海洋弧菌QY103褐藻胶裂解酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐藻胶是由β-D-甘露糖醛酸和α-L-古罗糖醛酸两种糖单元通过1,4糖苷键聚合而成的线性大分子,主要存在于海带、马尾藻、巨藻等褐藻的细胞壁和细胞间质。另外,假单胞菌属、固氮菌属等细菌也可以产生胞外褐藻胶,但在β-D-甘露糖醛酸的2位或3位上发生O-乙酰化。铜绿假单胞菌是临床最常见的条件致病菌之一,它产生的乙酰化褐藻胶决定其生物膜(biofilm)的结构和功能;一旦形成生物膜,铜绿假单胞菌将具有极强的抗生素耐药性(比浮游细菌高100-1000倍)和逃避机体免疫系统攻击的能力,导致临床上持续性、难治性感染。因此,乙酰化褐藻胶是铜绿假单胞菌重要的致病因子。
     褐藻胶裂解酶能通过β-消去反应裂解褐藻胶的1,4糖苷键,在非还原性末端生成带有C4,5双键的不饱和糖醛酸。褐藻胶裂解酶在褐藻胶寡糖制备、防治铜绿假单胞菌感染、海藻研究等方面具有巨大应用前景,尤其在防治铜绿假单胞菌感染方面可能为解决细菌的耐药性开辟新途径。但目前所发现的褐藻胶裂解酶只有少数几种可以降解细菌产生的乙酰化褐藻胶,且比活力低,受人体中各种离子(如Ca~(2+)、Zn~(2+))的抑制作用较大,所以难以用于临床治疗。因此,高活力、高特异性的褐藻胶裂解酶的发现就成为研究的热点。
     本文利用以褐藻胶为唯一碳源的选择性培养基,从青岛近海筛选到褐藻胶裂解酶产量较高的菌株32株,其中菌株QY103酶活力最高,对褐藻胶和乙酰化褐藻胶的酶活分别达到5.87 U/mL和4.22 U/mL。通过形态观察、生理与生化特征测定、系统发育学分析,将菌株QY103鉴定为弧菌属细菌。
     经过条件优化,得到弧菌QY103最佳发酵培养基配方(%, w/v):褐藻酸钠0.5,NH4NO3 0.2,KH2PO4 0.4,K2HPO4 0.6,NaCl 3.0,MgSO4 0.01,FeSO4 0.01,pH 5.5。最佳发酵条件为:按3%(v/v)接种量接种培养基,28℃150 r/min振荡培养72 h。优化后,QY103到达产酶高峰的时间由4天缩短到3天,褐藻胶裂解酶最高产量由5.87 U/mL提高到45.26 U/mL,增加了6.71倍。
     利用硫酸铵分级沉淀、离子交换层析、凝胶过滤层析从弧菌QY103发酵液上清中纯化到一种新褐藻胶裂解酶,纯化15.13倍,得率为29.81%。SDS-PAGE表明达到电泳纯,分子量为35.6 kDa,命名为AlyVII。褐藻胶裂解酶AlyVII的比活力为1863.45 U/mg,最适温度40℃,在30℃下稳定;最适pH 6.0,在pH 5-9之间比较稳定;Na+、K+、Mg~(2+)、Ca~(2+)、Zn~(2+)、Ba~(2+)、EDTA能促进酶活性,而Mn~(2+)、Ni~(2+)、Fe~(2+)、SDS能抑制酶活性。褐藻胶裂解酶AlyVII能降解各种来源(包括褐藻和铜绿假单胞菌)的褐藻胶,对褐藻来源的褐藻胶和poly(M)片段降解能力更强。
     利用96孔板模型和flow cell模型检测了褐藻胶裂解酶AlyVII对7株铜绿假单胞菌菌株生物膜形成的抑制作用和对已形成生物膜的清除作用。AlyVII对其中6株具有抗生物膜作用,总有效率达到85.7%。50μg/mL AlyVII即对4株菌株生物膜形成的抑制率超过80%,对6株菌株生物膜的清除率为35.28%-65.77%。100μg/mL AlyVII则对5株菌株生物膜形成的抑制率和对已形成生物膜的清除率均超过80%。褐藻胶裂解酶AlyVII与庆大霉素联合使用,能提高庆大霉素对其中6株菌株生物膜内细菌的杀灭能力,使其MBEC降低16-64倍。褐藻胶裂解酶AlyVII对铜绿假单胞菌的生长略有促进作用。
     以上结果表明, AlyVII是第一个从弧菌中发现的能高效降解乙酰化褐藻胶的新褐藻胶裂解酶,能有效抑制和清除铜绿假单胞菌生物膜,且在囊性纤维化(CF)病人痰液中存在的Na+、K+、Mg~(2+)、Ca~(2+)、Zn~(2+)等离子能促进AlyVII的活性。因此,AlyVII有望发展成为一种辅助治疗铜绿假单胞菌生物膜相关感染的药物。
Alginates are linear polysaccharides in whichβ-D-mannuronic acid (M) andα-L-guluronic acid (G) are (1,4)-linked to form blocks of consecutive G residues (polyG), consecutive M residues (polyM), and alternating M and G residues (polyMG). Alginates are synthesized as cell wall components by brown seaweeds and as exopolysaccharides by some bacteria belonging to the genera Azotobacter and Pseudomonas. In bacterial alginates, some of the M residues may be O-2- and/or O-3-acetylated. Acetylated alginate produced by Pseudomonas aeruginosa, which is an opportunistic pathogen of humans and other species, plays a crucial role in the adherence of the bacterium to target cells, biofilm development, protection of bacteria from phagocytes and prevention of antibiotic uptake. Once P. aeruginosa cells develop biofilm, they become more resistant to antibiotics (100-1000 folds) and to the innate and adaptive killing components of the host than their planktonic counterparts, resulting in severe chronic infections which persist despite aggressive antimicrobial therapy and a robust inflammatory response. Consequently, acetylated alginate is a major pathogenic factor in patients infected by P. aeruginosa.
     Alginate lyases catalyze the depolymerization of alginates byβ-elimination of the 4-O-glycosidic bond, with formation of 4-deoxy-L-erythro-hex-4-ene pyranosyluronate at the nonreducing end of the resulting oligosaccharide. There are several potential applications for alginate lyase, such as production of alginate-derived oligosaccharides, treatment of patients infected with mucoid P. aeruginosa biofilm and isolation of protoplasts from marine algae. It seems that alginate lyase may be used to degrade acetylated alginate surrounding mucoid P. aeruginosa cells and make them more susceptible to phagocytosis and antibiotic therapy. However, only a few alginate lyases which can degrade acetylated have been reported, which give low activity against acetylated alginate in the presence of several metal ions (such as Ca~(2+), Zn~(2+)) found in purulent CF sputum.
     In this study, 32 strains with high production of alginate lyase are isolated from seawater or decaying thallus of Laminaria in Qingdao using medium containing alginate as the sole carbon source. Of them, strain QY103 yields the highest production of alginate lyase (5.87 U/mL against alginate and 4.22 U/mL against acetylated alginate). Strain QY103 is identified to belong to genus Vibrio using morphologic observation, physiological and biochemical methods, and molecular phylogenetic analysis based on the partial 16S rRNA gene sequence.
     The culture condition of alginate lyase production by Vibrio sp. QY103 is investigated. The optimized liquid fermentation medium (%, w/v) is: alginate 0.5, NH4NO3 0.2, KH2PO4 0.4, K2HPO4 0.6, NaCl 3.0, MgSO4 0.01, FeSO4 0.01, pH 5.5. After fermentation for 72 h at 150 r/min and at 28℃, the yield of alginate is up to 45.26 U/mL, which is 7.71-fold of that under the ordinary condition.
     An alginate lyase is purified 15.13-fold with a recovery yield of 29.81% from culture supernatants of Vibrio sp. QY103 to homogeneity using a combination of ammonium sulfate precipitation, DEAE-Sepharose FF anion-exchange chromatography and Superdex 75 gel filtration chromatography. The purified enzyme, which is named by AlyVII, gives a specific activity of 1863.45 U/mg and a single band on SDS-PAGE with a molecular mass of 35.6 kDa. AlyVII is most active at 40℃and at pH6.0 and is stable below 30℃and over a broad range of pH5.0-9.0. The activity of the enzyme is enhanced in the presence of Mg~(2+), Ca~(2+), Zn~(2+), Ba~(2+) and EDTA (0.1- to 0.5-fold at 1 mmol/L), Na+ (0.4-fold at 500 mmol/L) or K+ (0.2-fold at 100 mmol/L). Other compounds (Mn~(2+), Ni~(2+), Fe~(2+) and SDS tested at 1 mmol/L) inhibit the activity of the enzyme. AlyVII is more active against alginate, polyM and acetylated alginate from mucoid P. aeruginosa than against polyG.
     For approximately 86% of P. aeruginosa strains (6/7) tested in this study, alginat lyase AlyVII inhibits the formation of biofilm and disperses their formed biofilm in 96-well plate model and flow cell model. With the addition of AlyVII to a final concentration of 50μg/mL, formations of four strains’biofilms are inhibited by >80%, and formed biofilms of six strains are dispersed significantly (34.23%-64.72% of control biofilm remained). When treated with 100μg/mL AlyVII, both of inhibition efficiency and dispersion efficiency on biofilms of five strains exceed 80%. For 6/7 of P. aeruginosa strains tested in this study, addition of AlyVII decreases the MBEC of gentamicin to 1/16-1/64 of the control. However, AlyVII promotes slightly the growth of planktonic P. aeruginosa CS1.
     All together, alginate lyase AlyVII is the first acetylated alginate-degrading enzyme found in genus Vibrio. AlyVII exhibits anti-biofilm activity, and cations found in purulent CF sputum enhances the activity of AlyVII, therefore it may be used as therapeutic agent for the treatment of patients infected with mucoid P. aeruginosa biofilm.
引文
[1] Linker A, Jones RS. A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem, 1966, 241(16):3845-3851.
    [2] Gorin PA, Spencer JFT. Exocellular alginic acid from Azotobacter vinelandii. Can J Chem, 1966, 44:993-998.
    [3] Gacesa P. Alginates. Carbohydr. Polym., 1988, 8(3):161-182.
    [4] Haug A, Larsen B, Smidsr?d O. Studies on the sequence of uronic acid residues in alginic acid. Acta Chem. Scand. , 1967, 21:691-704.
    [5] Grasdalen H. High-field, 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydr. Res., 1983, 118:255-260.
    [6] Donnan F, Rose R. Osmotic pressure, molecular weight and viscosity of sodium alginate. Can. J. Res. Sect. B, 1950, 28:105-113.
    [7] Rees DA. Shapely polysaccharides. The eighth Colworth medal lecture. Biochem J, 1972, 126(2):257-273.
    [8] Rees D. Polysaccharide shapes and their interactions: some recent advances. Pure Appl. Chem., 1981, 53:1-14.
    [9] Russell NJ, Gacesa P. Chemistry and biology of the alginate of mucoid strains of Pseudomonas aeruginosa in cystic fibrosis. Mol Aspects Med, 1988, 10(1):1-91.
    [10] Tatnell PJ, Russell NJ, Gacesa P. Chemical analysis of alginates from mucoid strains of Pseudomonas aeruginosa. Biochem Soc Trans, 1994, 22(3):310S.
    [11] Tatnell PJ, Russell NJ, Govan JR, et al. Characterisation of alginates from mucoid strains of Pseudomonas aeruginosa. Biochem Soc Trans, 1996, 24(3):404S.
    [12] Skj?k-Br?k G, Zanetti F, Paoletti S. Effect of acetylation on some solution and gelling properties of alginates. Carbohydr. Res. , 1989, 185(1):131-138.
    [13] Geddie J, Sutherland I. The effect of acetylation on cation binding by algal and bacterial polysaccharides. Biotechnol. Appl. Biochem. , 1994, 20:117-129.
    [14] Nivens DE, Ohman DE, Williams J, et al. Role of alginate and its Oacetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol, 2001, 183(3):1047-1057.
    [15] Pier GB, Coleman F, Grout M, et al. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun, 2001, 69(3):1895-1901.
    [16] Raybaudi-Massilia RM, Mosqueda-Melgar J, Martin-Belloso O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol, 2008, 121(3):313-327.
    [17] Papageorgiou SK, Katsaros FK, Kouvelos EP, et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater, 2006, 137(3):1765-1772.
    [18] Jodra Y, Mijangos F. Ion exchange selectivities of calcium alginate gels for heavy metals. Water Sci Technol, 2001, 43(2):237-244.
    [19] Wang Q, Zhang N, Hu X, et al. Alginate/polyethylene glycol blend fibers and their properties for drug controlled release. J Biomed Mater Res A, 2007, 82(1):122-128.
    [20] Tugcu-Demiroz F, Acarturk F, Takka S, et al. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur J Pharm Biopharm, 2007, 67(2):491-497.
    [21] Sevgi F, Kaynarsoy B, Ertan G. An anti-inflammatory drug (mefenamic Acid) incorporated in biodegradable alginate beads: development and optimization of the process using factorial design. Pharm Dev Technol, 2008, 13(1):5-13.
    [22] Ashton RS, Banerjee A, Punyani S, et al. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials, 2007, 28(36):5518-5525.
    [23] Wikstrom J, Elomaa M, Syvajarvi H, et al. Alginate-based microencapsulation of retinal pigment epithelial cell line for cell therapy. Biomaterials, 2008, 29(7):869-876.
    [24] Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep, 2007, 7(4):314-320.
    [25] Takei T, Sakai S, Yokonuma T, et al. Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers. Biotechnol Prog, 2007, 23(1):182-186.
    [26] He H, Huang J, Ping F, et al. Calcium alginate film used for guided bone regeneration in mandible defects in a rabbit model. Cranio, 2008, 26(1):65-70.
    [27] Chiu CT, Lee JS, Chu CS, et al. Development of two alginate-based wound dressings. J Mater Sci Mater Med, 2008, Feb 12:Epub ahead of print
    [28] Razavi A, Khodadadi A, Eslami MB, et al. Therapeutic effect of sodium alginate in experimental chronic ulcerative colitis. Iran J Allergy Asthma Immunol, 2008, 7(1):13-18.
    [29]马丽丽,王兆钺,裘丽红, et al.藻酸双酯钠对急性脑梗死的抗血小板作用及临床疗效.血栓与止血学2005, 11(6):257-259.
    [30]孙成林,单丽沈,张京红, et al.藻酸双酯钠对下肢动脉硬化闭塞症疗效观察.中国心血管病研究杂志2004, 2(9):689-690.
    [31]王秋云,张继红,王怀新.藻酸双脂钠抗血栓作用机理探讨.中华医学全科杂志, 2003, 2(1):29.
    [32]韩仲岩,于增盛.藻酸双酯钠对缺血性脑血管病临床疗效、实验室观察及动物实验研究.中华神经精神科杂志1989, 22(2):99-103.
    [33] Liu CH, Wu JY, Chang JS. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour Technol, 2008, 99(6):1904-1910.
    [34] Prabakaran G, Hoti SL. Immobilization in alginate as a technique for the preservation of Bacillus thuringiensis var. israelensis for long-term preservation. J Microbiol Methods, 2008, 72(1):91-94.
    [35] Potumarthi R, Subhakar C, Pavani A, et al. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods. Bioresour Technol, 2008, 99(6):1776-1786.
    [36] Xu SW, Lu Y, Li J, et al. Preparation of novel silica-coated alginate gel beads for efficient encapsulation of yeast alcohol dehydrogenase. JBiomater Sci Polym Ed, 2007, 18(1):71-80.
    [37] Geng M, Li F, Xin X, et al. The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV-1 rgp120 and CD4 molecule. Antiviral Res, 2003, 59(2):127-135.
    [38] Liu H, Geng M, Xin X, et al. Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities. Glycobiology, 2005, 15(5):501-510.
    [39]高焱,于文功,韩峰, et al.甘糖酯对高脂血症大鼠血脂及脂蛋白脂酶的调节作用.药学学报, 2002, 37(9):687-690.
    [40]马洪明,姚子昂.甘糖酯对大鼠尿激酶型纤溶酶原激活物(uPA)mRNA水平的影响.青岛海洋大学学报:自然科学版1999, 29(4):595-598.
    [41]高焱,于文功,韩峰, et al.甘糖酯对高脂血症大鼠主动脉中MCP-1表达的抑制作用.药学学报, 2003, 38(8):582-585.
    [42]陈晓,路新枝,高焱, et al.甘糖酯抗氧化作用的分子机制.药学学报, 2004, 39(1):13-16.
    [43] Iwamoto Y, Xu X, Tamura T, et al. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci Biotechnol Biochem, 2003, 67(2):258-263.
    [44] Iwamoto M, Kurachi M, Nakashima T, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett, 2005, 579(20):4423-4429.
    [45] Yamamoto Y, Kurachi M, Yamaguchi K, et al. Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration. Carbohydr Res, 2007, 342(8):1133-1137.
    [46] Yoshida T, Hirano A, Wada H, et al. Alginic acid oligosaccharide suppresses Th2 development and IgE production by inducing IL-12 production. Int Arch Allergy Immunol, 2004, 133(3):239-247.
    [47] Uno T, Hattori M, Yoshida T. Oral administration of alginic acid oligosaccharide suppresses IgE production and inhibits the induction of oral tolerance. Biosci Biotechnol Biochem, 2006, 70(12):3054-3057.
    [48] Wang P, Jiang X, Jiang Y, et al. In vitro antioxidative activities of three marine oligosaccharides. Nat Prod Res, 2007, 21(7):646-654.
    [49]孙丽萍,薛长湖,许家超, et al.褐藻胶寡糖体外清除自由基活性的研究.中国海洋大学学报, 2005, 35(5):811-814.
    [50] Kawada A, Hiura N, Shiraiwa M, et al. Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett, 1997, 408(1):43-46.
    [51] Kawada A, Hiura N, Tajima S, et al. Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Arch Dermatol Res, 1999, 291(10):542-547.
    [52] Tajima S, Inoue H, Kawada A, et al. Alginate oligosaccharides modulate cell morphology, cell proliferation and collagen expression in human skin fibroblasts in vitro. Arch Dermatol Res, 1999, 291(7-8):432-436.
    [53] Ariyo B, Tamerler C, Bucke C, et al. Enhanced penicillin production by oligosaccharides from batch cultures of Penicillium chrysogenum in stirred-tank reactors. FEMS Microbiol Lett, 1998, 166:165-170.
    [54] Akiyama H, Endo T, Nakakita R, et al. Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem., 1992, 56(2):355-356.
    [55] Wang Y, Han F, Hu B, et al. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr. Res., 2006, 26(11):597-603.
    [56] Yonemoto Y, Tanaka H, Yamashita T, et al. Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J. Ferment. Bioeng., 1993, 75(1):68-70.
    [57] Natsume M, Kamo Y, Hirayama M, et al. Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydr Res, 1994, 258:187-197.
    [58] Iwasaki K, Matsubara Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotechnol Biochem, 2000, 64(5):1067-1070.
    [59] Xu X, Iwamoto Y, Kitamura Y, et al. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants.Biosci Biotechnol Biochem, 2003, 67(9):2022-2025.
    [60] Cao L, Xie L, Xue X, et al. Purification and characterization of alginate lyase from streptomyces species strain A5 isolated from banana rhizosphere. J Agric Food Chem, 2007, 55(13):5113-5117.
    [61] Anastassiou ED, Mintzas AC, Kounavis C, et al. Alginate production by clinical nonmucoid Pseudomonas aeruginosa strains. J Clin Microbiol, 1987, 25(4):656-659.
    [62] Hentzer M, Teitzel GM, Balzer GJ, et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol, 2001, 183(18):5395-5401.
    [63] Stapper AP, Narasimhan G, Ohman DE, et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol, 2004, 53(Pt 7):679-690.
    [64] May TB, Shinabarger D, Maharaj R, et al. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev, 1991, 4(2):191-206.
    [65] Gacesa P. Bacterial alginate biosynthesis--recent progress and future prospects. Microbiology, 1998, 144 ( Pt 5):1133-1143.
    [66] Darzins A, Nixon LL, Vanags RI, et al. Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J Bacteriol, 1985, 161(1):249-257.
    [67] Shinabarger D, Berry A, May TB, et al. Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem, 1991, 266(4):2080-2088.
    [68] Zielinski NA, Chakrabarty AM, Berry A. Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem, 1991, 266(15):9754-9763.
    [69] Deretic V, Gill JF, Chakrabarty AM. Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of thealgD gene. Nucleic Acids Res, 1987, 15(11):4567-4581.
    [70] Deretic V, Gill JF, Chakrabarty AM. Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol, 1987, 169(1):351-358.
    [71] Chitnis CE, Ohman DE. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol, 1993, 8(3):583-593.
    [72] Schurr MJ, Martin DW, Mudd MH, et al. The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res, 1993, 39(4):371-376.
    [73] Tatnell PJ, Russell NJ, Gacesa P. GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. Microbiology, 1994, 140 ( Pt 7):1745-1754.
    [74] Maharaj R, May TB, Wang SK, et al. Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene, 1993, 136(1-2):267-269.
    [75] Remminghorst U, Rehm BH. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol, 2006, 72(1):298-305.
    [76] Remminghorst U, Rehm BH. Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett, 2006, 580(16):3883-3888.
    [77] Merighi M, Lee VT, Hyodo M, et al. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol, 2007, 65(4):876-895.
    [78] Aarons SJ, Sutherland IW, Chakrabarty AM, et al. A novel gene, algK, from the alginate biosynthesis cluster of Pseudomonas aeruginosa. Microbiology, 1997, 143 ( Pt 2):641-652.
    [79] Jain S, Ohman DE. Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol, 1998, 180(3):634-641.
    [80] Monday SR, Schiller NL. Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX. J Bacteriol, 1996, 178(3):625-632.
    [81] Robles-Price A, Wong TY, Sletta H, et al. AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol, 2004, 186(21):7369-7377.
    [82] Gutsche J, Remminghorst U, Rehm BH. Biochemical analysis of alginate biosynthesis protein AlgX from Pseudomonas aeruginosa: purification of an AlgX-MucD (AlgY) protein complex. Biochimie, 2006, 88(3-4):245-251.
    [83] Chitnis CE, Ohman DE. Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J Bacteriol, 1990, 172(6):2894-2900.
    [84] Franklin MJ, Chitnis CE, Gacesa P, et al. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol, 1994, 176(7):1821-1830.
    [85] Jain S, Franklin MJ, Ertesvag H, et al. The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol, 2003, 47(4):1123-1133.
    [86] Franklin MJ, Ohman DE. Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J Bacteriol, 1996, 178(8):2186-2195.
    [87] Franklin MJ, Ohman DE. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol, 1993, 175(16):5057-5065.
    [88] Shinabarger D, May TB, Boyd A, et al. Nucleotide sequence and expression of the Pseudomonas aeruginosa algF gene controlling acetylation of alginate. Mol Microbiol, 1993, 9(5):1027-1035.
    [89] Franklin MJ, Ohman DE. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol, 2002, 184(11):3000-3007.
    [90] Franklin MJ, Douthit SA, McClure MA. Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol, 2004, 186(14):4759-4773.
    [91] Boyd A, Ghosh M, May TB, et al. Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product. Gene, 1993, 131(1):1-8.
    [92] Schiller NL, Monday SR, Boyd CM, et al. Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia coli. J Bacteriol, 1993, 175(15):4780-4789.
    [93] Jain S, Ohman DE. Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun, 2005, 73(10):6429-6436.
    [94] Albrecht MT, Schiller NL. Alginate lyase (AlgL) activity is required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol, 2005, 187(11):3869-3872.
    [95] Boyd A, Chakrabarty AM. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol, 1994, 60(7):2355-2359.
    [96] Chu L, May TB, Chakrabarty AM, et al. Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa. Gene, 1991, 107(1):1-10.
    [97] Rehm BH, Boheim G, Tommassen J, et al. Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol, 1994, 176(18):5639-5647.
    [98] Ramsey DM, Wozniak DJ. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol, 2005, 56(2):309-322.
    [99] Campos M, Martinez-Salazar JM, Lloret L, et al. Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol, 1996, 178(7):1793-1799.
    [100] Mejia-Ruiz H, Guzman J, Moreno S, et al. The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene, 1997, 199(1-2):271-277.
    [101] Pecina A, Pascual A, Paneque A. Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase: purification and characterization of the enzyme. J Bacteriol, 1999, 181(5):1409-1414.
    [102] Schurr MJ, Martin DW, Mudd MH, et al. Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol, 1994, 176(11):3375-3382.
    [103] Boucher JC, Schurr MJ, Yu H, et al. Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. Microbiology, 1997, 143 ( Pt 11):3473-3480.
    [104] Wu W, Badrane H, Arora S, et al. MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol, 2004, 186(22):7575-7585.
    [105] Wood LF, Ohman DE. Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J Bacteriol, 2006, 188(8):3134-3137.
    [106] Hershberger CD, Ye RW, Parsek MR, et al. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). Proc Natl Acad Sci U S A, 1995, 92(17):7941-7945.
    [107] Wozniak DJ, Ohman DE. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol, 1994, 176(19):6007-6014.
    [108] Wozniak DJ, Ohman DE. Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J Bacteriol, 1993, 175(13):4145-4153.
    [109] DeVries CA, Ohman DE. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol, 1994, 176(21):6677-6687.
    [110] Mathee K, McPherson CJ, Ohman DE. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol, 1997, 179(11):3711-3720.
    [111] Yorgey P, Rahme LG, Tan MW, et al. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol, 2001, 41(5):1063-1076.
    [112] Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol, 2006, 62(2):412-426.
    [113] Deretic V, Govan JR, Konyecsni WM, et al. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Mol Microbiol, 1990, 4(2):189-196.
    [114] Martin DW, Schurr MJ, Mudd MH, et al. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol, 1993, 9(3):497-506.
    [115] Boucher J, Yu H, Mudd M, et al. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun, 1997, 65:3838-3846.
    [116] Kimbara K, Chakrabarty AM. Control of alginate synthesis in Pseudomonas aeruginosa: regulation of the algR1 gene. Biochem Biophys Res Commun, 1989, 164(2):601-608.
    [117] Kato J, Chu L, Kitano K, et al. Nucleotide sequence of a regulatory region controlling alginate synthesis in Pseudomonas aeruginosa: characterization of the algR2 gene. Gene, 1989, 84(1):31-38.
    [118] Kato J, Misra TK, Chakrabarty AM. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1990, 87(8):2887-2891.
    [119] Goldberg JB, Ohman DE. Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate. J Bacteriol, 1987, 169(4):1593-1602.
    [120] Kato J, Chakrabarty AM. Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1991,88(5):1760-1764.
    [121] Mohr CD, Leveau JH, Krieg DP, et al. AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J Bacteriol, 1992, 174(20):6624-6633.
    [122] Zielinski NA, Maharaj R, Roychoudhury S, et al. Alginate synthesis in Pseudomonas aeruginosa: environmental regulation of the algC promoter. J Bacteriol, 1992, 174(23):7680-7688.
    [123] Roychoudhury S, Sakai K, Chakrabarty AM. AlgR2 is an ATP/GTP-dependent protein kinase involved in alginate synthesis by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1992, 89(7):2659-2663.
    [124] Roychoudhury S, Sakai K, Schlictman D, et al. Signal transduction in exopolysaccharide alginate synthesis: phosphorylation of the response regulator AlgR1 in Pseudomonas aeruginosa and Escherichia coli. Gene, 1992, 112(1):45-51.
    [125] Wozniak DJ, Ohman DE. Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol, 1991, 173(4):1406-1413.
    [126] Goldberg JB, Dahnke T. Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol, 1992, 6(1):59-66.
    [127] Leech AJ, Sprinkle A, Wood L, et al. The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J Bacteriol, 2008, 190(2):581-589.
    [128] Baynham PJ, Wozniak DJ. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol, 1996, 22(1):97-108.
    [129] Yu H, Mudd M, Boucher JC, et al. Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol, 1997, 179(1):187-193.
    [130] Baynham PJ, Brown AL, Hall LL, et al. Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesisand algD transcriptional activation. Mol Microbiol, 1999, 33(5):1069-1080.
    [131] Govan J, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev, 1996, 60:539-574.
    [132] Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol, 1989, 171(5):2312-2317.
    [133] DeVault JD, Kimbara K, Chakrabarty AM. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol, 1990, 4(5):737-745.
    [134] Mohr CD, Martin DW, Konyecsni WM, et al. Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol, 1990, 172(11):6576-6580.
    [135] Gill JF, Deretic V, Chakrabarty AM. Alginate production by the mucoid Pseudomonas aeruginosa associated with cystic fibrosis. Microbiol Sci, 1987, 4(10):296-299.
    [136] Burns JL, Gibson RL, McNamara S, et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis, 2001, 183(3):444-452.
    [137] Pier G. Pseudomonas aeruginosa: a key problem in cystic fibrosis. . ASM News, 1998, 6:339-347.
    [138] Costerton JW, Lewandowski Z, DeBeer D, et al. Biofilms, the customized microniche. J Bacteriol, 1994, 176(8):2137-2142.
    [139] Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol, 1995, 49:711-745.
    [140] Stickler D. Biofilms. Curr Opin Microbiol, 1999, 2(3):270-275.
    [141] Elvers KT, Leeming K, Moore CP, et al. Bacterial-fungal biofilms in flowing water photo-processing tanks. J Appl Microbiol, 1998, 84(4):607-618.
    [142] Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a commoncause of persistent infections. Science, 1999, 284(5418):1318-1322.
    [143] Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol, 2003, 57:677-701.
    [144] Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol, 2007, 10(6):644-648.
    [145] Singh P, Schaefer A, Parsek M, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 2000, 407:762-764.
    [146] Martin D, Schurr M, Mudd M, et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 1993, 90:8377-8381.
    [147] Baker NR, Svanborg-Eden C. Role of alginate in the adherence of Pseudomonas aeruginosa. Antibiot Chemother, 1989, 42:72-79.
    [148] Tielen P, Strathmann M, Jaeger KE, et al. Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res, 2005, 160(2):165-176.
    [149] Baltimore RS, Cross AS, Dobek AS. The inhibitory effect of sodium alginate on antibiotic activity against mucoid and non-mucoid strains of Pseudomonas aeruginosa. J Antimicrob Chemother, 1987, 20(6):815-823.
    [150] Bayer AS, Speert DP, Park S, et al. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun, 1991, 59(1):302-308.
    [151] Bolister N, Basker M, Hodges NA, et al. The diffusion of beta-lactam antibiotics through mixed gels of cystic fibrosis-derived mucin and Pseudomonas aeruginosa alginate. J Antimicrob Chemother, 1991, 27(3):285-293.
    [152] Hodges NA, Gordon CA. Protection of Pseudomonas aeruginosa against ciprofloxacin and beta-lactams by homologous alginate. Antimicrob Agents Chemother, 1991, 35(11):2450-2452.
    [153] Takahashi A, Yomoda S, Ushijima Y, et al. Ofloxacin, norfloxacin and ceftazidime increase the production of alginate and promote the formationof biofilm of Pseudomonas aeruginosa in vitro. J Antimicrob Chemother, 1995, 36(4):743-745.
    [154] Pina SE, Mattingly SJ. The role of fluoroquinolones in the promotion of alginate synthesis and antibiotic resistance in Pseudomonas aeruginosa. Curr Microbiol, 1997, 35(2):103-108.
    [155] Simpson JA, Smith SE, Dean RT. Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J Gen Microbiol, 1988, 134(1):29-36.
    [156] Pedersen SS, Kharazmi A, Espersen F, et al. Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun, 1990, 58(10):3363-3368.
    [157] Mai GT, Seow WK, Pier GB, et al. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect Immun, 1993, 61(2):559-564.
    [158] Leid JG, Willson CJ, Shirtliff ME, et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol, 2005, 175(11):7512-7518.
    [159] Learn DB, Brestel EP, Seetharama S. Hypochlorite scavenging by Pseudomonas aeruginosa alginate. Infect Immun, 1987, 55(8):1813-1818.
    [160] Doig P, Smith NR, Todd T, et al. Characterization of the binding of Pseudomonas aeruginosa alginate to human epithelial cells. Infect Immun, 1987, 55(6):1517-1522.
    [161] Massengale AR, Quinn FJ, Williams A, et al. The effect of alginate on the invasion of cystic fibrosis respiratory epithelial cells by clinical isolates of Pseudomonas aeruginosa. Exp Lung Res, 2000, 26(3):163-178.
    [162] Song Z, Wu H, Ciofu O, et al. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. J Med Microbiol, 2003, 52(Pt 9):731-740.
    [163] Donlan R, Costerton J. Biofilms: survival mechanisms of clinicallyrelevant microorganisms. Clin Microbiol Rev, 2002, 15:167-193.
    [164] Roychoudhury S, Zielinski NA, DeVault JD, et al. Pseudomonas aeruginosa infection in cystic fibrosis: biosynthesis of alginate as a virulence factor. Antibiot Chemother, 1991, 44:63-67.
    [165] Pedersen SS, Hoiby N, Espersen F, et al. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax, 1992, 47(1):6-13.
    [166] Wong TY, Preston LA, Schiller NL. ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol, 2000, 54:289-340.
    [167] Madgwick J, Haug A, Larsen B. Alginate lyase in the brown alga Laminaria digitata (Huds.) Lamour. Acta Chem Scand, 1973, 27(2):711-712.
    [168] Madgwick J, Haug A, Larsen B. Ionic requirements of alginate-modifying enzymes in the marine alga Pelvetia canaliculata (L.) Dcne. et Thur. . Bot. Mar., 1978, 21:1-3.
    [169] Watanabe T, Nisizawa K. Enzymatic studies on alginate lyase from Undaria pinnatifida in relation to texturesoftening prevention by ash-treatment (Haiboshi). Bull. Jpn. Soc. Sci. Fish., 1982, 48:243-249.
    [170] Nakada HI, Sweeny PC. Alginic acid degradation by eliminases from abalone hepatopancreas. J Biol Chem, 1967, 242(5):845-851.
    [171] Muramatsu T, Hirose S, Katayose M. Isolation and properties of alginate lyase from the mid-gut gland of wreath shell Turbo cornutus. Agric. Biol. Chem., 1977, 41:1939-1946.
    [172] Nisizawa K, Fujibayashi S, Kashiwabara Y. Alginate lyases in the hepatopancreas of a marine mollusc, Dolabella auricula Solander. J. Biochem. , 1968, 64:25-37.
    [173] Favorov VV, Vozhova EI, Denisenko VA, et al. A study of the reaction catalysed by alginate lyase VI from the sea mollusc, Littorina sp. Biochim Biophys Acta, 1979, 569(2):259-266.
    [174] Yoon HJ, Hashimoto W, Miyake O, et al. Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginatelyases. Protein Expr Purif, 2000, 19(1):84-90.
    [175] Song K, Yu WG, Han F, et al. [Purification and characterization of alginate lyase from marine bacterium Vibrio sp. QY101]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 2003, 35(5):473-477.
    [176] Hashimoto W, Miyake O, Ochiai A, et al. Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV') as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution. J Biosci Bioeng, 2005, 99(1):48-54.
    [177] Boyen C, Bertheau Y, Barbeyron T, et al. Preparation of guluronate lyase from Pseudomonas alginovora for protoplast isolation in Laminaria. Enzyme Microb. Technol. , 1990, 12:885-890.
    [178] Muramatsu T, Egawa K. Isozymes of alginate lyase in the mid-gut gland of Turbo cornutus. Agric. Biol. Chem., 1980, 44:2587-2594.
    [179] Chavagnat F, Duez C, Guinand M, et al. Cloning, sequencing and overexpression in Escherichia coli of the alginatelyase-encoding aly gene of Pseudomonas alginovora: identification of three classes of alginate lyases. Biochem J, 1996, 319 ( Pt 2):575-583.
    [180] Sugimura II, Sawabe T, Ezura Y. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase. Mar Biotechnol (NY), 2000, 2(1):65-73.
    [181] Sawabe T, Ezura Y, Kimura T. Purification and characterization of an alginate lyase from marine Alteromonas sp. . Nippon Suisan Gakkaishi, 1992, 58:521-527.
    [182] Sawabe T, Ohtsuka M, Ezura Y. Novel alginate lyases from marine bacterium Alteromonas sp. strain H-4. Carbohydr Res, 1997, 304(1):69-76.
    [183] Sawabe T, Sawada C, Suzuki E, et al. Intracellular alginateoligosaccharide degrading enzyme activity that is incapable of degrading intact sodium alginate from a marine bacterium Alteromonas sp. Fish. Sci., 1998, 64:320-334.
    [184] Hashimoto W, Miyake O, Momma K, et al. Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol, 2000,182(16):4572-4577.
    [185] Miyake O, Hashimoto W, Murata K. An exotype alginate lyase in Sphingomonas sp. A1: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expr Purif, 2003, 29(1):33-41.
    [186] Gacesa P. Alginate-modifying enzymes: a proposed unified mechanism of action for the lyases and epimerases. FEBS Lett, 1987, 212:199-202.
    [187] Gacesa P. Enzymic degradation of alginates. Int J Biochem, 1992, 24(4):545-552.
    [188] Doubet RS, Quatrano RS. Isolation of Marine Bacteria Capable of Producing Specific Lyases for Alginate Degradation. Appl Environ Microbiol, 1982, 44(3):754-756.
    [189] Brown BJ, Preston JF, 3rd. L-guluronan-specific alginate lyase from a marine bacterium associated with Sargassum. Carbohydr Res, 1991, 211(1):91-102.
    [190] Doubet RS, Quatrano RS. Properties of Alginate Lyases from Marine Bacteria. Appl Environ Microbiol, 1984, 47(4):699-703.
    [191] Boyd J, Turvey JR. Isolation of poly-alpha-L-guluronate lyase from Klebsiella aerogenes. Carbohydr Res, 1977, 57:163-171.
    [192] Tseng C, Yamaguchi K, Manabu K. Isolation and some properties of alginate lyase from a marine bacterium Vibrio sp. AL - 128. Nippon Suisan Gakkaishi, 1992, 58(3):533-538.
    [193] Wainwright M, Sherbrock-Cox V. Factors influencing alginate degradation by the marine fungi: Dendryphiella salina and D. arenaria. Bot. Mar., 1981, 24:489-491.
    [194] Kitamikado M, Tseng CH, Yamaguchi K, et al. Two types of bacterial alginate lyases. Appl Environ Microbiol, 1992, 58(8):2474-2478.
    [195] Tseng C, Yamaguchi K, K M. Alginate lyase from Vibrio alginolyticus ATCC 17749. Nippon Suisan Gakkaishi 1992, 58(11):2063-2067.
    [196] Davidson IW, Sutherland IW, Lawson CJ. Purification and properties of an alginate lyase from a marine bacterium. Biochem J, 1976, 159(3):707-713.
    [197] Suzuki H, Suzuki K, Inoue A, et al. A novel oligoalginate lyase fromabalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydr Res, 2006, 341(11):1809-1819.
    [198] Seiderer L, Newell R, Cook P. Quantitative significance of style enzymes from two marine mussels (Choromytilus meridionalis Krauss and Perna perna Linnaeus) in relation to diet. Mar. Biol. Lett, 1982, 3:257-271.
    [199] Caswell RC, Gacesa P, Lutrell KE, et al. Molecular cloning and heterologous expression of a Klebsiella pneumoniae gene encoding alginate lyase. Gene, 1989, 75(1):127-134.
    [200] Nguyen L, Schiller N. Identification of a slime exopolysaccharide depolymerase in mucoid strains of Pseudomonas aeruginosa. Curr. Microbiol, 1989, 18:323-329.
    [201] Kennedy L, McDowell K, Sutherland I. Alginases from Azotobacter species. J. Gen. Microbiol, 1992, 138:2465-2471.
    [202] Penaloza-Vazquez A, Kidambi SP, Chakrabarty AM, et al. Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J Bacteriol, 1997, 179(14):4464-4472.
    [203] May TB, Chakrabarty AM. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol, 1994, 2(5):151-157.
    [204] Sadoff H. Encystment and germination in Azotobacter vinelandii. Bacteriol. Rev, 1975, 39:516-539.
    [205] Mrsny RJ, Lazazzera BA, Daugherty AL, et al. Addition of a bacterial alginate lyase to purulent CF sputum in vitro can result in the disruption of alginate and modification of sputum viscoelasticity. Pulm Pharmacol, 1994, 7(6):357-366.
    [206] Hatch RA, Schiller NL. Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1998, 42(4):974-977.
    [207] Alkawash MA, Soothill JS, Schiller NL. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. Apmis, 2006, 114(2):131-138.
    [208] Butler D, ?stgaard K, Boyen C, et al. Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata. J. Exp. Bot,1989, 40:1237-1246.
    [209] Ducreux G, Kloareg B. Plant regeneration from protoplasts of Sphacelaria (Phaeophyceae). Planta, 1988, 174:25-29.
    [210] Kloareg B, Polne-Fuller M, Gibor A. Mass production of viable protoplasts from Macrocystis pyrifera (L.) C. Ag. (Phaeophyta). Plant Sci, 1989, 62:105-112.
    [211] Kloareg B, Quatrano R. Isolation of protoplasts from zygotes of Fucus disticus (L.) Powell (Phaeophyta). Plant Sci, 1987, 50:189-194.
    [212] Saga N, Sakai Y. Isolation of protoplasts from Laminaria and Porphyra. Bull. Jpn. Soc. Sci. Fish., 1984, 50:1085.
    [213] Boyen C, Kloareg B, Polne-Fuller M, et al. Preparation of alginate lyases from marine molluscs for protoplast isolation in brown algae. Phycologia, 1990, 29:173-181.
    [214] Ostgaard K, Knutsen SH, Dyrset N, et al. Production and characterization of guluronate lyase from Klebsiella pneumoniae for applications in seaweed biotechnology. Enzyme Microb Technol, 1993, 15(9):756-763.
    [215] Currie A, Turvey J. An enzymatic method for the assay of D-mannuronan C-5 epimerase activity. Carbohydr. Res., 1982, 107:156-159.
    [216] Piggott N, Sutherland I, Jarman T. Enzymes involved in the biosynthesis of alginate by Pseudomonas aeruginosa. Eur. J. Appl. Microbiol. Biotechnol, 1981, 13:179-183.
    [217] Heyraud A, Colin-Morel P, Gey C, et al. An enzymatic method for preparation of homopolymannuronate blocks and strictly alternating sequences of mannuronic and guluronic units. Carbohydr Res, 1998, 308(3-4):417-422.
    [218] Ochi Y, Takeuchi T, Murata K, et al. A simple method for preparation of poly-mannuronate using poly-guluronate lyase. Biosci. Biotechnol. Biochem., 1995, 59:1560-1561.
    [219] Oppenhimer CH, Zobell CE. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res, 1952, 11:10-18.
    [220] Furniss AL, Lee JV, Donovan TJ Public health laboratory service, Monograph series No.11. London: Her Majesty’s Stationery Office, 1978.
    [221]萨姆布鲁克J,拉塞尔DW.分子克隆实验指南(第三版).北京:科学出版社, 2002, 1595.
    [222] Ohman DE, Chakrabarty AM. Utilization of human respiratory secretions by mucoid Pseudomonas aeruginosa of cystic fibrosis origin. Infect Immun, 1982, 37(2):662-669.
    [223] Preiss J, Ashwell G. Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosac-charides and 4-deoxy-L-erythro-5-hexoseulose uronic acid. J Biol Chem, 1962, 237:309-316.
    [224]沈萍,范秀容,李广武.微生物学实验.北京:高等教育出版社,1999. 26-46.
    [225] Holt JG, Krieg NR, Sneath PHA, et al. Bergey’s Manual of Determinative Bacteriology. 9th ed. Baltimore: William and Wilkins, 1994. 260-274.
    [226] Oliver JD. Taxonomic scheme for the identification of marine bacteria. Deep Sea Res, 1982, 29:795-798.
    [227]奥斯伯F,金斯顿RE,塞德曼JG,et al.精编分子生物学实验指南.北京:科学出版社,1998. 39.
    [228]莫照兰,茅云翔,陈师勇, et al.一种牙鲆出血症病原菌的分子生物学鉴定.高技术通讯, 2001, 11(12):12-17.
    [229]焦振泉,刘秀梅. 16s rRNA序列同源性分析与细菌系统分类鉴定.国外医学卫生学分册, 1998, 25(1):12-16.
    [230]傅晓妍,李京宝,韩峰, et al.褐藻胶裂解酶产生菌Vibrio sp. QY102的发酵条件优化中国海洋大学学报(自然科学版) , 2007, 37(3):432-436.
    [231] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
    [232] Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem, 1987, 262(21):10035-10038.
    [233] Knutson CA, Jeanes A. A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem, 1968, 24(3):470-481.
    [234] Hestrin S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem, 1949, 180(1):249-261.
    [235] Li J, Yu W, Han F, et al. [Purification and characterization of a novel alginate lyase from marine Vibrio sp. QY102]. Wei Sheng Wu Xue Bao, 2003, 43:753-757.
    [236] Ertesvag H, Erlien F, Skjak-Braek G, et al. Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J Bacteriol, 1998, 180(15):3779-3784.
    [237] Malissard M, Duez C, Guinand M, et al. Sequence of a gene encoding a (poly ManA) alginate lyase active on Pseudomonas aeruginosa alginate. FEMS Microbiol Lett, 1993, 110(1):101-106.
    [238] Yamasaki M, Moriwaki S, Miyake O, et al. Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7: a novel alginate lyase with a beta-sandwich fold. J Biol Chem, 2004, 279(30):31863-31872.
    [239] Hisano T, Nishimura M, Yonemoto Y, et al. Bacterial alginate lyase highly active on acetylaged alginates. J Ferment Bioeng, 1993, 75:332-335.
    [240] Boles BR, Thoendel M, Singh PK. Self-generated diversity produces "insurance effects" in biofilm communities. Proc Natl Acad Sci U S A, 2004, 101(47):16630-16635.
    [241] Heydorn A, Nielsen AT, Hentzer M, et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 2000, 146 ( Pt 10):2395-2407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700