高性能MEMS射频无源器件与三维硅微机械加工技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作主要研究硅基三维微机械结构制造及关键器件的研制技术。一方面将技术针对目前电讯用RFIC的高性能无源元件,所开发的低温工艺可以与RFIC的CMOS工艺相兼容,同时利用MEMS技术解决了硅衬底损耗等问题,实现了高性能的RF电感、互感和可变电容等关键元件,另一方面还针对微纳操纵和精确定位系统需求的X-Y微移动平台,用深沟侧壁隔离(Trench-sidewall)MEMS工艺形成了具有微米级移动范围和纳米级定位精度的高性能X-Y微移动平台,同时电绝缘技术使该微平台可以在普通硅片上制作,大大降低了制作成本。
     国际上首次报道一种采用低温CMOS兼容工艺制造嵌入式悬浮螺管(CSS)结构电感与互感。为了便于封装以及后续加工,电感或互感线圈嵌入在硅片内部,这种新型结构能显著降低衬底损耗,并且制造出的器件悬浮结构能够抵抗住10000g的冲击试验,在100g的加速度环境下,ANSYS分析得到的器件形变比目前国际上报道最好的悬浮结构低一个量级。制造出的电感在电感值为2.47nH,Q值在5.3GHz时为54,自谐振频率超过15GHz,优于大多数微机械电感。互感的有效增益为0.89是目前国际上互感性能报道中最好的。
     利用低应力电镀技术制造出悬浮可变梳齿电容。在4V的驱动电压下可变电容值变化3.18:1即218%,1GHz时的Q值可达103。国际上首次报道一种旋转式可变电容,外界加速度所带来的位移变化比此前国际上所报道的传统微机械梳齿电容低两个量级,旋转式可变电容结构既满足低电压的需要又能够削弱外界加速度的影响。
     采用深槽侧壁隔离技术制造两维微位移平台,微位移平台的位移精度优于18nm,该技术能够实现单一硅片上不同功能单元的电绝缘,并具备将压阻、电容敏感单元与静电执行器集成在一块单硅片上的能力。
In this dissertation, we mainly study the 3-D micromachined process and research of key RF passive components. On the one hand, this technology is performed in RFIC for communication. The novel process could be compatible with CMOS process with low temperature. Moreover, the substrate effect is suppressed deeply to get high-performance inductors, transformers and tunable capacitors. On the other hand, a nano-precision XY-stage is designed and fabricated with trench-sidewall technology. Moreover, the XY-stage is performed on a sigle wafer instead of SOI wafer to reduce the cost of the fabrication.
     The concave-suspended inductors and transformers are performed with CMOS compatible process under a low temperature. The embedded structures facilitate the post-fabricated and package such as flip-chip. The suspended structures survive the 10000g shock. Moreover, 100g acceleration is sequentially applied to X, Y and Z axes by using ANSYS software. The deformation is an order lower than other robust suspended spiral inductor. In consequence, the 2.74nH inductor shows a high peak Q-factor of about 54 at 5.35GHz. The self-resonance frequency is over 15GHz. To my best knowledge, the available gain of the transformer is the highest among the reported paper as 0.89.
     Suspended tunable capacitors are performed by using low stress electroplating and isotropic release process. The tuning ratio is about 3.18:1, namely 218%, under 4V driving voltage. The Q factor is about 103 at 1 GHz. We also propose a rotational tunable capacitor to suppress the circumstance acceleration and vibration. The deformation under acceleration is two orders lower than the conventional MEMS comb tunable capacitor. The rotational structure keeps not only low driving voltage but robust structure.
     A XY-stage is fabricated with trench-sidewall process. The precision of the displacement is better than 18nm. Using the trench-sidewall technology, piezoresistive, capacitive sensing and electrostatic driving could be integrated on single wafer to reduce the cost.
引文
[1] Stephen D. Senturia, Microsystem Design. Kluwer Academic Publishers, 1st. Massachusetts: Kluwer Academic publishers: 1-102
    [2] Richard R Feynman, "There's Plenty of Room at the Bottom", the annual meeting of the American Physical Society, Dec. 1959.
    [3] K. E. Petersen, "Silicon as a mechanical material", Proceedings of IEEE, 1982: 420-457.
    [4] R. T. Howe, and R. S. Muller, "Polycrystalline Silicon Micromechanical Beams," Spring Meeting of the Electrochemical Society, Montreal, Canada, 1982: 82-86.
    [5] L. S. Fan, Y. C. Tai, "IC-processed electrostatic micro-motors," Proc. Of 1988 IEEE Int. Electr. Devices Meeting, San Francisco. 1988: 666-669.
    [6] H. Fujita, "Two decades of MEMS—from supprise to enterprise", IEEE MEMS 2007, 2007: 1-6.
    [7] W. Kuehnel, S. Sherman. A surface micromachined silicon accelerometer with on-chip detection circuitry. Sensors and Actuators, 1994 (A45): 7-16.
    [8] Larry J. Hornbeck. Digital light processing and MEMS: timely convergence for a bright future. Proc. of SPIE, Micromcahining and microfabrication '95, Texas, USA, Oct. 23-24, 1995: 1-25.
    [9] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, "A high resolution, Electrostatically-driven commercial inkjet head", IEEE MEMS2000, Jan. 2000: 793-798.
    [10] H. Fujita, "A decade of MEMS and its future", IEEE Int. Workshop on MEMS, Jan. 1997: 1-8.
    [11] Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Peterson. Bulk micromachining of Silicon. Proc. IEEE, Aug. 1998 (86): 1536-1551.
    [12] James M. Bustillo, Roger T. Howe, Richard S. Muller. Surface micromachining for microelectromechanical systems. Proc. IEEE, Aug. 1998 (86): 1552-1574.
    [13] W. Menz. LIGA and related technologies for industrial application. The 8th International Conference on Solid-State Sensors and Actuators (Transducers'95), Sweden, June 25-29, 1995: 552-555.
    [14] 姚劲松,梁静秋,王志勤.应用准LIGA技术制作微机械元件.STC’97:46-47
    [15] G. M. Rebeiz, "RF MEMS theory, design, and technology", John wiley&sons, New Jersey. 2003: 23-67.
    [16] V. K. Varadan, K. J. Vinoy and K. A. Jose, "RF MEMS and their applications", John wiley&sons, Chichester, England: 20-87.
    [17] J. J. Yao, "RF MEMS from a device perspective", J. Micromech. Microeng. 2000 (10): R9-R38.
    [18] R. R. Mansour, M. Bakri-Kassem, M. Daneshmand and N. Messiha, "RF MEMS devices", Proceeding of ICMENS 2003, July, 2003. pp: 1-5.
    [19] H. A. C. Tilmans, W. D. Raedt and E. Beyne, "MEMS for wireless communications: 'from RF-MEMS components to RF-MEMS-SiP", J. Micromech. Microeng. 2003 (13) pp: s 139-s 163.
    [20] C. T. Nguyen, L. P. B. Katehi and G. M. Rebeiz, "Micromachined devices for wireless communications", Proceedings of IEEE, Aug. 1998 (86): 1756-1768.
    [21] C Goldsmith, J Randall, S Eshelman, T-H Lin, D Denniston, S Chen and B Norvell "Characteristics of micromachined switches at microwave frequencies," Tech. Digest, IEEE Microwave Theory and Techniques Symp. 1996: 1141-1144.
    [22] N E McGruer, P M Zavracky, S Majumder, R H Mon-ison and G G Adams, "Electrostatically actuated microswitches; scaling properties," Tecta. Digest, Solid State Sensor and Actuator Workshop, 1998: 132-135.
    [23] D J Young and B E Boser, "A micromachined variable capacitor for monolithic low-noise VCOs," Tecta. Digest, Solid State Sensor and Actuator Workshop, 1996: 86-89.
    [24] J-B Yoon, C-H Han, E Yoon and C-K Kim, "High-performance three-dimensional on-chip inductors fabricated by novel micromachining technology for RF MMIC," Tech. Digest 1999 IEEE MTT-S Int. Microwave Syrup., 1999: 1523-1526.
    [25] J. B. Yoon, B. Kim, Y. S. Choi and E. Yoon, "3-D Construction of Monolithic Passive Components for RF and Microwave ICs Using Thick-Metal Surface Micromachining Technology", IEEE Trans. Microw. Theory Tech. Jan. 2003 (51): 279-288.
    [26] G. M. Rebeiz, D. P. Kasilingam, Y. Guo, P. A. Stimpson, and D. B. Rutledge, "Monolithic millimeter-wave two-dimensional horn imaging arrays," IEEE Trans. Antennas Propagat., Sept. 1990 (38): 1473-1482.
    [27] S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Yale, and R. A. Moore, "Compact FBAR filters offer low-loss performance," Microwaves RF., Sept. 1991: 127-136.
    [28] K. M. Lakin, G. R. Kline, and K. T. McCarron, "Development of miniature filters for wireless applications," IEEE Trans. Microwave Theory, Tech., Dec. 1995 (43): 2933-2939.
    [29] C. T. -C. Nguyen and R. T. Howe, "CMOS micromechanical resonator oscillator," in Tech. Dig. IEEE Int. Electron Devices Meeting, Washington, DC, Dec. 5-8, 1993: 199-202.
    [30] F. D. Bannon Ⅲ and C. T. -C. Nguyen, "High frequency microelectromechanical IF filters," in Tech. Dig. 1996 IEEE Electron Devices Meeting, San Francisco, CA, Dec. 8-11, 1996: 773-776.
    [31] T. H. Lee. The Design of CMOS Radio-Frequency Integrawd Circuits. Cambridge, U. K.: Cambridge Univ. Press, 1998: 12-35.
    [32] K. Chong, Y. H. Xie, K. W. Yu, D. Huang, and M. F. Chang, "High-performance inductors integrated on porous silicon," IEEE Electron Device Lett., vol. 26, 2005: 93-95.
    [33] L. H. Guo, Q. X. Zhang, G Q. Lo, N. balasubramanian, and G. L. Kwong, "High-performance inductors on plastic substrate," IEEE Electron Device Lett., 2005 (26): 619-621.
    [34] J. B. Yoon, Y. S. Choi, Y. Eo and E. Yoon, "CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs", IEEE Electron Device Lett., 2003(23): 591-593.
    [35] X. N. Wang, X. L. Zhao, Y. Zhou, X. H. Dai and B. C. Cai, "Fabrication and performance of a novel suspended RF spiral inductor", IEEE Trans. Electron Device, 2004 (51): 814-816.
    [36] J. W. Lin, C. C. Chen, and Y. T. Cheng. "A robust high-Q micromachined RF inductor for RFIC applications," IEEE Trans. Electron Devices, 2005 (ED-52): 1489-1496.
    [37] K. J. Chen, W. C. Hon, J. Zhang and L. L. W. Leung, "CMOS-compatible micromachined edge-suspended spiral inductors with high Q-factors and self-resonance frequencies," IEEE Electron Device Lett., 2004 (25): 263-265.
    [38] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon and C. K. Kim, "Surface micromachined solenoid on-si and on-glass inductors for RF application", IEEE Electron Device Lett., 1999 (20): 487-489.
    [39] C. L. Chua, D. K. Fork, K. V. Schuylenbergh and J. P. Lu, "Out-of-plane high-Q inductors on low-resistance silicon," IEEEJ. Microelectromech. Syst., 2003 (12): 989-995.
    [40] Y. J. Kim, and M. G. Allen, "Surface micromachined solenoid inductors for high frequency application," IEEE Tran. Compon. Pack. Tech., 1998 (21): 26-33.
    [41] Y. C. Liang, W. Zeng, P. H. Ong, Z. Gao, J. Cai and N. Balasubramanian, "A concise process technology for 3-D suspended radio frequency micro-inductors on silicon substrate," IEEE Electron Device Lett., 2002 (23): 700-703.
    [42] H. Y. Tsui and J. Lau, "An on-chip vertical solenoid inductor design for multigigahertz CMOS RFIC," IEEE Tran. Microw. Theory Tech., vol. 53, 2005: 1883-1890.
    [43] J. N. Brughartz and B. Rejaei, "On the design of RF spiral inductors on silicon," IEEE Tran. Electron Device, 2003 (vol. 50): 718-729.
    [44] J. R. Long and M. A. Copeland, "The modeling, characterization, and design of monolithic inductors for silicon RF IC's," IEEE J. Solid-State Circuits, 1997 (32): 357-369.
    [45] C. P. Yue and S. S. Wong, "On-chip spiral inductors with patterned ground shields for Si-based RF IC's," IEEE J. Solid-State Circuits, 1998 (33): 743-752.
    [46] A. M. Niknejad and R. G. Meyer, "Analysis, design, and optimization of spiral inductors and transformers for Si RF IC's," IEEE J. Solid-State Circuits, 1998 (33): 1470-1481.
    [47] C. P. Yue and S. S. Wong, "Physical modeling of spiral inductors on silicon," IEEE Tran. Electron Device, 2000 (47): 560-568.
    [48] J. E. Post, "Optimizing the design of spiral inductors on silicon," IEEE Trans. Circuits Syst. Ⅱ, 2000 (47): 15-17.
    [49] C. C. Tang, C. H. Wu and S. I. Liu, "Miniature 3-D inductors in standard CMOS process," IEEE J. Solid-State Circuits, 2002 (37): 471-480.
    [50] C. H. Wu, C. C. Tang and S. I. Liu, "Analysis of on-chip spiral inductors using the distributed capacitance model," IEEE J. Solid-State Circuits, 2003 (38): 1040-1044.
    [51] K. Y. Tong and C. Tsui, "A physical analytical model of multilayer on-chip inductors," IEEE Tran. Microw. Theory Tech., 2005 (53): 1143-1149.
    [52] A. Zolfaghari, A. Chan and B. Razavi, "Stacked inductors and transformers in CMOS technology," IEEE J. Solid-State Circuits, 2001 (36): 620-628.
    [53] J. Wang, J. Rowland, X. Zhu, C. Hutchens and Y. Zhang, "Compact model for on-chip spiral inductors," Annual Technical and Leadership Workshop, 2004: 99-101
    [54] F. Rotella, B. K. Bhattacharya, V. Blaschke, M. Matloubian, A. Brotman, Y. Cheng, R. Divecha, D. Howard, K. Lampaert, "A broad-band lumped element analytic model incorporating skin effect and substrate loss for inductors and inductor like components for silicon technology performance assessment and RFIC design," IEEE Tran. Electron Device, 2005 (52): 1429-1441.
    [55] Y. Cao, R. A. Grove, X. Huang, N. D. Zamdmer, J. Plouchart, R. A. Wachnik, T. King and C. Hu, "Frequency-independent equivalent-circuit model for on-chip spiral inductors," IEEE J. Solid-State Circuits, 2003 (38): 419-426.
    [56] A. Scuderi, T. Biondi, E. Ragonese and G. Pahnisano, "A lumped scalable model for silicon integrated spiral inductors," IEEE Trans. Circuits Syst. 1, 2004 (51): 1203-1209.
    [57] C. Chao, S. Wong, C. Kao, M. Chen, L. Leu and K. Chiu, "Characterization and modeling of on-chip spiral inductors for Si RFICs," IEEE trans. Semiconductor Manufacturing, 2002 (15): 19-29.
    [58] A. C. Watson, D. Melendy, P. Francis, K. Hwang and A. Weisshaar, "A comprehensive compact-modeling methodology for spiral inductors in silicon-based RFICs," IEEE Tran. Microw. Theory Tech., 2004 (52): 849-857.
    [59] H. A. Wheeler, "simple inductance formulas for radio coils," in Proc. IRE, 1928 (16): 1398-1400.
    [60] E. B. Rosa, "calculation of the self-inductances of single-layer coils," Bull. Bureau Standards, 1906 (2): 161-187.
    [61] S. S. Mohan, M. M. Hershenson, S. P. Boyd and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE J. Solid-State Circuits, 1999 (34): 1419-1424.
    [62] H. M. Greenhouse, "Design of planar rectangular microelectronic inductors," IEEE Trans. Parts, Hybrids, Packaging, 1974 (PHP-10): 101-109.
    [63] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon, K. Lee, and C. K. Kim, "High-performance electroplated solenoid-type integrated inductor(SI~2) for RF applications using simple 3D surface micromachining technology," in IEDM Tech. Dig.,: 544-547, 1998.
    [64] 薛太林,孟祥敏。“用等效电荷法近似计算棒形导体的电容”,电力学报,2003(18):8-10
    [65] 黄庆安。“硅微机械加工”,北京:科学出版社:51-105。
    [66] H. Seidel, L. Csepregi, A. Heuberger and H. Boumgartel, "Anisotropic etching of crystalline silicon in alkaline solutions, I. Orientation dependence and behavior of passivation layers," J. Electrochem. Soc., 1990 (137): 3612-3626.
    [67] I. Zubel. "Silicon anisotropic etching in alkaline solutions Ⅲ: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions", Sens. Actuators, 2000 (A84): 116-125.
    [68] R. Ludwig, P. Bretchko, "RF circuit design: theory and application," 王子宇。电子工业出版社,2002:94-130.
    [69] 李宗谦,佘京兆,高葆新。“微波工程基础”,北京,清华大学出版社:73-188
    [70] J. R. Long, "Monolithic transformers for silicon RF IC design," IEEE J. Solid-State Circuits, 2000 (35): 1368-1382.
    [71] K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, "Microstrip spiral directiona coupler", IEEE Trans. Microwave Theory Tech., 1999(29): 680-689.
    [72] E. Frlan, S. Meszaros, M. Cuhaci, and J. Wight, "Computer-aided design of square spiral transformers and inductors," in Proc. IEEE MTT-S, 1989: 661-664.
    [73] H. J. Finlay, "U. K. patent application," 8 800115, 1985.
    [74] S. S. Mohan, C. P. Yue, M. Del Mar Hershenson, S. S. Wong, and T. H. Lee, "Modeling and characterization of on-chip transformers," in Proc. IEDM, 1998: 531-534.
    [75] K. Chong and Y. Xie, "High-performance on-chip transformers," IEEE Electron Device Letter, 2005 (26): 557-559.
    [76] J. B. Yoon, B. Kim, Y. S. Choi, and E. Yoon, "3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology," IEEE Trans. Microwave Theory Tech. 20031 (5): 279-288.
    [77] K. T. Ng, B. Rejaei and J. N. Burghartz, "Substrate effects in monolithic RF transformers on silicon," IEEE Trans. Microwave Theory and Tech. 2002 (50): 377-383.
    [78] R. E Ribas, J. L. Leclercq, J. M. Karam and F. Ndagijimana, "Monolithic micromachined planar spiral transformer," IEEE MEMS 1998, 1998: 255-258.
    [79] N. Fong, J. O. Plouchart, N. Zamdmer, J. Kim, K. Jenkins, C. Plett, and G. Tarr, "High-performance and area-efficient stacked transformers for RF COMS integrated circuit," IEEE MTT-S, 2003: 967-970.
    [80] X. Huo, K. J. Chen, and P. C. Chan, "Silicon-Based High-Q Inductors Incorporating Electroplated Copper and Low-K BCB Dielectric," IEEE Electron Device Lett., 2002 (23): 520-522.
    [81] J. W. Lin, C. C. Chen, and Y. T. Cheng. "A Robust High-Q Micromachined RF Inductor for RFIC Applications," IEEE Trans. Electron Devices, 2005 (ED-52): 1489-1496.
    [82] C. S. Lin, Y. K. Fang, S. F. Chen, C. Y. Lin, M. C. Hsieh, C. M. Lai, T. H. Chou, and C. H. Chen, "A Deep Submicrometer CMOS Process Compatible High-Q Air-gap Solenoid Inductor With Laterally Laid Structure", IEEE Electron Device Lett., 2005 (26): 160-162.
    [83] J. J. Yao, "RF MEMS from a device perspective," J. Micromech. Microeng., 2000 (10): R8-R39.
    [84] D. J. Yong, V. Malba, J. J. Ou, A. F. Bernhardt and B. E. Boser, "A micromachined variable capacitor for monolithic low-noise VCOs," Tech. Digest Solid State Sensor and Actuator Workshop, 1988: 128-131.
    [85] J. Chen, J. Zou, C. Liu, J. S. Aine and S. Kang, "Design and modeling of a micromachined high-Q tunable capacitor with large tuning range and a vertical planar spiral inductor", IEEE Trans. Electron Devices, 2003 (50): 730-739.
    [86] M. Rais-Zadeh, P. A. Kohl, and F. Ayazi, "High-Q micromachined silver passives and filters", IEEE IEDM 2006: 1-4.
    [87] L. E. Larson, R. H. Hackett, M. A. Melendes and R.E Lohr, "Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits" IEEE Microwave and Millimeter-Wave Monolithic circuits Syrup, 1991: 27-30.
    [88] J. J. Yao, S. Park and J. DeNatale, "High tuning-ratio MEMS-based tunable capacitors for RF communications applications" Solid State Sensor and Actuator Workshop, 1998: 124-127.
    [89] J. B. Yoon, C. T. C. Nguyen, "A high-Q tunable micromechanical capacitor with movable dielectric for RF applications" IEEE IEDM 2000, 2000: 489-492.
    [90] S. H. Yi, F. J. Preissig and E. S. Kim, "Electroless nickel fihns: properties and fabricated cavity structure", IEEE J. Microelectromech. Syst. 2002 (11): 293-301.
    [91] W. N. Sharpe, J. David, A. LaVan, and R. L. Edwards, "Mechanical properties of LIGA-deposited nickel for MEMS transducers", IEEE Transducer'97, 1997: 607-700.
    [92] S. K. Ghandhi and F. L. Thiel, "The properties of nickel in silicon", Proceeding of the IEEE, 1969 (57): 1484-1489.
    [93] H. S. Cho and H. J. Hemker, "Tensile, creep and fatigue properties of LIGA nickel structures," IEEE MEMS 2002, 2002: 439-442.
    [94] L. S. Stephens, K. W. Kelly, S. Simhadri, A. B. McCandless and E. I. Meletis, "Mechanical property evaluation and failure analysis of cantilevered LIGA nickel Microposts" IEEE J. Microelectromech. Syst. 2001 (10): 347-359.
    [95] S. R Pacheco, L. R B. Katehi and Clark T. C. Nguyen, "Design of low actuation voltage RF MEMS switch" IEEE MTT-S, 2000: 165-168.
    [96] S. Roth, L. Delhnann, G. Racine, and N. F. Rooij, "High aspect ratio UV photolithography for electroplated structures" J. Micromech. Microeng. 1999 (9): 105-108.
    [97] S. Lee, S. Park, D. Cho and Y. Oh, "Surface/bulk micromachining (SBM) process and deep trench oxide isolation method for MEMS", IEEE IEDM99, 1999: 701-704.
    [98] S. Lee, S. Park and D. Cho, "The surface/bulk micromachining (SBM) process" a new method for fabricating released MEMS in single crystal silicon", IEEEJ. Microeletromech. Syst. Dec 1999 (8): 409-416.
    [99] N. C. Macdonald, "SCREAM microelectromechanical systems", Microelectronic Engineering, 1996 (32): 49-73.
    [100] F. Ayazi and K Najafi, "High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology", IEEE J. Microelectromechanical systems, Sep. 2000 (9): 288-294.
    [101] L. Muller, R. T. Howe, A. P. Pisano, "High-aspect-ratio, molded microstructures with electrical isolation embedded interconnects", Microsystem Technologies, 2001: 47-54.
    [102] J. M. Bustillo, R. T. Howe, and R. S. Muller, Surface micromachining for Micro electro mechanical systems, Proceeding of the IEEE, August 1998 (86): 1536-1551.
    [103] http://mems.sandia.gov
    [104] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, CMOS MEMS-present and future, IEEE MEMS'2002, 2002: 459-466.
    [105] U. Sridhar, L. C. How, L. L. Jun, M. Y. Bo, T. K. Sang, "Trench oxide isolated single crystal silicon micromachined accelerometer" IEDM'98, 1998, pp 475-478.
    [106] E. Sarajlic, E. Berenschot, G. Krijnen, M. Elwenspoek "Versatile trench isolation technology for the fabrication of microactuators," Microelectronic Engineering, 2003 (67-68): 430-437.
    [107] S. Lee, R. Bashir, "Modeling and characterization of deep trench isolation structures," Microelectronics Journal, 2001 (32): 295-300.
    [108] D. Zhang, Z. Li, T. Li, G. Wu, "A novel isolation technology in bulk micromachining using deep reative ion etching and a polysilicon refill," J. Micromech. Microeng. 2001 (11): 13-19.
    [109] G. Yah, Y. Zhu, C. Wang, R. Zhang, Z. Chen, X. Liu, Y. Y. Wang, "Integrated bulk-micromachined gyroscope using deep trench isolation technology," IEEE Micro elector Mechanical Systems Dig. '04, 2004: 605-608.
    [110] R. R. A. Syms, B. M. Hardcastle and R. A. Lawes, "Bulk micromachined silicon comb-drive electrostatic actuators with diode isolation," Sensors Actuators A, 1997 (63): 61-67.
    [111] C. C. Chung., M. G. Allen, "Electrical isolation of bulk silicon MEMS devices via thennomigration," Micro elector Mechanical systems'00, 2000: 153-157.
    [112] Xinxin Li, Baoluo Cheng, Yuelin Wang, Lei Gu, Jian Dong, Heng Yang, Zhaohui Song, "A Trench-sidewall Single-wafer-MEMS Technology and Its Typical Application in High-performance Accelerometers", IEEE IEDM 2004, 2004: 43-46.
    [113] Minhang Bao, Analysis and design principles of MEMS devices, elesvier, 2005.
    [114] R. Legtenberg, A. W. Groeneveld and M. Elwenspoek, "Comb-drive actuators for large displacements," J. Micromech. Microeng. 1996 (6): 320-329.
    [115] G. K. Fedder, "Simulation of microelectromechanical systems," PhD Dissertation Faculty of Electrical Engineering and computer Sciences, University of California, Berkely CA, 1994.
    [116] T. Hirano, T. Furuhata, K. J. Gabriel, H. Fujita, "Design, fabrication, and operation of submicron gap comb-drive microactuators," J microelectromech. Syst. 1992 (1): 52-59.
    [117] Z. Yang, X. X. Li, Y. Wang, H. Bao, M. Liu, "Micro cantilever probe array integrated with Piezoresistive sensor," Microelectronics Journal 2004 (35): 479-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700