmental Quality.2000,29: 1310-1315.
    Nwoke OC, Vanlauwe B, Diels J, Sanginga N, Osonubi O, Merckx R. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils[J]. Agriculture Ecosystems & Environment.2003, 100(2):285-294.
    Ohno T, Crannell BS. Green and animal manure-derived dissolved organic matter effects on phosphorus sorption[J]. Journal of Environmental Quality.1996,25: 1137-1143.
    Olsen SR, Sommers LE. Phosphorus. In Methods of soil analysis, Page, A.L.; Miller, R.H.; Keeney, D.R., (Eds.), American Soc. of Agronomy, Madison, Wisconsin, USA. 1982:403-427.
    Page T, Haygarth PM, Beven KJ, Joynes A, Butler T, Keeler C, Freer J, Owens PN, Wood GA. Spatial variability of soil phosphorus in relation to the topographic index and critical source areas:Sampling for assessing risk to water quality[J]. Journal of Environmental Quality.2005,34:2263-2277.
    Pautler MC, Sims JT. Relationships between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware soils[J]. Soil Science Society of America Journal.2000,64:765-773.
    Pelley J. Neglected forms of phosphorus play important role[J]. Environmental Science & Technology.2004,38(20):383-384.
    Poulsen HD. Phosphorus utilization and excretion in pig production [J]. Journal of Environmental Quality.2000,29(1):24-27.
    Preedy N, McTiernan K, Matthews R, Heathwaite L, Haygarth P. Rapid incidental phosphorus transfers from grassland[J]. Journal of Environmental Quality.2001,30: 2105-2112.
    Rousseau M, Pietro LD, Angulo-Jaramillo R, Tessier D, Cabibel B. Preferential Transport of soil colloidal particles:physicochemical effects on particle mobilization[J]. Vadose Zone Journal.2004,3(1):247-261.
    Roy SB, Dzombak DA. Chemical factors influencing colloid-facilited transport of contaminants on porous media[J]. Environmental Science & Technology.1997,37: 656-664.
    Ruan HD,Gilkes R.I. Phosphorus Accumulation in Farm Ponds and Dams in Southwestern Australia[J]. Journal of Environmental Quality.2000,29:1875-1881.
    Rub(?)k GH, de Jonge LW, Heckrath G, Schelde K. Phosphorus leaching from undisturbed soil columns amended with cattle, pig or mink manure. Poster presented at the workshop Colloids and Colloid-Facilitated Transport of Contaminants in Soils and Sediments, Research Centre Foulum Tjele, Denmark.2002.
    Ryan J N, Gschwend PM. Effects of ionic strength and flow rate on colloid release: relating kinetics to intersurface potential energy[J]. Journal of Colloid and Interface Science.1994,164:21-34.
    Ryan JN, Gschwend PM. Effect of solution chemistry on clay colloid release from an iron oxide-coated aquifer sand[J]. Environmental Science and Technology.1994,28: 1717-1726.
    Ryan JN, Elimelech M. Colloid mobilization and transport in groundwater [J]. Colloid and Surfaces, Physicochemical and Engineering Aspects.1996,107:1-56.
    Schelde K, de Jonge LW, Kjaergaard C, Laegdsmand M, Rubaek GH. Effects of Manure Application and Plowing on Transport of Colloids and Phosphorus to Tile Drains[J]. Vadose Zone Journal.2006,5:445-458.
    Schelde K, Moldrup P, Jacobsen OH, de Jonge H, de Jonge LW, Komatsu T. Diffusion-Limited Mobilization and Transport of Natural Colloids in Macroporous Soil[J]. Vadose Zone Journal.2002,1:125-136.
    Schoumans OF, Groenendijk P. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands[J]. Journal of Environmental Quality.2000,29:111-116.
    Schouwmans OW, Chardon WJ. Risk assessment methodologies for predicting phosphorus losses[J]. Journal of Plant Nutrition and Soil Science.2003,166:403-409.
    Schroeder PD, Radcliffe DE, Cabrera ML, Belew CD. Relationship between soil test phosphorus and phosphorus in runoff:Effects of soil series variability[J]. Journal of Environmental Quality.2004,33(4):1452-1463.
    Seta AK, Karathanasis AD. Stability and transportability of water dispersible soil colloids[J]. Soil Science Society of America Journal.1997,61(2):604-611.
    Seta AK, Karathanasis AD. Water dispersible colloids and factors influencing their dispersibility from soil aggregates [J]. Geoderma.1996,74:255-266.
    Shand CA, Smith S, Edwards AC, Fraser AR. Distribution of phosphorus in particulate colloidal and molecular-sized fractions of soil solution[J]. Water research. 2000,34:1278-1284.
    Shani C, Weisbrod N, Yakirevich A. Colloid transport through saturated sand columns: influence of physical and chemical surface properties on deposition[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,316:142-150.
    Sharpley A N, Moyer B. Phosphorus form in manure and compost and their release during simulated rainfall[J]. Journal of Environmental Quality.2000,29:1462-1469.
    Sharpley AN, Chapra SC, Wedepohl R. Managing Agriculture Phosphorus Protection of Surface waters:Issues and Options[J]. Journal of Environmental Quality.1994,23: 437-451.
    Sharpley AN, Rekolainen S. Phosphorus in agriculture and its environmental implications [C]//Tunney, H., Carton, O.T., Brookes, P.C., Johnston, A.E. Phosphorus Loss from Soil to Water. Cambridge, UK:CAB Int. Press.1997:1-54.
    Sharpley, AN, Menzel RG. The impact of soil and fertilizer phosphorus on the environment[J]. Advances in Agronomy.1987,41:297-324.
    Shaw PJ, Jones RI, Haan HD. The influence of humic substances on the molecular weight distribution of phosphate and iron in epilimnetic lake waters[J]. Freshwater Biology.2000,45:383-393.
    Siddique MT, Robinson JS, Alloway BJ. Phosphorus reactions and leaching potential in soils amended with sewage sludge[J]. Journal of Environmental Quality.2000,29: 1931-1938.
    Siemens J, Ilg K, Lang F, Kaupcnjohann M. Adsorption controls mobilization of colloids and leaching of dissolved phosphorus[J]. European Journal of Soil Science. 2004,55:253-263.
    Siemens J, Ilg K, Pagel H, Kaupenjohann M. Is Colloid-Facilitated Phosphorus Leaching Triggered by Phosphorus Accumulation in Sandy Soils? [J]. Journal of Environmental Quality.2008,37:2100-2107.
    Simard RR, Beauchemin S, Haygarth PM. Potential for preferential pathways of phosphorus transport[J]. Journal of Environmental Quality.2000,29:97-105.
    Sims JT, Sharpley AN. Phosphorus:Agriculture and the environment. ASA, CSSA, and SSSA, Madison, WI.2005.
    Sinaj S, Stamm C, Toor GS, Contron LM, Hendry T, Di HJ, Cameron KC, Frossard E. Phosphorus exchangeability and leaching losses from two grassland soils[J]. Journal of Environmental Quality.2002,31:319-330.
    Slowey AJ, Johnson SB, Rytuba JJ, Brown GE. Role of organic acids in promoting colloidal transport of mercury from mine tailings[J]. Environmental Science and Technology.2005,39:7869-7874.
    Stamm CH, Fluhler H, Gachter R, Leuenberger J, Wunderli H. Preferential transport of phosphorus in drained grassland soils[J]. Journal of Environmental Quality.1998, 27:515-522.
    Stutter MI, Lumsdon DG, Thoss V. Physico-chemical and biological controls on dissolved organic matter in peat aggregate columns[J]. European Journal of Soil Science.2007,58:646-657.
    Swartz CH, Gschwend PM. Mechanisms controlling release of colloids to groundwater in a Southeastern Coastal Plain aquifer sand[J]. Environmental Science and Technology.1998,32:1779-1785.
    Tang JC, Maie N, Tada Y. Characterization of the maturing process of cattle manure compost[J]. Process Biochemistry.2006,42:380-389.
    Taylor MD. Determination of total phosphorus in soil using simple Kjeldahl digestion[J]. Communications in Soil Science and Plant Analysis.2000,31: 2665-2670.
    Tessier A, Carnigan R, Belzile N. Reactions of trace metals near the sediment-water interface in lakes, in Transport and Transformations of Contaminants Near the Sediment-Water Interface, DePinto J V, Lick V and Paul J F(eds.), (Lewis Publishers.Chelsea, MI, USA).1999:129-152.
    Toor GS, Condron LM, Cade-Menun BJ, Di HJ, Cameron KC. Preferential phosphorus leaching from an irrigated grassland soil[J]. European Journal of Soil Science.2005,56:155-167.
    Toor GS, Condron LM, Di HJ, Cameron KC, Cade-Menun BJ. Characterization of organic phosphorus in leachate from a grassland soil[J]. Soil Biology & Biochemistry. 2003,35(10):1317-1323.
    Tosco T, Tiraferri A, Sethi R. Ionic strength dependent transport of microparticles in saturated porous media:modeling mobilization and immobilization phenomena under transient chemical conditions[J]. Environmental Science & Technology.2009,43 (12): 4425-4431.
    Turner BL, Kay MA, Westermann DT. Colloidal phosphorus in surface runoff and water extracts from semiarid soils of the western United States[J]. Journal of Environmental Quality.2004,33(4):1464-72.
    Turner BL, Mahieu N, Condron LM. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts[J]. Soil Science Society of America Journal.2003,67:497-510.
    Ulen B. Size and settling velocities of phosphorus-containing particles in water from agricultural drains [J]. Water Air and Soil Pollution.2004,157:331-343.
    Unc A, Goss MJ. Transport of bacteria from manure and protection of water resources[J]. Applied Soil Ecology.2004,25(1):1-18.
    Uusi Kamppa J, Braskerud B, Jansson H. Buffer zones and constructed wet-lands as filters agriculture phosphorus[J]. Journal of Environmental Quality.2000,29(1): 151-158.
    Uusitalo R, Turtola E, Kauppila T, Lilja T. Particulate phosphorus and sediment in surface runoff and drainflow from clayey soils[J]. Journal of Environmental Quality. 2001.30:589-595.
    Vadas PA, Kleinman PJA, Sharpley AN, Turner BL. Relating soil phosphorus to dissolved phosphorus in runoff:A single extraction coefficient for water quality modeling [J]. Journal of Environmental Quality.2005,34:572-580.
    Van der Zee SEATM, Fokkink LGJ, van Riemsdijk WH. A new technique for assessment of reversibly adsorbed phosphate [J]. Soil Science Society of America Journal.1987,51:599-604.
    Van der Zee SEATM, Nederlof MM, van Riemsdijk WH, Haan FAM. Spatial variability of phosphate adsorption parameters [J]. Journal of Environmental Quality. 1988,17 (4):682-688.
    Varinderpal-Singh, Dhillon NS, Brar BS. Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils[J]. Nutrient Cycling in Agroecosystems.2006,75:67-78.
    Vighi M, Chiaudani G.Eutrophication in Europe, the role of agricultural activities. In: Hodgson E. Revrews of Eertinamevtal Toxicology. Amsterdam:Elsevier.1987: 213-257.
    Volf CA, Ontkean GR, Bennett DR, Chanasyk DS, Miller JJ. Phosphorus Losses in Simulated Rainfall Runoff from Manured Soils of Alberta[J]. Journal of Environmental Quality.2007,36(3):730-741.
    Von Wandruszka R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility[J]. Geochemical Transactions.2006,7:6.
    Whalen JK, Chang C. Phosphorus accumulation in cultivated soils from long-term annual applications of cattle feedlot manure[J]. Journal of Environmental Quality.2001,30(1):229-237.
    Withers P J A, Davidson I A, Foy R H. Prospects for controlling nonpoint phosphorus loss to water:A UK perspective[J]. Journal of Environmental Quality.2000,29: 167-175.
    Worsfold PJ, McKelvie ID, Fitzsimons MF, Monbet P, Stiles DA, Tappin AD. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems:A Review[J]. Analytica Chimica Acta.2008,624: 37-58.
    Zhang GL, Burghardt W, Yang JL. Chemical criteria to assess risk of phosphorus leaching from urban soils[J]. Pedosphere.2005,15:12-11.
    Zhang MK, He ZL, Calvert DV, Stoffella PJ, Yang XE, Li YC. Phosphorus and heavy metal attachment and release in sandy soil aggregate fractions[J]. Soil Science Society of America Journal.2003,67:1158-1167.
    Zhang MK, He ZL, Calvert DV, Stoffella PJ. Colloidal iron oxide transport in sandy soil induced by excessive phosphorus application[J]. Soil Science.2003,168: 617-626.
    Zhang ZJ, Zhang JY, He R, Wang ZD, Zhu YM. Phosphorus interception in floodwater of paddy field during the rice-growing season in Lake Taihu Basin[J]. Environmental Pollution.2007,145:425-433.
    俞震豫主编.浙江土壤[M].杭州:浙江科学技术出版社.1994,399-418.
    兰中东,王周琼.不同处理的灰漠土对磷吸附与解吸的影响[J].干旱区研究.2002,19(3):49-51.
    刘庆玲,徐绍辉,刘建立.离子强度和pH对高岭石胶体运移影响的实验研究[J].土壤学报.2007,44(3):425-429.
    刘庆玲,徐绍辉.地下环境中胶体促使下的污染物运移研究进展[J].土壤.2005,37(2):129-135.
    刘建玲,廖文华,张作新,张海涛,王新军,孟娜.磷肥和有机肥的产量效应与土壤积累磷的环境风险评价[J].中国农业科学.2007,40(5):959-966.
    刘建玲.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报.2000,6(4):409-416.
    吕家珑,Fortune S, Brookes PC.土壤磷淋溶状况及其Olsen磷“突变点”研究[J].农业环境科学学报.2003,22(2):142-146.
    吕家珑,张一平,苏仕平.应用吸附等温线斜率推求磷素运移参数初探[J].土壤通报.1998,29(5):214-217.
    张乃明,余扬,洪波,陈建军.滇池流域农田土壤径流磷污染负荷影响因素[J].环境科学.2003,24(03):155-157.
    张兴昌.侵蚀条件下土壤氮素流失对土壤和环境的影响[J].土壤与环境.2000, 9(3):249-252.
    张林,吴宁,吴彦,罗鹏,刘琳,陈文年.土壤磷素形态及其分级方法研究进展[J].应用生态学报.2009,20(7):1775-1782.
    张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J].南京林业大学学报(自然科学版).2004,28(05):6-10.
    张维理,武淑霞,冀宏杰,Kolbe H中国农业面源污染形势估计及控制对策1.21世纪初期中国农业面源污染的形势估计[J].中国农业科学.2004,37:50-50.
    张翠荣,吕家珑,潘杨,姜萍,耿瑞霖.冬麦不同施磷水平下土壤磷素淋溶试验[J].干旱地区农业研究.2007,25(3):105-109.
    彭林,彭祥林.黄土地区土壤中磷的含量分布,形态转化与磷肥合理施用[J].土壤学报,1980,26(4):344-352.
    曹志洪,林先贵,杨林章,胡正义,董元华,尹睿.论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征[J].土壤学报.2005,42:799-804.
    李天安,王玉,刘芳.不同剖面层次土壤磷素运移研究[J].土壤与环境.2002,11(3):290-293.
    李学平,石孝均.紫色水稻土磷素动态特征及其环境影响研究[J].环境科学,2008,29(02):434-439.
    李彦文.恶唑菌酮的土壤薄层层析迁移特性[J].环境科学与技术.2006,29(2):8-11.
    李瑞玲,张永春,刘庄,曾远,李维新,张洪玲.太湖缓坡丘陵地区雨强对农业非点源污染物随地表径流迁移的影响[J].环境科学,2010,31(05):1220-1226.
    李艾芬,周翠,章明奎.利用磷饱和度指标评价水稻土磷素积累[J].安徽农学通报.2008,14(20):54-55.
    李贵宝,尹澄清,周怀东.中国“三湖”的水环境问题和防治对策与管理[J].水问题论坛.2001,(3):36-39.
    杨学云,李生秀,Brooke PC.灌溉与旱作条件下长期施肥(土娄)土剖面磷的分布和移动[J].植物营养与肥料学报.2004,10(3):250-254.
    梁成华.日光温室菜园土的磷素形态及吸附和解吸特征[J].植物营养与肥料学报.1998,4(4):345-351.
    梁新强,陈英旭,李华,田光明,俞巧钢.雨强及施肥降雨间隔对油菜田氮素径 流流失的影响[J].水土保持学报.2006,20(6):14-17.
    梁涛,王浩,章申,章秀梅,于兴修.西苕溪流域不同土地类型下磷素随暴雨径流的迁移特征[J].环境科学.2003,24(2):35-40.
    梁涛,王红萍,张秀梅,袁婧薇,章申.官厅水库周边不同土地利用方式下氮、磷非点源污染模拟研究[J].环境科学学报.2005,25(4):483-490.
    沈其荣.土壤肥料学通论[M].北京,高等教育出版社,2007.
    温林钦,赵牧秋,牛明芬,陈欣,鲁彩艳.施磷对不同质地土壤Olsen P和CaCl_2-P动态变化的影响[J].生态学杂志,2009,28(5):872-878.
    焦平金,许迪,王少丽.汛期不同作物种植模式下地表径流氮磷流失研究[J].水土保持学报,2009,23(2):15-20.
    王圣瑞,金相灿,庞燕.不同营养水平沉积物对磷酸盐在不同pH下的等温吸附特征研究[J].环境科学研究.2005,18(1):53-57.
    王新民,侯彦林,杨信廷,李见云.农学与环境学上磷素测定方法在石灰性潮土中的应用比较[J].2004,23(5):1030-1033
    王百群.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土流失学报.1999,5(2):18-22.
    王道涵,梁成华.农业磷素流失途径及控制方法研究进展[J].土壤与环境.2002,11(2):183-188.
    盛海君,夏小燕,杨丽琴,赵海涛,栾书荣,封克.施磷对土壤速效磷含量及径流磷组成的影响[J].生态学报.2004,24:2837-2840.
    穆环珍,郑涛,黄衍初,张春萍.降雨入渗与地表径流污染减量模拟试验研究[J].环境污染治理技术与设备.2006,7(5):27-30.
    章明奎,周翠,方利平.蔬菜地土壤磷饱和度及其对磷释放和水质的影响[J].植物营养与肥料学报.2006,12(4):544-548.
    章明奎,周翠,方利平.水稻土磷环境敏感临界值的研究[J].农业环境科学学报.2006,25(1):170-174.
    章明奎.农业系统中氮磷的最佳管理实践[M].北京:中国农业出版社.2005,185-204.
    罗安程,章永松.有机肥及其施用方法对红壤磷吸附和解吸特征的影响[J].热带亚热带土壤科学.1995,4(2):73-78.
    耿玉辉,卢文喜,姜亦梅.有机培肥土壤对优势流中养分淋失的影响[J].农业环境科学学报.2007,26(4):1454-1458.
    胡俊栋,沈亚婷,王学军.土壤胶体在不同饱和度土壤介质中的释放与淋溶行为研究[J].农业环境科学学报.2009,28(9):1829-1836.
    胡俊栋,沈亚婷,王学军.离子强度、pH对土壤胶体释放、分配沉积行为的影响[J].生态环境学报.2009,18(2):629-637.
    胡博,王冬梅.农地非点源磷污染的优先流路径研究[J].亚热带水土保持.2007,19(2):16-19.
    董莉,于凤霞,罗宏伟.有机肥料的作用[J].吉林农业.2004,8:22-23.
    谢学俭,冉炜,沈其荣.淹水条件下水稻田中磷的淋溶研究[J].土壤.2003,35(6):506-509.
    贺缠生,傅泊杰,陈利顶.非点源污染的管理及控制[J].环境科学.1998,19(5):87-91.
    贾晓玉,李海明,王博,吴锦兰.pH对滨海含水介质胶体迁移-沉积的影响[J].环境与科学技术.2009,32(11):37-39.
    赵庆雷,王凯荣,谢小立.长期有机物循环对红壤稻田土壤磷吸附和解吸特性的影响[J].中国农业科学.2009,42(1):355-362.
    邓时琴,徐梦熊.中国土壤颗粒研究Ⅰ.太湖地区白土型水稻土中白土层土壤及其各级颗粒的理化特性[J].土壤学报.1982,19(1):22-34.
    邓时琴,徐梦熊.中国土壤颗粒研究Ⅱ.太湖地区黄泥土型水稻土及其各级颗粒的理化特性[J].土壤学报.1986,23(1):57-69.
    邓时琴,徐梦熊.中国土壤颗粒研究Ⅲ.赣中丘陵旱地红壤及其各级颗粒的理化特性[J].土壤学报.1990,27(4):368-376.
    邵兴华,张建忠,洪森荣,林国卫.土壤中影响磷吸附因素研究进展[J].安徽农业科学.2007,35(12):3609-3611
    郭胜利,党廷辉,刘守赞,郝明德.磷素吸附特性演变及其与土壤磷形态、土壤有机碳含量的关系[J].植物营养与肥料学报.2005,11:33-39.
    钟晓英,赵小蓉,鲍华军,李浩浩,李贵桐,林启美.我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J].生态学报.2004,24(10):2275-2280.
    陈志良,程炯,刘平.暴雨径流对流域不同土地利用土壤氮磷流失的影响[J].水土 保持学报,2008,22(5):30-33.
    隋红建,杨邦杰,张家炳.入渗条件下土壤中磷离子迁移的数值模拟[J].环境科学学报.1996,6(3):302-308.
    马爱军.水溶性有机物和土壤胶体对草萘胺环境行为的影响[D].南京农业大学.2005年.
    高超,张桃林,吴蔚东.农田土壤中的磷向水体释放的风险评价[J].环境科学学报.2001,21:344-348.
    高超,朱继业,朱建国,宝川靖和,王登峰,周娟娟,高翔,窦贻俭.不同土地利用方式下
    的地表径流磷输出及其季节性分布特征[J]环境科学学报.2005,25(11):1543-1549.
    鲁如坤.植物营养与施肥原理[M].北京:农业出版社.2000:201-202.
    鲍士旦.土壤农化分析(第三版)[M].中国农业出版社.1981.
    黄东风,王果,陈超.农业面源污染研究概况及发展趋势[J].中国农村小康科技.2006(11):39-45.
    黄丽.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报.1998,4(1):8-13.
    黄满湘,周成虎,章申,张秀梅.北京官厅水库流域农田地表径流生物可利用磷流失规律[J].湖泊科学.2003,15(02):118-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700