长江口邻近海域典型站位的沉积记录及其对富营养化演变的指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沿海经济的快速发展极大地改变了海岸带的生态环境甚至生态系统,导致近海海域严重富营养化。富营养化的加剧为赤潮的发生提供了物质条件,在受人类活动强烈干扰的地区,赤潮发生的频率和强度都在快速增加。其中长江口及其邻近海域已成为我国富营养化最严重的地区,极大影响着该海域的生态环境。因此,研究该海域富营养化和赤潮历史的演变有助于了解其形成机制和发展态势,有助于了解人类活动在赤潮和富营养化关系中的作用。本文选取长江口邻近海域赤潮高发区典型站位的两根柱状沉积物为研究对象,在年代测定的基础上,综合地质动力参数、地球化学参数以及沉积硅藻参数,研究了生源要素(C、N、Si)、沉积硅藻群落组成及其随年代的变化趋势,结合长江口及其邻近海域水体环境的历史调查资料,推测了富营养化在上个世纪以来的发展趋势,讨论了人类活动对长江口及其邻近海域的影响以及与富营养化演变的关系。本文研究的主要结论如下:
     两根柱状沉积物~(210)Pb测年结果表明,位于东海泥质区的ZC13和ZA3柱状沉积物的沉积年代分别为54年(1955~2009)和139年(1871~2010),ZC13柱状沉积物的平均沉积速率为0.89cm/yr;ZA3柱状沉积物的沉积速率为:0~25cm为0.71cm/yr,26~115cm为1.78cm/yr。
     两柱状沉积物高分辨率粒度分析结果显示:ZC13柱状沉积物以砂质粉砂为主,粒径相对较粗,粘土含量相对较少,粒度组成和粒度参数在前10cm变化较频繁;ZA3柱状沉积物由顶部至100cm粒度组分及相关参数变化稳定,粘土含量高,岩性上表现为较细的粘土质粉砂,100cm以后粘土含量明显降低,砂质组分增高,岩性总体上表现为粉砂质砂,粒度参数变化较为频繁,故选择该柱状沉积物0~100cm进行生源要素以及沉积硅藻分析。两根柱状沉积物的岩性均表明其适合生源要素和沉积硅藻的埋藏,有助于从中提取信息。
     分析测定了两根柱状沉积物生源要素:总有机碳(TOC)、总氮(TN)以及生物硅(BSi)的含量及其变化趋势。结果表明:1970年以前:TOC、TN以及BSi含量在整个柱状沉积物剖面属于较低的水平且变化稳定,说明在这一时期,我国工业化尚未兴起,人类活动对东海影响较少,此海域初级生产力水平处于较低的水平。20世纪70年代初至90年代中期:TOC、TN、BSi含量呈显著上升趋势,显示了上层水体中初级生产力的增高,说明在这一时期,人类活动的干扰增加了陆源物质和营养元素的输入,从而导致长江口及其邻近海域富营养化趋势的增强,造成赤潮爆发的频率和规模越来越大。20世纪90年代中期至今:TOC、TN以及BSi含量呈波动上升趋势。N、P的增加会导致营养盐结构的转变,有利于除硅藻之外的其他藻类的生长,最终导致三个参数均在此时期呈现波动状态。而甲藻赤潮在此时期于东海的大规模爆发恰好证明了这一结论。
     分析研究了两柱状沉积物中沉积硅藻群落结构的演替特征、方向及其对环境的指示意义。结果表明:两柱状沉积物中硅藻的细胞丰度、生态特征参数(多样性指数、物种丰富度)、以及优势种组成发生了明显演替。硅藻群落的组合特征不同时期之间存在明显差异,硅藻细胞丰度自20世纪70年代开始增加,90年代中期后开始加速增加,这种数量的变动主要是由上层水体沉积的浮游硅藻引起的,浮游硅藻的细胞丰度在20世纪70年代中期以后呈现出明显的上升趋势,90年代中期后上升速度加快,而底栖硅藻的细胞丰度波动不明显。与此同时,赤潮藻的细胞丰度也开始增加。相关时期文献资料表明,该时期水体中由于营养盐的持续输入,导致富营养水平加剧。2000年以后,硅藻的细胞丰度及生态特征参数呈现波动上升状态,与此时期生源要素的波动吻合,赤潮藻的含量亦随硅藻丰度的变化而变化。硅藻丰度总体的增高揭示了水体中营养盐水平的增高,这与相关文献中该海区进行调查所获得营养盐输入的增高的事实相一致。而这种数据随年代的波动也从侧面为一定时期的硅限制提供了依据,反映了水体中富营养水平的进一步增高导致浮游植物群落结构的改变。
     上述研究表明:生源要素(C、N、Si)的含量变化以及沉积硅藻群落对上世纪以来长江口邻近海域富营养化演变具有指示意义,且得出一致的结论:即长江口邻近海域20世纪70年代富营养化开始出现,90年代中期开始加剧,从而导致越来越多大规模赤潮的爆发。
The rapid development of economy in coastal cities in China has greatly changedthe environment and ecological system and led to serious eutrophication in theestuaries and coasts. As a result, the occurrence and intensity of algae blooms haveincreased due to the high loadings of nutrients brought by eutrophication especially inthe areas by more anthropogenic effects. The Changjiang (Yangtze) River and itsadjacent East China Sea (ECS) is the most serious eutrophied space in China. Thehistorical records which embedded in the sediments can be used to provide keyinformation on the timing and magnitude of ecological changes in estuaries andcoastal and help us to understand the mechanism and develop trends in eutrophicationand red tide. Hence, in this study, two sediment cores were selected from sitesaffected by eutrophication and being the high frequency of red tides in the Changjiang(Yangtze) River estuary and its adjacent ECS. On the basis of core chronologies, weused multiproxy approach both in biological and geochemical analyses revealedchanges in diatom assemblages, total organic carbon (TOC), total nitrogen (TN) andbiogenic silica (BSi), as well as historical monitoring data. We gave an indication ofnutrient in status and trends in Changjiang River estuary and its adjacent East ChinaSea and we also discussed the relationship between the anthropogenic activities anddevelop trends in eutrophication. The main study results are follows:
     The~(210)Pb dating of the core ZC13showed that the mean sedimentation rate was0.89cm/yr, in corresponding to the sedimentation duration of54years (1955–2009). The mean sedimentation rate of core ZA3was0.71cm/yr in the upper25cm and1.78cm/yr in the rest of the core, in corresponding to the sedimentation duration of139years (1871–2010).
     The main part of the sediments of core ZC13belong to the sandy silt. Inlithology, the core is of coarse grain and have fluctuations in the upper10cm. Themain part of the sediments of core ZA3belong to the clayey silt and the trends ofcomponent and gain size parameters stay stable in the upper100cm. The core is ofcoarse sand during the100cm to the bottom in lithology and we selected the upper100cm for geochemistry and diatom analyses. The sandy silt and clayey silt aresuitable for geochemical and diatom information preservation.
     The total organic carbon (TOC), total nitrogen (TN) and biogenic silica (BSi)were determined in the two cores. The results showed the trends in profiles of TOC,TN and BSi were relative low and stable before the1970s, suggesting a low andstable primary production in the water column compared to recent years. The profiesof the three proxies were in increasing trends during the1970to the mid-1990s,indicating increasing nutrient loads and more anthropogenic influence on the ECSduring this period. There were fluctuations of the three proxies from the mid-1990s tothe present, but with a rising trend overall, indicating the surplus nutrients loadings inthe ECS and there were remarkable changes in structure of nutrients which was slightsilica limitation and led to more dinoflagellates blooms.
     The succession of sediment diatom in the two cores and significance onenvironmental change were analysed. The results indicated that the diatom cellabundance, diversity, species richness and dominant species occurred an markedsuccession in the last century. The profiles of diatom cell abundance showed increasetendency since1970s and accelerated since min-1990s and this change was driven byincrease of the planktonic diatoms. Simultaneously, the content of red tide specieswere in the increase trend since1970s, indicating the serious eutrophication occurred.The profiles of diatom cell abundance, diversity and species richness were influctuations since2000, coincides with the trends of geochemical indexes in thisperiod and support the interpretation of these indexes.
     Using the multiproxy approach both in geochemical and diatom, we have shownthe history of eutrophication of two sites in the Changjiang River estuary and itsadjacent ECS. Both sites were not eutrophic in the past and have been under eutrophicconditions since the1970s and the eutrophication has accelerated since the1990s,linked with anthropogenic activities.
引文
[1]卢继武.长江口鱼类群聚结构、丰盛度及其季节变化的研究[J].海洋科学集刊,1992,39:303-340.
    [2]陈吉余,杨启伦,赵传絪.上海市海岸带和海涂资源综合调查报告[M].上海:上海科学技术出版社,1988,146-150.
    [3]陈家宽.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社,2003,165-190.
    [4]朱建荣,沈焕庭.长江冲淡水扩展机制[M].上海:华东师范大学出版社,1997,10-177.
    [5]苏纪兰.中国近海的环流动力机制研究[J].海洋学报(中文版),2001,(04):1-6.
    [6]赵保仁,任广法,曹德明等.长江口上升流海区的生态环境特征[J].海洋与湖沼,2001,(03):327-333.
    [7]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨[J].海洋与湖沼,1963,(03):183-206.
    [8]俞志明,沈志良.长江口水域富营养化[M].北京:科学出版社,2011,1-544.
    [9]毛汉礼,任允武,万国铭.应用t-s关系定量地分析浅海水团的初步研究[J].海洋与湖沼,1964,(01):1-22.
    [10]曹欣中.浙江近海上升流季过程的初步研究[J].水产学报,1986,(01):51-69.
    [11]许建平.浙江近海上升流区冬季水文结构的初步分析[J].东海海洋,1986,(03):18-24.
    [12]陈沈良,谷国传,胡方西.长江口外羽状锋的屏障效应及其对水下三角洲塑造的影响[J].海洋科学,2001,(05):55-56.
    [13]周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探[J].应用生态学报,2003,(07):1031-1038.
    [14]Milliman J. D., Meade R. H. World-wide delivery of river sediment to theoceans [J]. Journal of Geology,1983,91(1):1-21.
    [15]金翔龙.东海海洋地质[M].北京:科学出版社,1992,10-524.
    [16]全为民,沈新强,韩金娣等.长江口及邻近水域富营养化现状及变化趋势的评价与分析[J].海洋环境科学,2005,(03):13-16.
    [17]国家海洋局.[J].中国海洋环境状况公报,1990-2010.
    [18]Marshall H. G., Lane M. F., Nesius K. K. Long-term phytoplankton trends andrelated water quality trends in the lower chesapeake bay, virginia, USA [J].Environmental Monitoring and Assessment,2003,81(1-3):349-360.
    [19]Conley D. J., Schelske C. L., Stoermer E. F. Modification of the biogeochemicalcycle of silica with eutrophication [J]. Marine Ecology-Progress Series,1993,101(1-2):179-192.
    [20]王金辉.长江口邻近水域的赤潮生物[J].海洋环境科学,2002,(02):37-41.
    [21]Zhu Zhuo-Yi, Ng Wai-Man, Liu Su-Mei, etc. Estuarine phytoplankton dynamicsand shift of limiting factors: A study in the changjiang (yangtze river) estuary andadjacent area [J]. Estuarine Coastal and Shelf Science,2009,84(3):393-401.
    [22]王海鹏,张培辉,陈峰等.闽江口水下三角洲沉积特征及沉积环境ⅰ.现代沉积特征及沉积环境[J].台湾海峡,2000,(01):113-118.
    [23]Lario J., Spencer C., Plater A. J., etc. Particle size characterisation of holoceneback-barrier sequences from north atlantic coasts (sw spain and se england)[J].Geomorphology,2002,42(1-2):25-42.
    [24]Folk Robert L., Ward William C. Brazos river bar: A study in the significance ofgrain size parameters [J]. Journal of Sedimentary Research,1957,27:3-26.
    [25]Spencer Derek W. The interpretation of grain size distribution curves of clasticsediments [J]. Journal of Sedimentary Research,19,33(1):180-190.
    [26]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,(01):67-69.
    [27]向荣,杨作升,郭志刚等.济州岛西南泥质区粒度组分变化的古环境应用[J].地球科学-中国地质大学学报,2005,(05):654-660.
    [28]肖尚斌,李安春,蒋富清等.近2ka闽浙沿岸泥质沉积物物源分析[J].沉积学报,2005,(02):67-69.
    [29]Prins M. A., Weltje G. J. End member modeling of siliciclastic grain sizedistributions:The late quaternary record of eolian and fluvial sediment supp ly to thearabian sea and its paleclimatic significance. in Numerical experiments instratigraphy:Recent advances in stratigraphic and sedimentlogic computersimulations, Harbaugh J.,Watney L.,Rankey G.,Slinger land. R.,GoldsteinR.,Franseen E., Editors.1999, SEPM (Society for Sedimentary Geology) SpecialPublication.
    [30]高抒, Collins. Michael.沉积物粒径趋势与海洋沉积动力学[J].中国科学基金,1998,(04):241-246.
    [31]程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势[J].海洋与湖沼,2000,(06):604-615.
    [32]石学法,刘焱光,任红等.南黄海中部沉积物粒径趋势分析及搬运作用[J].科学通报,2002,(06):452-456.
    [33]赵一阳,鄢明才.冲绳海槽海底沉积物汞异常──现代海底热水效应的“指示剂”[J].地球化学,1994,(02):132-139.
    [34]杜德文,石学法,孟宪伟等.黄海沉积物地球化学的粒度效应[J].海洋科学进展,2003,(01):78-82.
    [35]王永红,沈焕庭.河口海岸环境沉积速率研究方法[J].海洋地质与第四纪地质,2002,(02):115-120.
    [36]陈进兴.利用~(210)Pb测定沉积速率和沉积物的年龄[J].海洋湖沼通报,1983,(03):7-11.
    [37]刘国贤,杨松林,周义华.用~(210)pb法测定长江口的沉积速率[J].海洋地质与第四纪地质,1984,(01):113-114.
    [38]肖玉仲,刘国贤,杜瑞芝等.江苏灌河口现代沉积速率的研究[J].海洋学报(中文版),1997,(05):91-96.
    [39]黄镇国,李平日,张仲英等.珠江三角洲的沉积速率[J].地理科学,1983,(01):6-10.
    [40]潘少明,施晓东, Smith. John N.海南岛三亚港现代沉积速率的研究[J].海洋与湖沼,1995,(02):132-137.
    [41]冯应俊,李炎.杭州湾近期环境演变与沉积速率[J].东海海洋,1993,(02):13-24.
    [42]陈丽蓉,申顺喜,徐文强等.中国海的碎屑矿物组合及其分布模式的探讨[J].沉积学报,1986,(03):87-96.
    [43]林振宏.冲绳海槽晚更新世以来环境演变的矿物-地球化学记录[J].海洋科学,2000,(10):361-368.
    [44]金秉福,林振宏,杨群慧等.沉积矿物学在陆缘海环境分析中的应用[J].海洋地质与第四纪地质,2002,(03):113-118.
    [45]Meyers P. A. Preservation of elemental and isotopic source identification ofsedimentary organic-matter [J]. Chemical Geology,1994,114(3-4):289-302.
    [46]吕晓霞,翟世奎,逄礴.长江口柱状沉积物中生源要素的地球化学特征[J].海洋环境科学,2008,(02):118-123.
    [47]Schelske C. L., Stoermer E. F. Eutrophication, silica depletion, and predictedchanges in algal quality in lake michigan [J]. Science,1971,173(3995):423-424.
    [48]Newberry T. L., Schelske C. L. Biogenic silica record in the sediments of littleround lake, ontarioi [J]. Hydrobiologia,1986,143:293-300.
    [49]Ragueneau O., Treguer P. Determination of biogenic silica in coastal waters-applicability and limits of the alkaline digestion method [J]. Marine Chemistry,1994,45(1-2):43-51.
    [50]Nelson D. M., Brzezinski M. A. Diatom growth and productivity in anoligotrophic midocean gyre: A3-yr record from the sargasso sea near bermuda [J].Limnology and Oceanography,1997,42(3):473-486.
    [51]叶曦雯,刘素美,赵颖翡等.东、黄海沉积物中生物硅的分布及其环境意义[J].中国环境科学,2004,(03):265-269.
    [52]Liu S. M., Zhang J., Li R. X. Ecological significance of biogenic silica in theeast china sea [J]. Marine Ecology-Progress Series,2005,290:15-26.
    [53]翁焕新,沈忠悦,袁明永,陈建裕,钟国林.硅藻遗骸的稳定性对硅藻土形成环境的指示[J].浙江大学学报(理学版),2000,(06):524-528.
    [54]贾国东,翦知湣,彭平安等.南海南部17962柱状样生物硅沉积记录及其古海洋意义[J].地球化学,2000,(03):263-296.
    [55]刘升发,石学法,刘焱光等.近2ka以来东海内陆架泥质区高分辨率的生物硅记录及其古生产力意义[J].沉积学报,2011,(02):321-327.
    [56]Hayes J. M. Factors controlling C-13contents of sedimentary organiccompounds principles and evidence [J]. Marine Geology,1993,113(1-2):111-125.
    [57]Oleary M. H. Carbon isotopes in photosynthesis [J]. Bioscience,1988,38(5):328-336.
    [58]Peters K. E., Sweeney R. E., Kaplan I. R. Correlation of carbon and nitrogenstable isotope ratios in sedimentary organic-matter [J]. Limnology andOceanography,1978,23(4):598-604.
    [59]Gearing J.N. The use of stable isotope ratios for tracing the near shore-offshoreexchange of organic matter. in Coastal off-shore ecosystem interactions, O. B.,Editor.1988, Springer-Verlarg: Berlin. p.69-101.
    [60]蔡德陵, F. C. Tan, Edmond. J. M.长江口区有机碳同位素地球化学[J].地球化学,1992,(03):305-312.
    [61]吴莹,张经,张再峰等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼,2002,(05):546-552.
    [62]Liu M., Hou L. J., Xu S. Y., etc. Organic carbon and nitrogen stable isotopes inthe intertidal sediments from the yangtze estuary, china [J]. Marine PollutionBulletin,2006,52(12):1625-1633.
    [63]Simoneit B. R. T. Biomarkers (molecular fossils) as geochemical indicators oflife. in Space life sciences: Search for signatures of life, and space flightenvironmental effects on the nervous system, Horneck G. LevasseurRegourd A. C.Rabin B. M. Slenzka K. B., Editor.2004. p.1255-1261.
    [64]Dembicki H., Meinschein W. G., Hattin D. E. Possible ecological andenvironmental significance of predominance of even-carbon number c20-c30normal-alkanes [J]. Geochimica Et Cosmochimica Acta,1976,40(2):203-208.
    [65]吴庆余,殷实,盛国英等.发现于浮游硅藻中的长链正烷烃[J].科学通报,1992,(24):2266-2269.
    [66]Hudson E. D., Parrish C. C., Helleur R. J. Biogeochemistry of sterols inplankton, settling particles and recent sediments in a cold ocean ecosystem (trinitybay, newfoundland)[J]. Marine Chemistry,2001,76(4):253-270.
    [67]Volkman J. K. A review of sterol markers for marine and terrigenousorganic-matter [J]. Organic Geochemistry,1986,9(2):83-99.
    [68]胡建芳,彭平安,麦碧娴等.珠江口不同沉积有机质的来源及相对含量[J].热带海洋学报,2005,(01):15-20.
    [69]鲁晓红,陈颖军,黄国培等.黄渤海表层沉积物中正构烷烃和甾醇的分布及来源研究[J].生态环境学报,2011,(Z1):1117-1122.
    [70]Jouse A. P., kozova O.G., Muhina V. V. Distribution of diatoms in the surfacelayer of sediment from the pacific ocean. in The micropaleontology of the oceans,Riedel W. R.,Funnell B. M., Editors.1971, Cambridge University Press: Cambridge.
    [71]Okeden F. On the deep diatomaceous deposits of the mud of milford haven adother localities [J]. Science,1855,3:25-30.
    [72]Gregory W. On the post-tertiary lacustrine sand containing diatomaceousexuviae from glenshira near inverary [J]. Science,1855,3:30-43.
    [73]胡仲衡,王开发.南黄海及其周边地区渐新世晚期、中新世孢粉组合及其地质意义[J].海洋科学进展,1985,(01):12-18.
    [74]王开发,蒋辉.黄海晚更新世以来的硅藻组合及其沉积环境[J].沉积学报,1987,(01):94-103.
    [75]王开发,蒋辉,冯文科.南海深海盆地硅藻组合的发现及其地质意义[J].海洋学报(中文版),1985,(05):590-597.
    [76]王开发,蒋辉,冯文科.南海北部表层沉积硅藻及其与环境关系探讨[J].热带海洋学报,1988,(03):19-26.
    [77]王开发,蒋辉,张玉兰,王永吉,徐家声.黄海表层沉积物中硅藻分布与环境关系探讨[J].海洋与湖沼,1985,(05):400-407.
    [78]王开发,张玉兰,蒋辉.中国东部海域更新世晚期的藻类、孢粉组合与古环境变迁[J].中国科学b辑,1987,(08):874-882.
    [79]王开发,张玉兰,蒋辉,孙煜华.东海陆架区更新世晚期沉积的化石藻类组合及其古生态环境分析[J].生态学报,1984,(03):1-7.
    [80]王开发,蒋辉,支崇远.东海表层沉积硅藻组合与环境关系研究[J].微体古生物学报,2001,(04):379-384.
    [81]王开发,郑玉龙,支崇远.东海南部陆缘(莆、泉段)全新世沉积硅藻[J].古生物学报,2002,(02):273-279.
    [82]王开发,支崇远,陶明华.东海陆缘(浙南段)晚第四纪硅藻的发现及古环境分析[J].微体古生物学报,2003,(04):350-357.
    [83]王开发,支崇远,陶明华.厦门附近潮滩表层沉积剖面硅藻组合研究[J].海洋通报,2003,(05):15-19.
    [84]王开发,支崇远,郑玉龙.东海陆缘(闽北段)晚第四纪沉积的硅藻学研究[J].沉积学报,2002,(01):135-143.
    [85]支崇远,王开发,蓝东兆.闽南第四纪晚期沉积硅藻组合与古环境研究[J].微体古生物学报,2003,(03):244-252.
    [86]蓝东兆.台湾海峡西部海域表层沉积物中硅藻和硅鞭毛藻的分布[J].台湾海峡,1989,(04):321-328.
    [87]蓝东兆.南海晚第四纪的硅藻遗体及其地质意义——ⅰ.硅藻种类及其生态环境[J].台湾海峡,1993,(04):393-401.
    [88]蓝东兆,陈承惠,陈峰.九龙江口岩心中的硅藻特征及其地质意义[J].台湾海峡,1999,(03):283-291.
    [89]蓝东兆,方琦,廖连招.冲绳海槽表层沉积硅藻对黑潮流的响应[J].台湾海峡,2002,(01):351-359.
    [90]李超,蓝东兆,方琦.东海陆架晚第四纪沉积硅藻及其古海洋学意义[J].台湾海峡,2002,(03):351-359.
    [91]Bortleso.Gc, Lee G. F. Recent sedimentary history of lake mendota, wisconsin[J]. Environmental Science&Technology,1972,6(9):89-98.
    [92]汪品先,章纪军,赵泉鸿.东海底质中的有孔虫和介形虫[M].北京:海洋出版社,1988,1-438.
    [93]翦知湣,陈民本,林慧玲.从稳定同位素与微体化石看南海南部末次冰消期古海洋变化之阶段性[J].中国科学d辑,1998,(02):532-536.
    [94]刘振夏, Y. Saito.,李铁刚.冲绳海槽晚第四纪千年尺度的古海洋学研究[J].科学通报,1999,(08):883-887.
    [95]Altenbach A., Sarnthein M. Productivity in benthic foraminifera. in Productivityof the ocean:Present and past, Berger W. H.,Smetacek V. S.,Wefer G., Editors.1989,John Wiley&Sons: New York. p.255-270.
    [96]Kaiho K. Benthic foraminiferald dissolved-oxygen index and dissolved oxygenlevels in the modern ocean [J]. Geology,1994,22:719-722.
    [97]Matsuoka K. Eutrophication process recorded in dinoflagellate cyst assemblages-a case of yokohama port, tokyo bay, japan [J]. Science of the Total Environment,1999,231(1):17-35.
    [98]王纬斐,洪君超.东海沿岸水域夏季沉积物中甲藻孢囊数量分布初探[J].海洋通报,1994,(06):53-59.
    [99]付永虎,王朝晖,康伟.长江口及其邻近海域近代沉积物中甲藻孢囊的垂直分布[J].暨南大学学报(自然科学与医学版),2009,(01):106-110.
    [100]王朝晖,齐雨藻.甲藻孢囊在长江口海域表层沉积物中的分布[J].应用生态学报,2003,(07):1039-1043.
    [101]朱永其,曾成开,冯韵.东海陆架地貌特征[J].东海海洋,1984,(02):1-5.
    [102]Nittrouer C. A., Demaster D. J., McKee B. A. Fine-scale stratigraphy inproximal and distal deposits of sediment dispersal systems in th east china sea [J].Marine Geology,1984,61(1):13-24.
    [103]Liu J. P., Xu K. H., Li A. C., etc. Flux and fate of yangtze river sedimentdelivered to the east china sea [J]. Geomorphology,2007,85(3-4):208-224.
    [104]郭志刚,杨作升,陈致林.东海陆架泥质区沉积有机质的物源分析[J].地球化学,2001,(05):416-424.
    [105]杨作升,米利曼. J. D.长江入海沉积物的输送及其入海后的运移[J].中国海洋大学学报(自然科学版),1983,(03):1-12.
    [106]Appleby P. G., Nolan P. J., Gifford D. W., etc.210Pb dating by low backgroundgamma counting [J]. Hydrobiologia,1986,143(1):21-27.
    [107]Appleby P. G., Oldfield F. The calculation of lead-210dates assuming aconstant rate of supply of unsupported210pb to the sediment [J]. Catena,1978,5(1):1-8.
    [108]钱江初.~(210)Pb测定沉积速率的误差及校正[J].东海海洋,1987,(03):29-34.
    [109]杨作升,郭志刚,王兆祥.黄东海陆架悬浮体向其东部深海区输送的宏观格局[J].海洋学报(中文版),1992,(02):81-90.
    [110]郭志刚,杨作升,范德江.长江口泥质区的季节性沉积效应[J].地理学报,2003,(04):591-597.
    [111]李云海,陈坚,黄财宾.浙闽沿岸南部泥质沉积中心表层沉积物粒度特征及其季节性差异[J].沉积学报,2010,(01):150-157.
    [112]翟世奎,孟伟,于志刚.三峡工程一期蓄水后的长江口海域环境[M].北京:科学出版社,2008,10-136.
    [113]张瑞,汪亚平,潘少明.近50年来长江入河口区含沙量和输沙量的变化趋势[J].海洋通报,2008,(02):1-9.
    [114]张晓东,许淑梅,翟世奎.东海内陆架沉积气候信息的端元分析模型反演[J].海洋地质与第四纪地质,2006,(02):25-32.
    [115]肖尚斌,李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报,2005,(01):122-125.
    [116]许建平.浙江近海上升流区的水团分析[J].东海海洋,1984,(04).
    [117]周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探[J].应用生态学报,2003,(07).
    [118]朱桂海, J. M.布鲁克斯,肯尼克特. M. C.长江口邻近陆架区沉积物来源的有机地球化学探讨[J].海洋学报(中文版),1988,(04):460-469.
    [119]Kao S. J., Lin F. J., Liu K. K. Organic carbon and nitrogen contents and theirisotopic compositions in surficial sediments from the east china sea shelf and thesouthern okinawa trough [J]. Deep-Sea Research Part Ii-Topical Studies inOceanography,2003,50(6-7):1203-1217.
    [120]高建华,汪亚平,潘少明.长江口外海域沉积物中有机物的来源及分布(英文)[J]. Journal of Geographical Sciences,2008,(01):46-58.
    [121]王丽莎,石晓勇,张传松.东海赤潮高发区沉积物中有机碳、有机氮的分布及其来源[J].海洋环境科学,2010,(02):165-169.
    [122]Banahan S., Goering J. J. The production of biogenic silica and itsaccumulation on the southeastern bering sea self [J]. Continental Shelf Research,1986,5(1-2):199-213.
    [123]Ragueneau O., Treguer P., Leynaert A., etc. A review of the si cycle in themodem ocean: Recent progress and missing gaps in the application of biogenic opalas a paleoproductivity proxy [J]. Global and Planetary Change,2000,26(4):317-365.
    [124]Johnson T. C., Brown E. T., McManus J., etc. A high-resolution paleoclimaterecord spanning the past25,000years in southern east africa [J]. Science,2002,296(5565):113-114.
    [125]杨茜,孙耀,王迪迪.东海、黄海近代沉积物中生物硅含量的分布及其反演潜力[J].海洋学报(中文版),2010,(03):51-59.
    [126]Demaster D. J. The supply and accumulation of silica in the marineenvironment [J]. Geochimica Et Cosmochimica Acta,1981,45(10):1715-1732.
    [127]海洋监测规范.第4部分海水分析[M].1998,460-464.
    [128]王金辉.长江口3个不同生态系的浮游植物群落[J].青岛海洋大学学报(自然科学版),2002,(03):422-428.
    [129]Andren E. Changes in the composition of the diatom flora during the lastcentury indicate increased eutrophication of the oder estuary, south-western balticsea [J]. Estuarine, Coastal and Shelf Science,1999,48(6):665-676.
    [130]Zimmerman A. R., Canuel E. A. A geochemical record of eutrophication andanoxia in chesapeake bay sediments: Anthropogenic influence on organic mattercomposition (vol69, pg117,2000)[J]. Marine Chemistry,2000,72(1):77-77.
    [131]夏平,陆斗定,朱德弟.浙江近岸海域赤潮发生的趋势与特点[J].海洋学研究,2007,(02):47-56.
    [132]贾国东,彭平安,傅家谟.珠江口近百年来富营养化加剧的沉积记录[J].第四纪研究,2002,(02):158-165.
    [133]戴纪翠,宋金明,李学刚.人类活动影响下的胶州湾近百年来环境演变的沉积记录[J].地质学报,2006,(11):1770-1778.
    [134]Rabalais N. N., Turner R. E., Dortch Q., etc. Nutrient-enhanced productivity inthe northern gulf of mexico: Past, present and future [J]. Hydrobiologia,2002,475(1):39-63.
    [135]赵颖翡,刘素美,叶曦雯.黄、东海柱状沉积物中生物硅含量的分析[J].中国海洋大学学报(自然科学版),2005,(03):423-428.
    [136]Schelske C. L., Stoermer E. F., Conley D. J., etc. Early eutrophication in thelower great lakes-new evidence from biogenic silica in the sediments [J]. Science,1983,222(4621):320-322.
    [137]Stoermer E.F., Smol J. P. The diatoms: Applications for environmental andearth sciences.[M]. Cambridge: Cambridge University Press.,1999.
    [138]Kauppila P., Weckstrom K., Vaalgamaa S., etc. Tracing pollution and recoveryusing sediments in an urban estuary, northern baltic sea: Are we far from ecologicalreference conditions?[J]. Marine Ecology-Progress Series,2005,290:35-53.
    [139]Cooper S. R., Brush G. S. A2,500-year history of anoxia and eutrophication inchesapeake bay [J]. Estuaries,1993,16(3B):617-626.
    [140]Charles D. F., Smol J. P., Engstrom D. R. Paleolimnological approaches tobiological monitoring. in Biological monitoring of aquatic systems, Loeb S.L.,Spacie A., Editors.1994, Lewis Publishers: Boca Raton, FL. p.233-293.
    [141]Clarke A., Juggins S., Conley D. A150-year reconstruction of the history ofcoastal eutrophication in roskilde fjord, denmark [J]. Mar Pollut Bull,2003,46(12):1615-1618.
    [142]Tibby John, Taffs Kathryn H. Palaeolimnology in eastern and southernaustralian estuaries [J]. Journal of Paleolimnology,2011,46(4):503-510.
    [143]Parsons M. L., Dortch Q., Turner R. E., etc. Reconstructing the development ofeutrophication in louisiana salt marshes [J]. Limnology and Oceanography,2006,51(1):534-544.
    [144]Liu Dongyan, Sun Jun, Zhang Jing, etc. Response of the diatom flora injiaozhou bay, china to environmental changes during the last century [J]. MarineMicropaleontology,2008,66(3-4):279-290.
    [145]Hasle Grethe R., Syvertsen Erik E. Marine diatoms. in Identifying marinediatoms and dinoflagellates, Tomas C. R., Editor.1996, Academic Press: San Diego.p.5-385.
    [146]金德祥.海洋硅藻学[M].厦门:厦门大学出版社,1990,1-239.
    [147]金德祥,程兆第,林均民.中国海洋底栖硅藻类(上卷)[M].北京:海洋出版社,1982,1-323.
    [148]蓝东兆,程兆第,刘师成.南海晚第四纪沉积硅藻[M].北京:海洋出版社,1995,1-138.
    [149]金德祥,陈金环,黄凯歌..中国海洋浮游硅藻类[M].上海:上海科学技术出版社,1965,20-214.
    [150]金德祥,程兆第,刘师成.中国海洋底栖硅藻类(下卷)[M].北京:海洋出版社,1992,1-437.
    [151]程兆第,高亚辉, Dickman. Mike.硅藻彩色图集[M].北京:海洋出版社,1996,1-120.
    [152]郭玉洁,钱树本.中国海藻志一硅藻门(第五卷)[M].北京:海洋出版社,2003.
    [153]Shannon C.E., Weaver W. The mathematical theory of communication [M].Urbana IL: University of Illinois Press,1949.
    [154]张金屯.数量生态学[M].北京:科学出版社,2004,133-153.
    [155]Terbraak C. J. F., Verdonschot P. F. M. Canonical correspondence-analysis andrelated multivariate methods in aquatic ecology [J]. Aquatic Sciences,1995,57(3):255-289.
    [156]齐雨藻.中国沿海赤潮[M].北京:科学出版社,2003,1-356.
    [157]林永水,周近明.赤潮生物[M].北京:科学出版社,2001,1-100.
    [158]郭皓.中国近海赤潮生物图谱[M].2004,1-104.
    [159]陈慧敏,孙承兴,仵彦卿.近23a来长江口及其邻近海域营养盐结构的变化趋势和影响因素分析[J].海洋环境科学,2011,(04):551-563.
    [160]刘录三,李子成,周娟.长江口及其邻近海域赤潮时空分布研究[J].环境科学,2011,(09):2497-2504.
    [161]石晓勇,陆茸,张传松.长江口邻近海域溶解氧分布特征及主要影响因素[J].中国海洋大学学报(自然科学版),2006,(02):287-290.
    [162]王奎,陈建芳,金海燕.长江口及邻近海域营养盐四季分布特征[J].海洋学研究,2011,(03):18-35.
    [163]王丽莎,石晓勇,祝陈坚.春季长江口邻近海域营养盐分布特征及污染状况研究[J].海洋环境科学,2008,(05):466-469.
    [164]刘秀娟,俞志明,宋秀贤.长江口海域悬浮颗粒有机物的稳定氮同位素分布及其生物地球化学意义[J].海洋科学,2010,(01):11-17.
    [165]Anderson N. John, Vos Peter. Learning from the past: Diatoms aspalaeoecological indicators of changes in marine environments [J]. NetherlandsJournal of Aquatic Ecology,1992,26(1):19-30.
    [166]Smith Val. H. Eutrophication of freshwater and coastal marine ecosystems aglobal problem [J]. Environmental Science and Pollution Research,2003,10(2):126-139.
    [167]沈华悌,梁居廷,王秀昌.东海陆架残留沉积物的改造[J].海洋地质与第四纪地质,1984,(02):67-75.
    [168]林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,(02):1-5.
    [169]刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算[J].海洋与湖沼,2002,(03):332-340.
    [170]Lefebvre A., Guiselin N., Barbet F., etc. Long-term hydrological andphytoplankton monitoring (1992-2007) of three potentially eutrophic systems in theeastern english channel and the southern bight of the north sea [J]. ICES Journal ofMarine Science,2011,68(10):2029-2043.
    [171]Olli K., Klais R., Tamminen T., etc. Long term changes in the baltic seaphytoplankton community [J]. Boreal Environment Research,2011,16:3-14.
    [172]McQuoid M. R., Nordberg K. The diatom paralia sulcata as an environmentalindicator species in coastal sediments [J]. Estuarine Coastal and Shelf Science,2003,56(2):339-354.
    [173]翟滨,曹志敏,蓝东兆.象山港养殖海域水体和沉积物中营养元素的分布特征及其控制过程的初步研究[J].海洋湖沼通报,2007,(03):49-56.
    [174]Meyer-Reil L. A., Koster M. Entrophication of marine waters: Effects onbenthic microbial communities [J]. Marine Pollution Bulletin,2000,41(1-6):255-263.
    [175]Paerl Hans W., Whitall David R. Anthropogenically-derived atmosphericnitrogen deposition, marine eutrophication and harmful algal bloom expansion: Isthere a link?[J]. Ambio,1999,28(4):307-311.
    [176]李振华,金海卫,潘国良.2009年春夏季浙江中北部近岸海域浮游植物群落特征[J].海洋渔业,2010,(04):401-410.
    [177]沈庞幼.浙江象山港的养殖容量研究和水产养殖的可持续发展[J].现代渔业信息,2002,(07):22-24.
    [178]宁修仁,胡锡钢.象山港养殖生态和网箱养鱼的养殖容量研究与评价[M].北京:海洋出版社,2002,26-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700