HDPE圆形双浮管网箱系统水动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国渔业资源衰退以及国家对海洋经济发展和食品的需求,发展深水抗风浪网箱是我国海水养殖业可持续发展的一条必由之路。研究深水网箱设施的水动力性能是保护渔民的生命和财产安全的重要技术保障。本论文研究依托于国家“863”计划、国家自然科学基金项目。
     HDPE双浮管网箱是我国深水网箱最主要的种类,在目前我国6000多只深水网箱中,占到70%以上的份额。本文选取我国常用的周长40m、网深10m的HDPE圆形双浮管单体或网箱组(四个圆形网箱组成)作为研究对象,以水槽模型试验和海上实测为研究手段,运用渔具力学,波浪理论,海洋工程结构物与波流间作用理论以及电子信息等技术,结合理论分析和傅立叶数据处理方法,获得以下研究成果:
     1.采用田内模型准则与狄克逊模型准则在水槽中开展了单体圆形网箱模型水动力试验,检验二者试验结果的差异。结果表明,二者在一定流速范围内差异不大,均可作为水流中的网箱模型试验准则;网箱整体阻力、箱体阻力随着流速增加而增加,二者呈幂函数关系;阻力系数随着雷诺数增加而减小,二者也呈幂函数关系。
     2.获得了单个圆形网箱系统在正面或450受到流、波浪、波流作用下不同部位的缆绳张力分布。主要受力缆绳为前端缆绳(正面、450)、后侧缆绳(正面)和前侧缆绳(450)。
     3.采用傅立叶分析解析了最大缆绳张力中定常力、线性波浪力以及非线性波浪力的组成关系,获得了张力在波浪和波流中的组成特性。
     4.以固定点波高仪与张力同步测量数据推算出了网箱正面受波浪作用时,缆绳张力-时间曲线中特殊值点出现时刻,波峰、波谷在网箱系统上的位置。
     5.采用四阶傅立叶展开系数之和作为缆绳最大张力,通过数据分析,获得了缆绳张力与波高、周期等参数的关系;在波浪作用下(正面和450),缆绳最大张力与波高关系。
     6.通过无量纲分析,获得了缆绳最大张力无量纲量及其与波长网箱直径比、波陡之间的关系;采用正面波浪的缆绳最大张力-波高回归公式和最大张力无量纲与波陡回归公式推算正面波浪作用时的前端缆绳和后侧缆绳的在实际海况下的最大缆绳张力,将二者的结果进行比较,说明最大张力无量纲量可以用于此类网箱实际海况下的缆绳最大张力的推算;并推算出一系列海况下缆绳最大张力。
     7.根据对正面和450波浪和波流作用下单体网箱缆绳最大张力推算结果对进行比较,采用网箱正面受波浪流作用的锚泊方式优于450受波浪流的锚泊方式。
     8.获得了网箱组在波浪、波流中的缆绳最大张力的与波、流因子之间的关系,并推算出系列实际工况下网箱组的缆绳最大张力;实际波高2m-5m时,缆绳最大张力范围在48KN-199KN之间;实际流速31.6m/s,波高2m-5m时,最大缆绳张力在81KN-402KN之间。
     9.自主研发了一种用于海水中长时间测量网箱缆绳张力的自动记录式水下拉力计,在实际恶劣海况中进行了网箱部分缆绳的张力测试,验证了拉力计的可靠性,获得了实际海况中实物网箱浮框绳的张力变化,为实物网箱受力分析提供了第一手资料。
     本文中的缆绳最大张力无量纲量研究成果、水下自动记录式拉力计的开发和海上实测应用均具有明显的创新性,研究成果丰富了网箱水动力学研究体系,研究结果可为HDPE双浮管浮式网箱理论计算和设计提供参考依据。
With the decline of fishery resources in China and increasing demand on sea foodtogether with growing marine economic, the development of deep-water anti-wave cages isan effective way to the sustainable development in domestic marine aquaculture industry.Studying on the hydrodynamic performance of deep-water cage facilities is an importanttechnical support to protect human lives and property for fishermen. The present dissertationis based on the researches of the National863High Technology Development Plan Projectand the National Natural Science Fund Project.
     HDPE sea-cage with double floating tubes is the most popular cages used in China,sharing more than70%of over6000cages totally. In the present work, model tests andfull-scale measurement on site are performed on the circular sea cages with perimeter40meters and height10meters, which are commonly used in China. The measured data areprocessed by means of FFT. The experimental results are then analyzed by applying fish gearmechanics and theory on the interaction of marine structures with waves. The followingfindings are obtained:
     1. To inspect the differences between the Tauti rules and Dickson rules, which arepopularly used in the hydrodynamic tests of fishery gears, model tests of single cage withcircular shape are carried out in the tank under these two rules respectively. The resultsindicate that both rules can be used as the rules of cage model tests with an exceptional littledifference in certain cases of flow. The resistance of the cage body or the whole cage systemis found to be a power function of the flow velocity. Similarly, the drag coefficient can beexpressed as a power function of the Reynolds number.
     2. Tensions in each cable that is mooring a single circular net-cage system sufferingcurrent, waves or a combination of current and waves are measured. The cage system isfacing or oblique in45degrees relative to the coming waves or (and) current. It is found thatthe mooring forces are mainly acting on the front-line (both in the cases of head and obliqueseas), the rear side-line (in head seas) or the front side-line (in oblique sea).
     3. Fourier analysis is applied to the maximum cable tension to obtain the components ofsteady force, the linear and nonlinear wave forces. It is helpful to understand thecharacteristics of tensions when suffering from action of waves or wave-current.
     4. By comparing to the record of a fixed wave height gage, the corresponding position of the wave crest (or trough) relative to the cage system can be deduced at the moment when aspecial value appears in the time history of tension for the cage models in head seas.
     5. The relationship between the cable tension and wave height, wave period or theother parameters is obtained through data analysis. The sum of the Fourier coefficients up tothe fourth-order is defined as the maximum tension of cables. The relationship between themaximum cable tension and wave height is investigated (both in the cases of head and obliqueseas).
     6. Through dimensionless analysis, the relationship between non-dimensional maximumtension and wave length normalized by cage diameter or wave steepness is obtained. Theregression formulae relating the maximum cable tension of the leading-line and back-line tothe wave height for the prototype of sea cages in actual head sea conditions, as well as therelationship between the non-dimensional maximum tensions and wave steepness, arededuced. Comparing both results showes that the non-dimensional maximum tension can beused to reckon the maximum cable tension of prototype cages in real sea under various seaconditions.
     7. By comparing the maximum cable tension under the action of both waves and currentin head and oblique seas, it is found that the mooring system facing the waves is better thanthe one oblique to the waves.
     8. The relationship between the maximum cable tensions and flow parameters is obtainedfor a group of cages moored in both waves and currents. The maximum cable tensions ofprototype grouped cages are evaluated under a series of real sea conditions., It is found thatthe maximum cable tension is in the range of48KN-199KN when actual wave height is2m-5m. On the other hand, the maximum cable tension is in the range of81KN-402KN whenvelocity of current is31.6m/s together with wave height of2m-5m.
     9. In addition, an underwater stress auto-recorder is independently developed, which canmeasure the tension of underwater cables in sea for a long time. Tests under severe seaconditions are carried out and which verify the reliability of the stress recorder. Besides, thevariation of tensions in floating ropes under bad sea conditions is obtained, which will be thefirst-hand data in the future force analysis for the sea cages system.
     The non-dimensional analysis of maximum cable tension, the development ofunderwater stress auto-recorder and full scale measurements on site are the main points of thepresent research. The results of the present research will enrich the hydrodynamic studies ofnet-cages and the findings will provide reference for theoretical calculations and designs ofthe HDPE sea-cages with double floating tubes.
引文
[1] C Balash, B Colbourne, N Bose, W Raman-Nair (2006). Aquaculture net drag force and added mass.Aquacultural Engineering, Vol04, pp4-10.
    [2] CC Huang, HJ Tang, JY Liu (2007). Modeling volume deformation in gravity-type cages withistributed bottom weights or a rigid tub e-sinker.Aquacultural Engineering, Vol37, pp144-157.
    [3] CC Huang, HJ Tang, JY Liu (2006). Dynamical analysis of net cage structures for marine aquaculture:numerical simulation and model testing. Aquacultural Engineering, Vol35, pp258-270.
    [4] CW Lee, GH Lee, MY Choe, DH Song, SA Hosseini (2009). Dynamic behavior of a submersible fishcage.28th International Conference on Ocean, Offshore and Arctic Engineering.
    [5] CW Lee, YB Kim, GH Lee, MY Choe, MK Lee, KY Koo (2008). Dynamic simulation of a fish cagesystem subjected to currents and wave. Oceanic Engineering, Vol35, pp1521-1532.
    [6] DB Colbourne, JH Allen (2001). Observations on motions and loads in aquaculture cages from fullscale and model scale measurements. Aquacultural Engineering,Vol24, pp129-148.
    [7] DW Fredriksson, J DeCew, MR Swift, I Tsukrov,MD Chambers and B Celikkol (2004). The designand analysis of a four-cage grid mooring for open ocean aquaculture. Aquacultural Engineering, Vol32, pp77-94.
    [8] DW Fredriksson, JC DeCew, I Tsukrov (2007). Development of structural modeling techniques forevaluating HDPE plastic net pens used in marine aquaculture. Ocean Engineering, Vol34, pp2124-2137.
    [9] DW Fredriksson, MR Swift, JD Irish, I Tsukrov (2003). Fish cage and mooring system dynamicsusing physical and numerical models with field measurements. Aquacultural Engineering, Vol27,pp117-146.
    [10] DW Fredriksson (2001). Open ocean fish cage and mooring system dynamics. UNH:PhDdissertation.
    [11] FI Baranow. Theory and assessment of fishing gear (1948). Fish Industry Press, Moscow.
    [12] FK Gui and YC Li (2006). A Model for the Calculation of Velocity Reduction Behind A Plane FishingNet. China Ocean Engineering, Vol20(4), pp614-622.
    [13] GH Dong, TJ Xu, YP Zhao, YC Li and FK Gui (2010). Numerical simulation of hydrodynamicbehavior of gravity cage in irregular waves. Aquacultural Engineering,Vol (42), pp90–101.
    [14] I Tsukrov, O Eroshkin, D Fredriksson, MR Swift (2003). Finite element modeling of net panels using aconsistent net element. Ocean Engineering, Vol (30), pp251-270.
    [15] II Tsukrov, M Ozbay, MR Swift, B Celikkol, DW Fredriksson and K Baldwin (2000). Open oceanaquaculture engineering numerical modeling. Marine Technology Society Journal, Vol34(1),pp29-40.
    [16] J Chen, C Guang, H Xu, Z Chen, P Xu, X Yan, Y Wang and JA Liu (2007). A review of cage andpen aquaculture: China. FAO Fisheries Technical Paper, Vol498, Cage aquaculture-Regional reviewsand global overview: pp50-68.
    [17] J Irish, M Carroll, R Singer, A Newhall and W Paul (2001). Instrumentation for Open OceanAquaculture Monitoring. Woods Hole Oceanog. Inst. Tech. Repet. WHOI-2001-15.
    [18] JD Suhey, NH Kim, C Niezrecki (2005). Numerical modeling and design of inflatablestructures-application to open-ocean-aquaculture cages. Aquacultural Engineering, Vol33, pp284-303.
    [19] JM Zhan, XP Jia, YS Li, MG Sun, GX Guo and YZ Hu (2006). Analytical and experimentalinvestigation of drag on nets of fish cages. Aquacultural Engineering, Vol35, pp91–101.
    [20] JR Morison, JW Johnson and SA Schaaf (1950). The forces exerted by surface waves on piles.Journal of Petroleum Technology, Vol2(5), PP149-154.
    [21] LX Zhu, ZL Liang, LY Huang, FF Zhao (2006). Numerical simulation of dynamics of supple nets.china Ocean engineering, Vol20(3), pp444-456.
    [22] M Tauti. A relation between experiments on model and full scale of fishing net (1934). Nippon SuisanGakkaishi, Vol3, pp171-177.
    [23] M Tauti. The force acting on the plane net in motion through the water (1934). Nippon SuisanGakkaishi, Vol3, pp1-4.
    [24] MR Swift, DW Fredriksson, A Unrein and B Fullerton (2006). Drag force acting on biofouled netpanels. Aquacultural Engineering, Vol35, pp292-299.
    [25] Patursson, MR Swift, I Tsukrov, K Simonsen, K Baldwina, DW Fredrikssond and B Celikkolc(2010). Development of a porous media model with application to flow through and around a netpanel. Ocean Engineering, Vol37, pp314–324.
    [26] OM Pérez, TC Telfer, LG Ross.On the calculation of wave climate for offshore cage culture siteselection: a case study in Tenerife (2003). Aquacultural Engineering,Vol29, pp1-21.
    [27] P Lader, A Fredheim, E Lien (2001). Dynamic behaviour of3D nets exposed to waves and current.20th International Conference on Offshore Mechanics and Arctic Engineering.
    [28] P Lader, T Dempster, A Fredheim and Jensen (2008). Current induced net deformations in full-scalesea-cages for Atlantic salmon (Salmo salar). Aquacultural Engineering, Vol38, pp52–65.
    [29] PF Lader and B Enerhaug (2005). Experimental investigation of forces and geometry of a net cage inuniform flow.IEEE Journal of Oceanic Engineering,Vol30(1), pp79-84.
    [30] R Wan, FX Hu, and T Tokai (2002). A static analysis of the tension and configuration of submergedplane netting. Fisheries Science, Vol68(4), pp814-823.
    [31] R Wan, FX Hu, and T Tokai (2002). Computer simulation of shape and tension on fishing net and ropesystem. Fisheries Science, Vol68, pp1854-1856.
    [32] R Wan, WQ Huang, XF Song, FX Hu and T Tokai (2004). Statics of a gillnet placedin a uniformcurrent. Ocean Engineering, Vol31, pp1725–1740.
    [33] RWan, FX Hu, T Tokai and K Matuda (2002). A method for analyzing the static response ofsubmerged rope systems based on finite element method. Fisheries Science, Vol68(2), pp64-70.
    [34] T Takagi, T Shimizu, K Suzuki, T Hiraishi and K Yamamoto (2004). Validity and layout of “NaLA”: anet configuration and loading analysis system. Fisheries Research, Vol66, pp234-243.
    [35] TJ Xu, GH Dong, YP Zhao, YC Li and FK Gui (2011). Analysis of hydrodynamic behaviors of gravitynet cage in irregular waves. Ocean Engineering, Vol38, pp1544-1554.
    [36] W Dickson (1957). The use of model nets as a method of developing trawling gear. Modern fishinggear of the world, Vol1, pp163-174.
    [37] W Dickson and Trawl performance (1961). A study relating model to commercial trawls. DAFSMarine Research1. HMSO, Edinburgh.
    [38] YC Li, YP Zhao, FK Gui, B Teng and GH Dong (2006). Numerical simulation of the influence ofsinker weight on the deformation and load of net of gravity sea cage in uniform flow. ActaOceanologica Sinica, Vol25(3), pp124-137.
    [39] YP Zhao, YC Li, GH Dong, FK Gui and B Teng (2007). Numerical simulation of the effects ofstructure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage incurrent. Aquacultural Engineering, Vol36, pp284-301.
    [40]陈昌平,李玉成2006.组合式网箱运动特性研究.中国海洋平台.,21(5):21-33.
    [41]陈雪忠,黄锡昌.渔具模型试验理论与方法.上海:上海科技出版社,2011:119-154
    [42]崔江浩.重力式养殖网箱耐流特性的数值模拟及仿真.硕士学位论文.青岛:中国海洋大学,2005.
    [43]崔建章.渔具渔法学.北京:农业出版社,1996.
    [44]崔勇,关长涛,万荣,等.基于有限元方法对波流场中养殖网箱的系统动力分析.工程力学,2008,27(5):250-256
    [45]弗里德曼А Л.(1981.侯恩淮,高清廉译).渔具理论与设计..北京:海洋出版社,1988,33-47,57-63
    [46]冯士筰,李凤歧,李少箐.海洋科学导论.北京:高等教育出版社,2001,181-190
    [47]谷坚,徐皓,王刚.海洋渔业装备与工程研究进展(2009).现代渔业信息.2010,25(7):4-9.
    [48]关长涛,林德芳,黄滨,黄文强,崔勇.深海抗风浪网箱养殖设施与装备技术的研究进展.现代渔业信息.2007,22(4):3-8.
    [49]关长涛,林德芳,杨长厚,尉云乐,黄文强,黄滨等.HDPE双管圆形深海抗风浪网箱的研制.海洋水产研究.2005,26(1):61-67.
    [50]桂福坤,王炜霞,张怀慧.网箱工程发展现状及展望.大连水产学院学报.2002,17(1):70-78.
    [51]桂福坤.深水重力式网箱水动力学特性研究.博士学位论文.2006,大连,大连理工大学
    [52]郭根喜,黄小华,胡昱,陶启友,古恒光.高密度聚乙烯圆形网箱锚绳受力实测研究.中国水产科学.2010,17(4):847-852.
    [53]郭根喜.我国深水网箱养殖产业化发展存在的问题与基本对策.南方水产.2006,2(1):63-70.
    [54]郭建平,徐文辉.高密度聚乙烯升降式大型深水网箱的开发.现代化渔业.2003,5:30-31.
    [55]国家水产总局.渔具模型试验.北京:中国农业出版社,1980.
    [56]何鑫.重力式网箱群组系统耐流特性的数值模拟.硕士学位论文.青岛:中国海洋大学,2007
    [57]黄建光.中国农业出版社.中国渔业统计年鉴2011.2011:27,55
    [58]黄六一,梁振林,宋伟华等.方形箱网结构减流效果实验.中国水产科学,2007,14(5):860-863
    [59]黄六一,梁振林,赵芬芳等.网箱形状在海流中变化的模型实验.青岛海洋大学学报,2006,36(2):244-248
    [60]黄六一.方形重力式网箱抗风浪、耐流特性的试验研究.硕士学位论文.青岛:中国海洋大学,2006
    [61]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海:上海交通大学出版社,1992:39-41;54-55.
    [62]黄锡昌,苗振清,虞聪达.中国远洋捕捞手册.上海:上海科学技术出版社,2003.
    [63]黄锡昌.海洋捕捞手册.北京:中国农业出版社,1990.
    [64]黄小华,郭根喜,胡昱等.波流作用下深水网箱受力及运动变形的数值模拟[J].中国水产科学2011,18(2):443-450.
    [65]乐美龙.渔具理论与计算一般原理.北京:农业出版社,1959.
    [66]李玉成,陈昌平,董华洋,毛雨婵.重力式网箱锚碇形式优化的研究[J].中国造船.2005,46:98-104.
    [67]李玉成,陈昌平,李春柳等.重力式网箱减流效应的研究[J].中国造船,2005.11(suppl.):104-109.
    [68]李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出版社,2002:9-20.
    [69]梁超愉,张汉华,郭根喜等.海水网箱养殖现状及抗风浪网箱养殖的发展前景.水产科技.2002,4:10-13
    [70]梁超愉,张汉华,郭根喜等.圆形双浮管升降式抗风浪网箱及养殖技术.渔业现代化.2003,2:3-8.
    [71]林德芳,关长涛,黄文强等.抗风浪网箱材料性能的研究[J].海洋水产研究,2004,25(5):57-60.
    [72]林德芳,关长涛,黄文强.大型海水网箱设计中的材料选择.齐鲁渔业.2004,21(1):1-3.
    [73]刘永利,黄洪亮,张国胜,王鲁民,石建高.我国离岸深水网箱结构工艺的基础性研究现状.海洋渔业.2007,29(3):271-276.
    [74]农业部渔业局.中国农业出版社.中国渔业统计年鉴2010.2010:24,52
    [75]邱大洪.波浪理论及其在工程上的应用.北京:高等教育出版社,1985:140-146;274-290.
    [76]佘显炜.计算渔具力学导论.上海:上海科学技术文献出版社,2001:218-247.
    [77]松田皎.渔具物理学.东京:成山堂書店,2001.
    [78]宋伟华,梁振林,关长涛,等.方形网箱水平波浪力的迭加计算和实验验证.海洋与湖沼,2004,35(3):202-208
    [79]宋伟华.网衣波浪水动力学研究.博士学位论文.中国海洋大学,2006
    [80]孙意卿.海洋工程环境条件及其载荷.上海:上海交通大学出版社,1989:141-192.
    [81]万荣,崔勇,崔江浩,等.一种基于有限元原理的养殖网箱耐流特性的数值计算方法.中国海洋大学学报,2007,37(5):709-712
    [82]王鲁民,黄洪亮,王明彦.圆形重力式网箱阻力性能研究.中国海洋大学学报.2004,34(4):554-559.
    [83]徐皓,江涛.我国离岸养殖工程发展策略.渔业现代化.2012,39(4):1-7.
    [84]徐皓,张建华,丁建乐,陈军,刘鹰.国内外渔业装备与工程技术研究进展综述.渔业现代化.2010,37(2):1-8.
    [85]徐皓,张建华,丁建乐,陈军,刘鹰.国内外渔业装备与工程技术研究进展综述(续).渔业现代化.2010,37(3):1-19.
    [86]徐君卓.我国海水鱼类网箱养殖现状.科学养鱼.2006,9:1-2.
    [87]杨新华,高晓芳,陈雷.圆柱形沉浮式深海养殖网箱的受力分析.中国海洋大学学报.2004,34(6):1081-1084.
    [88]袁春海.乙丙无规共聚PPR管材料B4101性能分析及生产工艺优化[J].中外能源,2009,l4:83-89.
    [89]赵海涛,滕斌,李广伟等.竖直截断圆柱一阶波浪力的实验研究[J].中国海洋平台,2003,18(3):12-17
    [90]郑国富.抗风浪养殖网箱设计中若干问题的研究.中国水产.2001,302(1):54-58.
    [91]郑艳娜,董国海,桂福坤,李玉成,关长涛,林德芳.圆形重力式网箱浮架结构在波浪作用下的运动响应.工程力学.2006,23(1):222-228.
    [92]郑艳娜,董国海,桂福坤,李玉成,关长涛.圆形重力式网箱锚碇系统的受力研究.应用力学学报.2007,24(2):180-185.
    [93]中国人民共和国农业部渔业局.中国渔业统计年鉴2003.2004:13
    [94]中国人民共和国农业部渔业局.中国渔业统计年鉴2004.2005:11
    [95]中国人民共和国农业部渔业局.中国渔业统计年鉴2005.2006:10
    [96]中国人民共和国农业部渔业局.中国渔业统计年鉴2006.2007:9
    [97]中国人民共和国农业部渔业局.中国渔业统计年鉴2007.2008:10
    [98]中国人民共和国农业部渔业局.中国渔业统计年鉴2008.2009:12
    [99]中华人民共和国农业部渔业局网站.浙江洞头县在全国首创防浪堤提高深水网箱养殖效益[Z].http://www.cnfm. gov.cn,2005
    [100]周应祺,许柳雄,何其渝.渔具力学.北京:中国农业出版社,2001:51-68,119-133.
    [101]朱立新.流场中圆形养殖网箱动态响应的数值模拟研究.博士学位论文.青岛:中国海洋大学,2006
    [102]竺艳蓉.海洋工程波浪力学.天津:天津大学出版社,1991:9-19,64-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700