酸性矿山废水中Zn~(2+)、Fe~(2+)、Mn~(2+)的分离及处理新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性矿山废水pH值低,水量大,金属离子含量高,如果直接排放,将对水体产生严重污染,破坏生态环境,危害人类健康。
     本论文采用两种方法对含Fe2+、Fe3+、Mn2+、Zn2+浓度分别为2742mg·L-1、158 mg·L-1、315 mg·L-1、150 mg·L-1的酸性矿山废水进行处理,结果表明,废水经处理后均达到国家污水综合排放标准(GB8978-1996),并实现了资源化。
     采用石灰与氢氧化钠二段中和法处理酸性矿山废水。用石灰调节废水pH值至5时,铁锰锌去除率分别为11.96%、5.97%、12.43%,一段中和渣为石膏(CaS04-2H20)。再采用氢氧化钠二段中和,当废水pH值为10.20,曝气流量为50mL-min"',反应时间为20min,反应温度为12℃时,废水中铁锰锌去除率均达到99.7%以上,废水中TFe、Mn2+、Zn2+残留浓度分别为0.08 mg·L-1、0.81mg·L-1、0.03mg·L-1。XRD分析表明二段中和渣为锰锌铁氧体(Fe2Mn0.5Zn0.5O4·nH2O)和四氧化三铁(Fe304)。石灰与氢氧化钠二段中和法与石灰中和法比较,二段中和渣量少,二段中和渣具有综合利用价值。
     采用机械活化硫精矿吸附,氧化沉淀以及氢氧化钠沉淀法处理酸性矿山废水,使废水中锌、铁、锰得到分离与回收。结果表明,硫精矿活化的最佳条件是:球料质量比为8:1,球磨时间为4h,液固比为2:1。当废水pH值为1.83,在10升酸性矿山废水中加入活化硫精矿975g,反应20min后,铁、锰、锌浓度分别为5466.84 mg·L-1、353.04 mg·L-1、1.33 mg·L-1。废水经除锌后,取10L废水,当废水pH值为6.92,空气流量为500mL·min-1,反应时间为2.5h,搅拌速度为300r·min-1时,铁、锰残留浓度分别为97.96 mg·L-1.290.55 mg·L-1。XRD分析表明氧化沉淀渣为Fe3O4,渣中铁含量为52.73%。废水经除铁后用氢氧化钠溶液调节pH至11.01,反应时间为30min时,废水中锰残留浓度为1.15 mg-L-’,所得锰渣含锰达到34.47%。除锰废水经硫酸调节pH为7后达标排放。
     硫精矿经球磨后粒度变小,比表面积增大,反应活性提高,在活化过程中生成SO42-、OH,增强其亲水性,溶解度增大。研究表明活化硫精矿在酸性条件下溶解产生S2-,S2-与废水中Zn2+发生化学沉淀反应,产物为ZnS,继而ZnS被活化硫精矿吸附共沉淀。因此,活化硫精矿除锌机理主要为化学沉淀反应和吸附共沉淀。
Acid mine drainage has the characteristics of low pH, large quantity and high content of metal ions. If it is discharged into natural environment without being treated, it will make the water body polluted badly, the ecological environment damaged, even it will endanger human health.
     Two methods were used to treat acid mine drainage, in which the concentrations of Fe2+, Fe3+, Mn2+ and Zn2+ are 2742 mg·L-1,158 mg·L-1, 315 mg·L-1 and 150 mg·L-1 respectively. The results show that the treated wasterwater can reach the Chinese standards of wastewater discharge (GB8978—1996) and realize the reclamation.
     The treatment of acid mine drainage by two-steps neutralization method of lime and sodium hydroxide was studied. After the pH of the wastewater is adjusted to about 5 with lime, the removal rates of total iron(TFe), Mn and Zn are 14.14%,5.94% and 13.91% respectively. The first-step sediment is gypsum(CaSO4·2H2O). In the second-step, sodium hydroxide was used as neutralizing agent. Under the conditions that pH is 10.20, airflow is 50mL·min-1, reaction time is 20 min,reaction temperature is 12℃, the removal rates of TFe, Mn and Zn are all up to 99.7%, and the concentrations of TFe, Mn and Zn are 0.08 mg·L-1,0.81 mg·L-1 and 0.03 mg·L-1 respectively. XRD shows that the second-step sediment are Fe2Mn0.5Zn0.504·nH20 and Fe3O4. Comparing two-steps neutralization method with lime neutralization method, the two-steps neutralization method produces less slag which has comprehensive utilization value.
     Separation and recovery of Zn, Fe and Mn from acid mine drainage were researched by applying absorption with mechanically activated pyrite, oxidation-precipitation and sodium hydroxide neutralization. The results show that the optimum conditions of mechanically activated pyrite are as follows:ball-to-pyrite weight ratio is 8:1, grinding time is 4h, liquid-solid ratio is 2:1. The concentrations of TFe, Mn and Zn are 5466.84 mg·L-1, 353.04 mg·L-1 and 1.33 mg·L-1 respectively when the pH of the acid mine drainage is 1.83, the dosage of activated pyrite is 975g in 10L wastewater, reaction time is 20 min. In 10 L wastewater after removing Zn, the residual Fe and Mn are 97.96 mg·L-1 and 290.55 mg·L-1 respectively when the pH of the wastewater is 6.92, airflow is 500mL·min-1, reaction time is 2.5h, stirring speed is 300r·min-1. XRD shows that the product of oxidation-precipitation is Fe3O4, in which the content of Fe is 52.73%. The residual Mn is 1.15 mg·L-1, and the Mn content in the sediment is 34.47% when the pH of the wastewater is adjusted to about 11.01 with sodium hydroxide solution, reaction time is 30min. The effluent quality can meet the Chinese standards of wastewater discharge (GB8978—1996) after the pH of the Mn removing wastewater is adjusted to 7 with sulfuric acid.
     After griding, pyrite particle size became smaller, specific surface area increased, reaction activity increased, SO42- and OH which can improve its hydrophilicity were produced, and the solubility of pyrite increased. Research shows that under the acidic conditions, activated pyrite dissolves and produces S2-,S2- reacts with Zn2+ and produces ZnS, which is adsorbed and co-precipitates with activated pyrite. The main mechanism of removing Zn by activated pyrite is chemic precipitation reaction and absorption co-precipitation.
引文
[1]奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].北京:高等教育出版社,2004.31
    [2]United Nations Educational, Scientific, and Cultural Organization. World Water Development Report 3 "Water in a Changing World".2009.3.16
    [3]石辉,彭可珊.我国的水资源问题与可持续利用[J].中国人口·资源与环境,2002,12(6):23~25
    [4]万云霞,周长勇.人水和谐发展的目标、挑战与对策研究[J].人民黄河,2009,31(6):18~19
    [5]中华人民共和国环境保护部.2008年中国环境状况公报.2009,4~29
    [6]鞠海燕,黄春文,罗文海,等.金属矿山酸性废水危害及治理技术的现状与对策[J].中国钨业,2008,23(2):41~44
    [7]石德坤.矿山酸性废水治理研究[J].水资源保护,2008,24(1):102~103
    [8]杨根祥,沙日娜,乌云高娃.酸性矿山废水的污染与治理技术研究[J].西部探矿工程,2000(6):51~52
    [9]陈武,季寿元.矿物学导论[M].地质出版社,1985
    [10]臧磊.硫精矿处理电镀重金属废水的研究[D].西安:西安建筑科技大学,2008
    [11]陆瑞生,隆华庭,刘效疆等.二硫化铁晶体结构对电化学性能的影响[J].研究与设计,2001,25(3):225~228
    [12]韦冠俊.矿山环境工程[M].北京:冶金工业出版社,2001.94~95
    [13]潘科,李正山.矿山酸性废水治理技术及其发展趋势[J].四川环境,2007,26(5):83~86
    [14]Ata Akcil, Soner Koldas. Acid Mine Drainag (AMD):causes, treatment and case studies. Journal of Cleaner Production 2006,14:1139-1145
    [15]罗凯,张建国.矿山酸性废水治理研究现状[J].资源环境与工程,2005,19(1):45~48
    [16]刘志勇,陈建中.酸性矿山废水的处理研究[J].云南环境科学.2004,23(增刊11:152~156
    [17]马尧,胡宝群,孙占学.矿山酸性废水治理的研究综述[J].矿业工程,2006,4(3):55~57
    [18]杨正全,李晓丹,高波.矿山废水污染与防治[J].辽宁工程技术大学学报,2002,21(4):523~525
    [19]饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景[J].矿业工程,2005,3(3):47~49
    [20]Y.C. Sharma, Uma, S.N. Singh, Paras, F. Gode. Fly ash for the removal of Mn(II) from aqueous solutions and wastewaters[J]. Chemical Engineering Journal, 2007,132:319~323
    [21]卢志坚,余新华,黄权.矿山废水对饮用水水质及人群肿瘤死亡的影响[J].环境与健康杂志,2004,21(5):303~304
    [22]钱小青,葛丽英,赵由才.冶金过程废水处理与利用[M].北京:冶金工业出版社,2008.140~153
    [23]郭金根,肖明远,罗梅兰.用曝气-中和法处理煤矿井下酸性废水[J].环境工程,1999,17(4):71~78
    [24]D. Feng, J.S.J. van Deventer, C. Aldrich. Removal of pollutants from acid mine wastewater using metallurgical by-product slags[J]. Separation and Purification Technology,2004,40:61~67
    [25]W.M. Gitari, L.F. Petrik, O. Etchebers, D.L. Key, C. Okujeni. Utilization of fly ash for treatment of coal mines wastewater:Solubility controls on major inorganic contaminants[J]. Fuel,2008,87:2450~2462
    [26]尹爱君,刘肇华,蒋汉瀛.等用聚铝处理酸性矿山废水[J].中国有色金属学报,1995,5(1):27~29
    [27]Tonni Agustiono Kurniawan, Gilbert Y.S. Chan,Wai-Hung Lo, Sandhya Babel.Physico-chemical treatment techniques for wastewater laden with heavy metals[J].Chemical Engineering Journal,2006,118:83~98
    [28]Cla'udia Telles Benatti, Ce'lia Regina Granhen Tavares, Ervim Lenzi. Sulfate removal from waste chemicals by precipitation[J]. Journal of Environmental management,2007,xx:1~8
    [29]彭铁辉.硫化沉淀法在有色冶金废水深度净化中的应用[J].桂林工学院学报,1995,15(1):77~82
    [30]黄坚,龚竹青,蒋汉瀛.矿山酸性废水综合治理工艺的探讨[J].湖南有色金属,1999,15(3):52~54
    [31]黄万抚,王淑君.硫化沉淀法处理矿山酸性废水研究[J].环境污染治理技术与设备,2004,5(8):60~62
    [32]邹莲花,王淀佐,薛玉兰.含铜、铁离子废水的硫化沉淀浮选[J].化工矿山技术,1996,(2):26~30
    [33]雷兆武,刘茉,郭静.某金铜矿山含铜酸性废水处理研究[J].中国环境管理干部学院学报,2006,16(1):65~67
    [34]孙建民,于丽青,孙汉文.重金属废水处理技术进展[J].河北大学学报(自然科 学版),2004,24(4):438~434
    [35]汤兵,张俊浩.铁氧体法处理含Zn2+、Ni2+废水研究[J].环境保护科学,2002,28(109):12~15
    [36]Mehmet Erdem, Fikret Tumen. Chromium removal from aqueous solution by the ferrite process[J]. Journal of Hazardous Materials,2004, B109:71~77
    [37]黄婧,刘现荣.铁氧体法在废水处理中的应用[J].西南给排水,2004,26(2):20~21
    [38]袁雪.化学沉淀一铁氧体法处理重金属离子废水的实验研究[D].重庆:重庆大学:2007
    [39]Enrique Barrado, Francisco Prieto, Francisco J. Garay, et al. Characterization of nickel-bearing ferrites obtained as by-products of hydrochemical wastewater purification processes[J]. Electrochimica Acta,2002,47:1959-1965
    [40]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [41]黄继国,张永祥.GT-铁氧体法处理含铬废水实验研究[J].长春科技大学学报,2000,30(1):65~66
    [42]Weixing Wan, Zhenghe XU, J.Finch. Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage [J].Environment Science & Technology.1996,30(8):2604~2608
    [43]Xinchao Wei, Roger C. Viadero Jr. Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage:Implications for environmental engineering[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2007, 294:280-286
    [44]陈津,王克勤.冶金环境工程[M].长沙:中南大学出版社,2009,4:156~165
    [45]D. Feng, J.S.J.van Deventer, C. Aldrich. Removal of pollutants from acid mine wastewater using metallurgical by-product slags[J]. Separation and Purification Technology,2004,40:61~67.
    [46]Tonni Agustiono Kurniawan, Gilbert Y.S.Chan, Wai-hung Lo, Sandhya Babel. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals [J]. Science of the Total Environment,2006,366:409~426
    [47]Kermit Wilson, Hong Yang, Chung W. Seo, Wayne E. Marshall. Select metal adsorption by activated carbon made from peanut shells [J]. Bioresource Technology,2006,97:2266~2270
    [48]杨伟东,潘守学.浅谈重金属废水处理技术及发展方向[J].黑龙江环境通报,2007,31(2):76~77.
    [49]刘志勇,陈建中.酸性矿山废水的处理研究[J].云南环境科学,2004,23(增 刊):152-156.
    [50]万由令,李龙海.玉米芯为碳源实现酸性矿山废水生物处理[J].工业安全与环保,2004,30(5):11~15
    [51]李亚新,苏冰琴.利用硫酸盐还原菌处理酸性矿山废水研究[J].中国给水排水,2000,16(2):13~17
    [52]Xiaobo Min, Liyuan Chai, Chuanfu Zhang, Yasushi Takasaki, Takahiko Okura. Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria[J]. Chemosphere,2008,72:1086-1091
    [53]陈欢林.环境生物技术与工程[M].北京:化学工业出版社,2003
    [54]Shuiping Cheng, Wolfgang Grosse, Friedhelm Karrenbrock, Manfred Thoennessen. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J]. Ecological Engineering,2002,18:317~325
    [55]唐述虞.铁矿酸性排水的人工湿地处理[J].环境工程,1996,14(4):3~7
    [56]B.Gazea, K.Adam and A.Kontopoulos. A review of passive system for the treatment of AMD[J].Minerals Engineering,1996,9(1):23~42
    [57]Margarete Kalin, Andrew Fyson, William N. Wheeler. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage[J]. Science of the Total Environment,2006,366:395~408
    [58]汪志国,鲁安怀.矿物法治理重金属污染利弊分析[J].环境科学与管理,2007,32(5):118~121
    [59]Sandra Maria Dal Bosco, Ricardo Sarti Jimenez, Wagner Alves Carvalho. Removal of toxic metals from wastewater by Brazilian natural scolecite[J]. Journal of Colloid and Interface Science,2005,281:424~431
    [60]S. M. Dal Bosco, R. S. Jimenez, C. Vignado, J. Fontana, B. Geraldo, F. C. A. Figueiredo, D. Mandelli, W. A. Carvalho. Removal of Mn(Ⅱ) and Cd(Ⅱ) from wastewaters by natural and modified clays[J]. Adsorption,2006,12:133~146
    [61]M. Malandrino, O. Abollino, A. Giacomino, M. Aceto, E. Mentasti. Adsorption of heavy metals on vermiculite:Influence of pH and organic ligands[J]. Journal of Colloid and Interface Science,2006,299:537-546
    [62]鲁安怀.矿物法-环境污染治理的第四类方法[J].地学前缘,2005,12(1):196-205
    [63]Dipu Borah, Kulakamal Senapati. Adsorption of Cd(Ⅱ) from aqueous solution onto pyrite[J]. Fuel,2006,85:1929~1934
    [64]石俊仙,敖登高娃,姚俊学,赵飞.天然硫铁矿处理含铅废水的实验研究[J].内蒙古大学学报(自然科学版),2004,35(3):266~268
    [65]鲁安怀.环境矿物材料在土壤、水体、大气污染治理中的应用[J].岩石矿物学杂志,1999,18(4):292~299
    [66]石俊仙,鲁安怀,卢晓英.自然状态与加热改性的黄铁矿处理含铬(VI)废水的实验研究[J].矿物岩石地球化学通报,1999,18(4):226~229
    [67]翟斌.环境矿物材料在污染治理中的应用[J].北方环境,2005,30(2):69~76
    [68]丁希楼,丁春生.石灰石—石灰乳二段中和法处理矿山酸性废水[J].能源环境保护,2004,18(2):27~29.
    [69]李学金,钱显文,郑乐平等.某铁矿尾矿库酸性废水处理试验研究[J].金属矿山,2006,9:73~77
    [70]王瑞静,储金宇,赵如金.常温铁氧体法处理电解锌厂废水试验研究[J].环境科学与技术,2006,29(5):77~78
    [71]王卫星,徐政和,J.芬奇.常温铁氧体法处理酸性矿山废水初探[J].有色金属:选矿部分,995,(5):21~25
    [72]王卫星,曹波,徐政和,等.Ca2+对铁氧体法处理酸性矿山废水的影响[J].国外金属矿选矿,1998,5:41~44
    [73]张希衡.废水处理工程.冶金工业出版杜,1984
    [74]北京师范大学化学系无机化学教研室编.简明化学手册[M].北京:北京出版社,1980,202.
    [75]王凯雄.水化学[M].北京:化学工业出版社,2001,230.
    [76]Ian M Ritchie, Xu BingAn. The kinetic of lime slaking.Hydrometallurgy, 1990,23:377~396
    [77]钟伟飞.石灰消化工艺参数及氢氧化溶解速率实验研究[D].浙江大学:2004
    [78]YANG Xi-yun, GONG Zhu-qing, LIU Feng-liang. Kinetics of Fe3O4 formation by air oxidation[J]. Journal of Central South University.2004,11(2):152~155.
    [79]Jie-Chung Lou, Chien-Kuei Chang. Completely treating heavy metal laboratory waste liquid by an improved ferrite process[J]. Separation and purification Technology.2007,57:513~518
    [80]Oscar Perales Perez, Yoshiaki Umetsu, Hiroshi Sasaki. Precipitation and densification of magnetic iron compounds from aqueous solution at room temperature[J].Hydrometallurgy,1998,50:223~242
    [81]端木合顺,文生燕.天然黄铁矿吸附废水中Cd(Ⅱ)的实验研究[J].西安科技大学学报,2007,27(4):576~580
    [82]陈永亨,张平,梁敏华,齐剑英,刘娟.黄铁矿对重金属的环境净化属性探讨[J].广州大学学报(自然科学版),2007,6(4):23~25
    [83]张平,陈永亨,齐剑英,等.含重金属废水的处理方法:中国,200510035580.9[P].2005,10
    [84]邹俭鹏,尹周澜,陈启元等.机械活化黄铁矿物理性能和表面结构变化的表征[J].湖南有色金属,2001,17(5):36~39
    [85]郑雅杰,龚竹青等.以硫铁矿烧渣为原料制备绿矾新技术[J].化学工程,2005,33(4):51~55
    [86]赵中伟,李洪桂.机械活化对硫化锌精矿浸出动力学的影响.有色金属.1995,2:81~83
    [87]Bower J, Savage K S, et al. Immobilization of mercury by pyrite [J]. Environmental Pollution,2008,156:504~514
    [88]Hector M, Lizama, Suzuki I. Rate equations and kinetic parameters of the reactions involved in pyrite oxidation by Thiobacillus ferrooxidans[J].Applied and Environmental Microbiology,1989,55(11):2918-2923
    [89]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993,179-180.
    [90]刘书杰,何发钰.磨矿环境对黄铁矿矿浆化学性质及浮选行为影响的研究[J].矿冶,2008,17(4):6-10.
    [91]胡慧萍.机械活化硫化矿结构与性质变化规律的基础研究[J].长沙:中南大学,2003
    [92]赵军,张兴凯,王云海.硫铁矿的比表面积、孔体积及其对硫铁矿吸附能力的影响研究[J].中国安全生产科学技术,2008,4(4):119~121
    [93]闻辂,梁婉雪,章正刚等.矿物红外光谱学[M].重庆:重庆大学出版社,1989:55~120
    [94]杨喜云.硫铁矿烧渣制备铁黑颜料和Fe304磁粉及基础理论研究[D].长沙:中南大学,2005
    [95]孙智辉.硫铁矿烧渣制备纳米氧化铁黑研究[D].武汉:武汉理工大学,2006
    [96]张首才,张金晶,左青卉.利用废铁屑制备氧化铁黑的研究[J].吉林师范大学学报(自然科学版),2004,1:70-71.
    [97]Takada T, Kiyama M. Preparation of ferrites by wet method[J].Proceedings of the International Conference on Ferrites,1970:69-71.
    [98]Kiyama M. Conditions for the formation of FesO4 by the air oxidation of Fe(OH)2 suspensions[J].Bulletin of the chemical society of Japan,1974,47(7):1646~1650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700