150KW潮流电站总体设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,能源与环境问题成为当前世界上必须首先考虑的问题,世界各国越来越注重开发、利用新能源,都积极地投入到开发低碳排放的清洁能源中。海洋潮流能是一种清洁的可再生能源,其利用价值高,且潜力巨大。在能源不断发展的21世纪,潮流能必将占有重要的地位。因此,开发利用潮流能已经成为我国,乃至于全世界关注的焦点。我国拥有相当长的海岸线,其中蕴含着丰富的海洋资源,开发利用海洋能源已成为我国首要任务。
     目前,国内外已经建成的示范运行的潮流电站,其基本结构形式有漂浮式、悬浮式、桩柱支撑式和座海底式,选取特殊载体作为搭载水轮机和发电机组的工作平台。本文以国家科技支撑项目合同指标为设计目标,以拟定的山东荣成海域测量的水文资料为依据,设计一种矩形龙门式水轮机承载平台,装机容量为150kW的潮流电站。文章所展开的工作是对潮流电站承载平台大型化设计的一种探索,以期得出的结论对该子项目的设计研究工作提供一定的技术支持和对比价值参考。
     本文首先提出了平台型式的设计方案,绘制了总布置图,根据要求初步确定了平台主尺度,并进行了平台重量重心及排水量的估算。准确预报平台载荷是平台结构校核的重要部分,本文首先根据规范计算了平台的环境载荷,然后使用基于动量定理的流管法计算水轮机工作状态下产生的载荷和力矩,最后使用Patran有限元软件进行结构分析,进行强度校核。最后,本文基于锚泊系统的静力分析方法,根据锚泊线的长度和布置角度的不同提出了几种锚泊线方案,并根据其受力特点,得出最优方案。
Since the 21st century, energy and environment issues have been the problem which must be considered in the current world. More and more country have been focus on the development of new energy resources around world, and positively putted into the development of clean energy with the features of low-carbon emission. Ocean current energy is a kind of clean renewable energy with high value and great potential. In the new century, the energy has continuous developed. Tidal current energy must play an important role, so the development and exploitation of tidal current energy has become the focus of attention in our country even all the world. China has quite a long coastline which contains rich marine resources, so development and exploitation of ocean energy has become our most important task.
     At present, model running tidal current stations which have been built in the world have several basic forms, which are floating structures, suspended structures, seabed piled structures and sit seabed structures, meanwhile it selects a special carrier as a working platform for turbine and generating units. This paper is based on the National Key Technology Research and Development project about current station contract index and according as hydrological information about Rongcheng sea area, to design a rectangle frame turbine carrier platform, installed capacity of 150KW station. The work in this paper is one kind of exploration about carrier platform for large-scale, and conclusion reached to provide technical sustain and contrast value reference to this project of design and research.
     This paper proposed platform type of design program first, draw general arrangement plan, determined platform principal dimensions according to the requirement, and estimated platform with weight, center of gravity, displacement. Accurately forecasting the platform' load play an important role in platform structural check. The paper first calculates environment's load as criterions. Then turbine's load and moments are based on momentum theory and stream tube method calculated. Paper is base on the static analysis method for the mooring system. According to the different length and angle of mooring lines, it proposed several kinds of schemes about mooring lines. Finally the paper will get the optimized one as mechanical characteristics.
引文
[1]宋金明.崛起的海洋资源开发.山东科学技术出版社.1999
    [2]孙雅萍.21世纪海洋能源开发利用展望及其环境效应分析.哈尔滨师范大学自然科学学报,1998
    [3]王庆一.中国21世纪能源展望.山西能源与节能,2000
    [4]乔权,王金辉.我国海洋能资源开发利用设想.哈尔滨师范大学自然科学学报,1997
    [5]朱建国,朱果扣.科技新能源潮流能的开发和利用.资源开发.1986
    [6]褚同金.海洋能资源开发利用.化学工业出版社.2005
    [7]王传崑.潮流发电.华东水电技术.1998
    [8]Bliek, A.Dynamic analysis of single span cables.Ph.D.,MIT,Cambridge, MA,U.S.A
    [9]Hover, F. S., Grosenbaugh, M. A. and Triantafyllou, M. S'Calculation of dynamic tension in towed underwater cable. IEEE Journal of Oceanic Engineering,1994, 19:449-457P
    [10]Thomas, D. O.&Hearn, G. E.. Deepwater mooring line dynamics with emphasis on sea-bed interference effects. Offshore Technology Conference,1991, Paper OTC #7488
    [11]Nakamura, N., Koterayama, W. and Kyozuka, Y.. Slow drift damping due to drag forces acting ors mooring lines. Ocean Engineering,1991,18:283-296P
    [12]Huang, S..Dynamic analysis of 3-D marine cables.Ocean Engineering,1994, 21:587-605P
    [13]Korterayama, W..Motions of moored floating body and dynamic tension of mooring lines in regular waves. Rep. Res. Inst. Appl. Mech.1978,X X N:99-126P
    [14]Korterayama, W.and Nakamura, M.. Hydrodynamic forces acting on a vertical circular cylinder oscillating with a very low frequency in waves. Ocean Engng.1988,15(3):271-287P
    [15]Korterayama, W.and Nakamura, M..Drag and inertia force coefficients derived from field tests.International Journal of Offshore and Polar Engineering,1992,2(3):162.167P
    [16]Toshio Nakajima. A study of the mooring dynamics of various types by lumped mass method.Ph.D.Thesis,University of Tokyo,1991
    [17]Nakajima, T., Motora, S. and Fujino, M.. On the dynamic responses of the moored object and the mooring lines in regular waves. Traps.Soc.Of naval arch.Of Japan,1981,No.150
    [18]Toshio Nakajima.On the dynamic analysis of multi-component mooring lines.1982,OTC#4309:105-110P
    [19]Burgess, J.J..Equations of motion of a submerged cables with bending stiffness.Int.Offshore Mech.And Artic Eng.Conf., Calgary,1992,Vol.1-A
    [20]Webster, E.L.. Nonlinear static and dynamic response of underwater cables using the finite element method.Offshore Technology Conference,1975
    [21]Shashikala, A.P. et.al.. Dynamics of a moored barge under regular and random waves.Ocean Engineering,1997,24(5):401-430P
    [22]Leonard, J.W. and Recker, W.W.. Nonlinear dynamics of cables with low initial tension.of the Engineering Mechanics, Division, ASCE,1972,98(2):204-234P
    [23]Leonard, J.W.. Curved finite element approximation to nonlinear cables.OTC,1972,1: 225-233P
    [24]Chatjigeorgion, L. K. and Mavrakos, S. A.. Assessment of bottom cable interaction effects on mooring line dynamics.Int. Offshore Mech.And Artic Eng.Conf.,Libson,1998, No.335
    [25]Chatjigeorgion, L.K.and Mavrakos, S.A..Comparative evaluation of numerical schemes for 2D mooring dynamics.International journal of offshore and polar engineering,2000,10(4):301-309P
    [26]Kwan, C. T. and Bruen, F. J.. Mooring line dynamics:comparison of time domain, frequency domain and quasi-static analysis. OTC,1988,2:513-521P
    [27]范菊,陈小红,黄祥鹿.锚泊线一阶运动响应对二阶锚链阻尼的影响.船舶力学.2000,4:20-27页
    [28]范菊,陈小红,黄祥鹿.三阶摄动对锚泊线动力分析的影响.船舶力学.2000,4-9页
    [29]黄祥鹿,陈小红,范菊.锚泊浮式结构波浪上运动的频域算法.上海交通大学学报.2001,45:1470-1476页
    [30]陈小红,黄祥鹿.随机振荡法测量锚泊线动力的双频率响应函数.上海交通大学 学报.1995,29:13-19页
    [31]周崇庆,刘土光和李天匀.风浪中锚泊渔船的锚链系泊张力的分析研究.中国水产科学.1999,6(3):78-80
    [32]刘应中,缪国平,李谊乐等.系泊系统动力分析的时域方法.上海交通大学学报.1997,31(11):7-12页
    [33]李向群.多点系泊船舶在波浪中的运动及其系泊力.交通部上海船舶运输科学研究所学报.1999,22(1):9-15页
    [34]聂孟喜,王旭升,王晓明,张琳.风、浪、流联合作用下系统系泊力的时域计算方法.清华大学学报(自然科学版).2004,36(17):1214-1217页
    [35]肖越.系泊系统时域非线性计算分析.大连理工大学.2006
    [36]童波.半潜式平台系泊系统形式及其动力特性研究.上海交通大学.2009
    [37]吴德铭.机翼理论.哈尔滨工程学院出版社.1993年3月
    [38]詹明珠.潮流电站稳定性分析及锚泊系统的设计计算.2006
    [39]姜宗玉.船舶在波浪上线性运动的三维频域计算技术研究[D].大连:大连理工大学.2008
    [40]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社.1998年
    [41]刘应中,缪国平.船舶在波浪上的运动理论[M].上海:上海交通大学出版社.1987
    [42]刘翔建.深海钻井船锚泊系统的设计与分析[D].哈尔滨:哈尔滨工程大学.2009
    [43]王艳妮.海洋工程锚泊系统的分析研究.哈尔滨:哈尔滨工程大学.2006
    [44]高捷,谭家华,陈小红.转塔式锚泊系统初步设计图谱.海洋工程.1997
    [45]Bureau Veritas, user guide of Ariane7.2008
    [46]李润培,王志农.海洋平台强度分析.上海交通大学出版社.1992年:33-40页
    [47]张洋,漂浮式潮流电站锚泊系统的设计和计算.哈尔滨工程大学.2004
    [48]中国船级社.海上移动平台入级与建造规范(2005).2005
    [49]罗伯特.E.兰德尔.海洋工程基础.上海交通大学出版社.2001
    [50]王新荣,陈永波.有限元法基础.科学出版社.2008
    [51]马爱军,周传月.王旭.Patran和Nastran有限元分析.清华大学出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700