硫化钠氧化的复杂反应动力学与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴酸钠和亚氯酸钠氧化硫化钠的反应,能呈现氢离子自催化、双稳态和持续pH振荡与Pt电位振荡,计算机可以有效模拟氧化过程的复杂动力学行为。有关的原理和方法有可能应用于有硫化钠的无捕收剂浮选的pH控制过程。
     1.溴酸盐氧化硫化钠在封闭反应器的碱性溶液中,溴酸盐和硫化钠的氧化反应,有一个大幅度的pH(2.5 pH单位)变化和铂电极电位(250 mV)变化,并在开放体系中观察到pH双稳态的存在。在pH大于7的碱性或中性介质中,体系的pH从大约7.9上升到9.3,然后下降到6.5。笔者认为存在两个主要的反应过程:BrO_3~-氧化HS~-/H_2S到零价S(0),并有H~+的消耗,是系统pH上升的本质原因,零价S(0)被BrO_3~-进一步氧化为S_2O_3~(2-)并产生H~+,这个反应的速率方程可表示为r=k[S_8][BrO_3~-][OH~-]。毛细管电泳测定表明S_2O_3~(2-)的存在,并为最终产物。作者用3组含有HS~-和S~(2-)、HS~-和H_2S、H~+和OH~-的质子和去质子平衡反应以及HS~-/H_2S被BrO_3~-氧化为零价S(0)和S_2O_3~(2-)的化学反应模型成功地模拟了实验测量的pH动力学曲线。
     在封闭反应器的酸性溶液中,体系pH从7.8快速下降到7.0,经过一个诱导期平台后再次下降到另一个平台(pH = 5.0)。这样的动力学行为可以用两个氧化过程来表示:BrO_3~-氧化HS~-/H_2S产生零价S(0),并有H~+的消耗,是系统pH上升的本质原因,和零价S(0)被BrO_3~-进一步氧化为SO_3~(2-)并产生H~+,HSO_3~-被BrO_3~-进一步氧化为SO_4~(2-)并释放H~+,是H~+自催化反应。可用4组含有S~(2-)和HS~-、HS~-和H_2S、H~+和OH-、HSO_3~-和SO_3~(2-)的质子和去质子平衡反应以及HS~-/H_2S被BrO_3~-氧化为零价硫(S8)、HSO_3~-和SO_4~(2-)的化学反应模型成功地模拟了酸性介质中实验测量的pH动力学和开放体系的pH双稳态行为。
     2.亚氯酸盐氧化硫化钠在开放体系的亚氯酸盐氧化硫化钠的硫酸介质(pH = 5~6)中,发现了一个持续的pH振荡和氧化还原Pt电位振荡。振荡波的周期约50 min,振荡频率与摄氏温度(℃)成正比关系,振荡反应的动力学行为符合阿仑尼斯关系,测得振荡反应的活化能Ea = 87.3 kJ·mol~(-1)。H_2S/HS~-被ClO_2~-氧化为零价硫,是消耗H~+的负反馈过程,S(0)被ClO_2~-/OCl-进一步氧化为S_2O_3~(2-),而S_2O_3~(2-)被进一步氧化为SO_3~(2-),形成的HSO_3~-和ClO_2~-反应产生SO_4~(2-)和H~+,是和硫价态变化有关的H~+自催化反应,是主要的H~+正反馈过程,正、负反馈过程组成一个新的、完全由硫价态变化趋动的pH振荡器。论文建立一个含有S~(2-)和HS~-, HS~-和H_2S、SO_3~(2-)和HSO_3~-、OCl-和HOCl、H~+和HO-的5组质子—去质子平衡反应和9个氧化还原反应组成的非线性动力学模型,来模拟亚氯酸盐氧化硫化钠的pH振荡行为,模型涉及11种物质:HS~-、H_2S、S8、S_2O_3~(2-)、SO_3~(2-)、HSO_3~-、OCl-、HOCl、ClO_2~-、H~+和OH,其中,S_2O_3~(2-)的存在已被毛细管电泳测定所证实,是一个重要的中间产物,这是H_2O_2氧化S~(2-)的振荡反应中没有考虑到的中间物。模拟结果和观察到的pH振荡行为完全一致。
     3.碳酸钙调控系统pH变化的研究石块的颗粒小,对系统pH变化的影响大;搅拌速率高对系统pH变化影响大。该项的研究,对于提高硫化钠在浮选中的利用效率有重要的参考价值。
In the thesis, we studied the complex dynamics of the oxidation of sulfide by the bromate and chlorite in aqueous solution in a batch reactor and a continuous - flow stirring tank reactor. The oxidation reactions of sulfide by the bromate and chlorite can exhibit autocatalytic production of pH clock, bistability, and sustained oscillations in pH and redox potential. Computer can simulate the complex dynamics behavior observed during the experiment. Their application of ore flotation has been studied.
     1. The oxidation of sulfide by the bromate Large-amplitude changes in pH (2.5 pH units) and potential (250 mV) of a platium electrode has been measured during the oxidation of sulfide by bromate ion in in a batch reactor. In basic medium, there is an initial rise in pH followed by a drop. The source of the oscillation in this simple chemical reaction is a two-way oxidation of HS~-/H_2S by the BrO_3~-: a hydrogen ion consumption by oxidation to sulfur (0), and a hydrogen ion production by oxidation of sulfur (0) to S_2O_3~(2-), which is shown here by capillary electrophoresis to be an important final oxidizing product of oxidation of S ( 0 ) by BrO_3~-. A simple reaction scheme, consisting of the protonation equilibria of HS~-and S~(2-), HS~- and H_2S, H~+and OH- , the oxidation of HS~-/H_2S by the BrO_3~- to S (0), the oxidation of S (0) to S_2O_3~(2-)(Ⅱ) has successfully been used to simulate the observed dynamical behavior.
     In acidic medium, there is an initial drop in pH followed by an induction period and by an autocatalytic drop. The source of the oscillation in this simple chemical reaction is a two-way oxidation of HS~-/H_2S by the BrO_3~-: a hydrogen ion consumption by oxidation to sulfur(0), and a hydrogen ion production by oxidation of sulfur(0) to SO_3~(2-), while oxidation of HSO_3~- to SO_4~(2-) produces H~+ in an autocatalytic manner. A simple reaction scheme, consisting of the protonation equilibria of HS~-and S~(2-), HS~- and H_2S, SO_3~(2-) and HSO_3~-, H~+ and OH- , the oxidation of HS~-/H_2S by the BrO_3~- to S (0), the oxidation of S (0) to SO_3~(2-)(Ⅳ) , and oxidation of HSO_3~- to SO_4~(2-) has successfully been used to simulate the observed clock behavior and bistability in acidic medium.
     2. The oxidation of sulfide by chlorite Sustained oscillations in pH and redox potential are obtained in the chlorite-sulfide system in a continuous-flow stirred tank reactor (CSTR). The source of the oscillation in this simple chemical reaction is a two-way oxidation of HS~-/H_2S by the ClO_2~-: a hydrogen ion consumption by oxidation to sulfur (0), and a hydrogen ion production by oxidation of sulfur (0) by OCl-/ClO_2~- to S_2O_3~(2-), and oxidation of S_2O_3~(2-) by ClO_2~- to SO_3~(2-)(Ⅳ), while oxidation of HSO_3~- to SO_4~(2-) produces H~+ in an autocatalytic manner. A simple reaction scheme, consisting of the protonation equilibria of HS~-and S~(2-), HS~- and H_2S, SO_3~(2-) and HSO_3~-, OCl- and HOCl, H~+ and OH- , the oxidation of HS~-/H_2S by the ClO_2~- to S_8(0), the oxidation of S_8(0) to S_2O_3~(2-)(Ⅳ) , and oxidation of S_2O_3~(2-)(Ⅳ) by ClO_2~- to SO_3~(2-) , and oxidation of HSO_3~- to SO_4~(2-) has successfully been used to simulate the pH oscillatory behavior observed in a CSTR. Temperature is found to have a significant effect on the oscillatory behavior and shows Arrhhenius-like behavior. The value of Ea=87.3 kJ·mol~(-1) was obtained for the apparent energy of the oscillations.
     Autocatalytic oxidation of HSO_3~- by ClO_2~- is the major source of positive feedback of hydrogen ions. The reaction between H_2S and ClO_2~- formation S8, which consumes H~+, is an important source of negative feedback. A mechanistic model consisting of 5 protonation-deprotonation equilibria and 9 redox reactions is proposed for the oscillatory reaction between S~(2-) and ClO_2~-. The 11 species included are HS~-, H_2S, S8, S_2O_3~(2-), SO_3~(2-), HSO_3~-,OCl~-, HOCl, ClO_2~-, H~+ and OH-. In contrast to the H_2O_2–S~(2-) oscillation reactions, S_2O_3~(2-) is shown here by capillary electrophoresis to be an important intermediate. Simulations give excellent qualitative agreement with the pH oscillatory behavior observed in a CSTR .
     3. pH– Control by Using marble The shape, the periodic time, the region of pH changes can be controlled by using different amounts and grade size of solid granular or lumpy marble. The shape, the periodic time, the region of pH changes can be controlled by using a magnetic stirrer bar with different rpm . The smaller of grade size of solid granular or lumpy marble , the larger of pH changes in region. The larger of the stirring rate, the larger of pH changes in region. Solid granular or lumpy marble used by removal of the H~+ from the oxidation of sulfide by the bromate ion in the CSTR. A possibility of the new technology of the pH-control has been recognized in ore flotation.
引文
[1] Http: // WWW. Berkeleymadonna.Com/.
    [2] Nielsen, J. Mathematical Modeling of Chemical and Biochemical Processes [J]. Chemical Engineering Science, 1997, 52(15): 2447-2659.
    [3] Constalo, D., Marin, G. B., Nicolis, G., et al. International Symposium on Mathematics in Chemical Kinetics and Engineering [J]. Chemical Engineering Science, 2003, 58(21): 4747-4930.
    [4] Li, J., Kwauk, M. Complex Systems and Multiscale Methodology [J]. Chemical Engineering Science, 2004, 59 (8-9): 1611-1904.
    [5] Li, J., Ge, W. Frontier of Chemical Engineering - Multiscale Bridge between Reductionism and Holism [J]. Chemical Engineering Science, 2007, 62(13): 3283-3640.
    [6] Epstein, I. R., Pojman, J. A . An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos [M]. London: Oxford University Press,1998.
    [7] Scott, S. K. Chemical Chaos [M]. Oxford: Clarendon Press, 1991.
    [8] Epstein, I. R. Compex Dynamical Behavior in“Simple”Chemcal Systems [J]. J. Phys. Chem., 1984, 88: 187-198.
    [9] Rabai, G., Orban, M., Epstein, I. R. Design of pH-Regulated Oscillators [J]. Acc. Chem. Res., 1990, 23: 258-263.
    [10] Epstein, I. R., Showalter, K. Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos [J]. J. Phys. Chem. 1996, 100: 13132-13147.
    [11] Sagues, F., Epstein, I. R. Nonlinear Chemical Dynamics [J]. Dalton Trans., 2003: 1201-1217.
    [12]高庆宇,蔡遵生,赵学庄.非线性化学反应动力学[J].化学进展,1997,9(1): 59-68.
    [13]林娟娟.硫化学体系的非线性动力学研究的进展状况[J].温州师范学院学报,1997,(6):43-46.
    [14]高庆宇,赵学庄.非线性动力学研究的进展状况[J].大自然探索,1994,13(2):14-17.
    [15] Kennethy, C., Morris J. C. Kinetics of Oxidation of Aqueous Sulfide by O2 [J]. Environmental Science & Technology, 1972, 6(6): 529-537.
    [16] Ilinitch, O. M., Vetchinova, Y. S. Membrance Assisted Liquid Phase Catalytic Oxidation of Sulfide [J]. Catalysis Today, 1995, 25:423-428.
    [17] Mallik, O. Chaudhuri, S. K. Air Oxidation of Aqueous Sodium Sulfide Solutions with Coal Fly Ash [J]. Wet. Res., 1999, 33(2): 585-590.
    [18]田进军,丁珂,王晟,等.湿法空气氧化法处理硫化钠废碱液[J].青岛科技大学学报,2004,25(3):210-212.
    [19]王续良,夏畅斌.粉煤灰催化空气氧化硫化钠溶液的研究[J].辽宁工程技术大学学报, 2003, 22:520-521.
    [20]关宏讯,邱熔处,赵旭涛,等.催化氧化法处理高浓度含硫废水的研究[J].兰州铁道学院学报,2003,22(6):21-23.
    [21]易志刚,付永胜.电石渣浆上清液去除试验研究[J].工业用水与废水,2008,39(4):47-49.
    [22]杨民,孙承林,陈拥军,等.催化氧化法处理高含硫废水的研究[J].环境污染治理技术与设备,2003,4(5):74-76.
    [23]余政哲,孙德智,郭宝珠,等.均相催化氧化法处理废碱液中硫化物研究[J].西安交通大学学报:自然科学版,2004,19(1):63-65.
    [24]关宏讯,张国珍,赵家慧.含硫废水预处理方案的经济技术性研究[J].甘肃环境研究与监测,2003,16(4):303-306.
    [25] Satterfield, C. N., Robert, C. R., Briggs, D. R. Rate of Oxidation of Hydrogen Sulfide by Hydrogen Peroxide [J]. J. Am. Chem. Soc., 1954, 76(15): 3922-3923.
    [26]张冬梅,彭先福,李忠. O3、H2O2紫外光助氧化降解炼油废碱水的可行性实验[J].环境污染治理技术与设备,2004,5(7):22-24.
    [27]余政哲,孙德智,段晓东,等.光催化氧化法处理含硫废水的研究[J].哈尔滨工业大学学报:自然科学版,2003,19(1):69-71.
    [28]张宗才,薛丽莎,戴红,等.光催化氧化消除制革脱毛废水中的硫化物[J].皮革科学与工程,2007,(1):61-65.
    [29] Fenton, H. J. H. Oixdation of Tartaric Acid in the Presence of Iron[J]. J. Chem. Soc., 1894, 65: 899-901.
    [30]马万红,籍宏伟,赵进才,等.活化H2O2和分子氧的光催化氧化反应[J].科学通报,2004,49(18):1821-1829.
    [31]刘崇华,周浩,刘晓群,等.催化氧化法处理含硫废碱液新技术的开发与应用[J].油气田环境保护,2006,16(3):14-17.
    [32]王菲菲,丁原红,杨景亮,等.甲胺磷废水的酸解—Fenton氧化降解试验研究[J].工业水处理,2008,28(11):21-23.
    [33]孙登明,阮大文,王丽红.翠取催化光度法间接测定水中痕量硫离子[J].分析化学,2004,32(2):179-182.
    [34]杨俊香,兰叶青.硫化物还原Cr(Ⅵ)的反应动力学研究[J].环境科学学报,2005,25(3):356-360.
    [35] Kim, C., Qunha, Z., Baolin, D., et al. Chromium (Ⅵ) Reduction by Hydrogen Sulfide in Aqueous Media: Stoickiometry and Kinetics [J]. Environ. Sci. Technol., 2001, 35: 2219-2225.
    [36] Pittine, M., Millero, F. J., Passino, R. Reduction of Chromium (Ⅵ) with Hydrogen Sulfide in NaCl Media [J]. Marine Chemistry, 1994, 46: 335-344.
    [37] Steudel, R. Mechanism for the Formation of Elemental Sulfur from Aqueous Sulfide in Chemical and Microbilogical Desulfurization Processes [J].Ind. Eng. Chem. Res. , 1996, 35: 1417-1423.
    [38] Shih, Y. S., Lee, J. L. Contionuous Solvent Extraction of Sulfur from Electrochemical Oxidation of a Basic Sulfide Solution in the CSTER System [J]. Ind. Eng. Chem. Process Des. Dev., 1986, 25: 834-836.
    [39] Anani, A. A., Mao, Z., White, R. E., et al. Electrochemical Production of Hydrogen and Sulfur by Low-Temperature Decomposition of Hydrogen Sulfide in an Aqueous Alkaline Solution [J]. J. Electrochem. Soc., 1990, 137(9): 2073-2079.
    [40]易清风,陈启元,张平民.硫化钠溶液电化学分解制备硫磺和氢气的研究[J].环境科学学报,1998,18(5):539-544.
    [41]张克强,季民,张建顺.电化学方法处理含硫废水的过程和特性[J].农业环境科学学报,2003,22(1):90-92.
    [42] Chen, A., Miller, B. Potential Oscillations during the Electrocatalytic Oxidation of Sulfide on a Microstructured Ti /Ta2O5 Electrode [J]. J. Phys. Chem. B, 2004, 108(7): 2245-2251.
    [43] Miller, B., Chen, A. Effect of Concentration and Temperature on Electrochemical Oscillations during the Oxidation of Sulfide on Ti/Ta2O5 Electrode [J]. J. Phys. Chem. B, 2004, 108(7): 2245 -2251.
    [44] Feng, J. M., Du, Z. H., Gao, Q. Y., et al. Nonlinear Phenomena in the Electrochemical Oxidation of Sulfide [J]. Electrochem. Commun., 2005, 7(12): 1471-1476.
    [45] Feng, J. M., Gao, Q. Y., Li, J., et al. Current Oscillations during the Electrochemical Oxidation of Sulfide in the Presence of an External Resistor [J]. Science in China, Ser. B, 2008, 51(4):333 -340.
    [46]冯加民.硫(-Ⅱ)化合物电化学氧化中的动力学不稳定性[D].徐州:中国矿业大学,2007.
    [47]龙怀中.硫化钠在旋转盘环电极上的电化学氧化[J].矿冶工程,2003,23(3):46-48.
    [48] Maria, B., Feild, R. J. A New Chemical Oscillator Containing Neither Metal Nor Oxyhalogen Ions [J]. Nature, 1984, 307: 720-721.
    [49] Resch, P., Feild, R. J., Schneider, F. W. The Methylene Blue-HS--O2 Oscillator: Mechanistic Proposal and Periodic Perturbation [J]. J Phys. Chem., 1989, 93(7): 2783-2791.
    [50] Zhang, Y., Field, R. J. Simplification of a Mechanism of the Methylene Blue-HS--O2 CSTR oscillator: Ahomogeneous Oscillatory Mechanism with Nonlinearities but No Autocatalysis [J]. J Phys. Chem., 1991, 95(2): 723-727.
    [51] Watzl, M., Munster, A. F. Turing - like Spatial Patterns in a Polyacrylamide - Methylene Blue - Sulfide - Oxygen System [J]. Chem. Phys. Lett., 1995, 242(3): 273-278.
    [52] Watzl, M., Munster, A. F. Control of Mosaic and Turing Patterns by Light and Electric Field in the Methylene blue - Sulfide - Oxygen System [J]. J. Phys. Chem. A, 1998, 102 (15): 2540-2546.
    [53] Kurin-Csorgei, K., Orban, M., Zhabotinky, A. M., et al. On the Nature of Pattern Arising during Polymerization of Acrylamide in the Presence of Methylene Blue - Sulfide - Oxygen System [J]. Chem. Phys. Lett., 1998, 295(1-2): 70-74.
    [54] Orban, M., Epstein, I. R. A New Halogen-Free Chemical Oscillator: The Reaction bet- ween Sulfide Ion and Hydrogen Peroxide in a CSTR [J]. J. Am. Chem. Soc., 1985, 107: 302-2035.
    [55] Rabai, G., Orban, M., Epstein, I. R. A Model for the pH-Regulated Oscillatory Reaction between Hydrogen Peroxide and Sulfide Ion [J]. J. Phys. Chem., 1992, 96: 5414 - 5149.
    [56] Ouyang, Q., De Kepper, P. An all Sulfur Chemistry Based Oscillator [J]. J. Phys. Chem., 1987, 91(23): 6040-6042.
    [57] Simoyi, R. H., Noyes, R. M. The Bromate - Sulfide System. A Particularly Simple Chemical Oscillator [J]. J. Phys. Chem., 1987, 91: 2689-2690.
    [58] Orban, M. Cu (Ⅱ) - Catalyzed Oscillatory Chemical Reactions [J]. React. Kinet. Catal. Lett., 1990, 42(2): 343-353.
    [59]侯哲,李艳妮,赵学庄.非线性体系Na2S—Na2S2O8—ClO2-化学反应研究[J].化学学报,1999,57:1319 -1324.
    [60] Rushing, C. W., Richard, C. Thompson and Gao Qingyu. General Model the Nonlinear pH Dynamics in the Oxidation of Sulfur (-Ⅱ) Species [J]. J. Phys. Chem. A, 2000, 104: 11561-11565.
    [61]刘海苗,熊效根,赵长春.过氧化氢氧化硫化钠反应体系的复杂振荡[J].物理化学学报,2008, 24(10):1897 -1901.
    [62] Lotka, A. J. Undamped Oscillations Derived from the Law of Mass Action [J]. J. Am. Chem. Soc., 1921, 43: 1595-1599.
    [63] Ray, R. M. Stability and Complexity in Model Ecosystems [M]. Princeton New Jersy: Princeton University Press, 1973.
    [64] Tyson, T. Belousov - Zhabotinsky Reaction [M]. Berlin: Springer, 1976.
    [65] Zaikin, A. N., Zhabotinskii, A. M. Concentration Wave Propagation in Two Dimensional Liquid - phase [J]. Nature, 1970, 225: 535-535.
    [66] Prigogine, I., Lefever, R. Symmetry Breaking Instabilities in Dissipative System [J]. J. Chem. Phys., 1968, 48: 1695-1700.
    [67] Nicolis, G., Prigogine, I. Self-organization in Nonequilibrium System [M]. New York: Wiley, 1977.
    [68]尼科利斯,普里戈京.非平衡系统的自组织[M].北京:科学出版社,1986.
    [69] Field, R. J., Koros, E., Noyes, R. M. Oscillations in Chemical Systems.II. Thorough Analysis of Temporal Oscillation in the Bromate - Cerium - Malonic acid System [J]. J. Am. Chem. Soc., 1972, 94: 8649-8664.
    [70] Field, R. J., Noyes, R. M. Oscillations in Chemical System IV: Limit Cycle Behaviour in a Model of a Real Chemical Reaction [J]. J. Chem. Phys., 1974, 60: 1877-1884.
    [71] Lengyel, I., Li, J., Kustin, K., et al. Rate Constants for Reactions between Iodine and Chlorine-Containing Species: A Detailed Mechanism of the Chlorine Dioxide/Chlorite - Iodide Reaction [J]. J. Am. Chem. Soc., 1996, 118 (15): 3708-3719.
    [72] Alamgir, M., De Kepper, P., Orban, M., et al. A New Type of Bromate Oscillator: The Bromate-Iodide Reaction in a Stirred-Flow Reactor [J]. J. Am. Chem. Soc., 1983, 105: 2641-2643.
    [73] Scott, S. K. Oscillations, Waves, Patterns, and Chaos in Chemical Kinetics [M]. London: Oxford University Press, 1994.
    [74] Orban, M., De Kepper, P., Epstein, I. R. An Iodine - Free Chiorite - Based Oscillator: The Chlorite-Thiosulfate Reaction in a Continuous Flow Stirred Reactor [J]. J. Phy. Chem., 1982, 86: 431-433.
    [75] Masel Ko, J., Epstein, I. R. Chemical Chaos in the Chlorite– Thiosulfate Reaction [J]. J. Chem. Phys., 1984, 80(7): 3175-3176.
    [76] Nagypal, I., Epstein, I. R. Fluctuations and Stirring Rate Effects in the Chlorite - Thiosulfate Reaction [J]. J. Phys. Chem., 1986, 90: 6285-6292.
    [77] Pesek, O., Kaspar, P., Schreiberova, L., et al. Dynamical Response and Firing Patters in Periodically Pulsed in the Bromate - Sulfite - Ferrocyanide System [J]. J. Phys. Chem. A, 2004, 108: 2436-2442.
    [78] Rabai, G., Hanazaki, I. pH Oscillations in the Bromate - Sulfite - Marble Sembatch and Flow Systems [J]. J. Phys. Chem., 1996, 100: 10615-10619.
    [79] Chie, K., Okazaki, N., Tanimoto, Y., et al. Tristability in the Bromate– Sulfite - Hydrogen - Carbonate pH Oscillator [J]. Chem. Phys. Lett., 2001, 334: 55-60.
    [80] Szanto, T. G., Rabai, G. pH Oscillations in the BrO3- - SO32-/HSO3- Reaction in a CSTR [J]. J. Phys. Chem. A, 2005, 109: 5398-5420.
    [81] Okazaki, N., Rbai, G., Hanazaki, I. Discovery of Novel Bromate - Sulfite pH Oscillators with Mn2+ or MnO4- as a Negative - Feedback Species [J]. J. Phys. Chem. A, 1999, 103 (50): 10915-10920.
    [82] Frerichs, G. A., Mlnarik, T. M., Robert, J. G. A New Oscillator: The Chlorite - Sulfite - Sulfuric Acid System in a CSTR [J]. J. Phys. Chem. A, 2001, 105: 829-837.
    [83]欧乐明.硫化矿浮选电化学技术工程化存在的问题及发展前景[J].国外金属选矿,2003,(4):9-11.
    [84]陈建华,冯其明,卢毅屏.电化学调控浮选能带模型及应用(Ⅰ)——半导体能带理论及模型[J].中国有色金属学报, 2000, 10(2): 24-28.
    [85]陈建华,冯其明,卢毅屏.电化学调控浮选能带模型及应用(Ⅱ)——黄药与硫化矿物作用能带模型[J].中国有色金属学报, 2000, 10(3): 26-29.
    [86]史玲,韩果萍,谢建宏.无捕收剂电化学浮选技术研究[J].中国钼业,2004,28:19-22.
    [87]阿布拉莫夫,A. A.矿物无捕收剂浮选的可行性及条件的理论分析[J].国外金属矿选矿,2007,(9):4-10.
    [88]赵军伟,姚卫红,王虎.硫化矿浮选电化学研究现状[J].矿产保护与利用, 2003,(4): 32-36.
    [89]张芹,胡岳华,顾帼华.磁黄铁矿自诱导浮选电化学的研究[J].有色金属(选矿部分),2004,(2):4-5.
    [90]邱延省,黄开国.硫化钠对高冰镍中六方硫镍矿的抑制行为研究[J].有色金属,1999,(4):17-20.
    [91]万宏民.硫化钠在铅锌中矿分选中的应用[J].矿产保护与利用,2000,(2):42-45
    [92]黄和平,邱波,张治元.安庆铜矿电化学调控浮选探索[J].矿冶工程,2005,25(4):36-38.
    [93]汪银梅,金吉梅.电化学在磁黄铁矿浮选中应用的研究[J].矿业工程,2008,6(6):29-30.
    [94]唐敏,张文彬.微细粒铜镍硫化矿浮选的电化学调控[J].有色矿冶,2003,19(5):12-15.
    [95]孟宪毅,白秀梅.综合回收某硫铁矿石中的伴生铜锌的研究[J].矿冶,1999,(2):31-35.
    [96]高洪山,杨奉兰.提高难选氧化铜矿有用矿物回收率的选矿工艺[J].矿冶工程,1999,(2): 44-46.
    [97]汤亚飞.菱锌矿-铁矿体系浮选研究[J].武汉化工学院学报,1996,(1):39-41.
    [98]张建军,蔡殿忱,刘滨婵.金矿石无捕收剂浮选[J].中国矿业,1997,(6):51-54.
    [99]王淀佐,卢寿慈,陈清如.矿物加工学[M].徐州:中国矿业大学出版社,2003.
    [100]覃文庆,李柏淡,邱冠周.硫化钠在硫化铜浮选中的应用[J].矿产保护与利用,1995,(3):36-39.
    [101]田学达,李隆峰.硫化钠在硫化矿浮选分离中的作用[J].湖南有色金属,1995,11(1):29-31.
    [102]张芹,胡岳华,徐兢.脆硫锑铅矿无捕收剂浮选的研究[J].有色金属(选矿部分),2005, (3): 44 - 46.
    [103]张淑敏,周世杰,刘滨婵.低硫岩金矿石无捕收剂浮选的试验研究[J].黄金学报,1999,20(1):275-277.
    [104]张建军,张淑敏,刘滨婵.硫化钠对金矿石无捕收剂浮选的试验研究[J].黄金,1996,17:27-30.
    [105]克里姆帕尔,R.R.硫化矿物浮选捕收剂浮选实践评述[J].国外金属矿选矿,2001,(9):2-7.
    [106]刘晓蕾.铜矿峪矿应用诱导浮选试验研究[J].有色矿山, 2001, 30:26 - 29.
    [107]左乌波乌里斯,A. B.从水溶液中浮选钴离子[J].国外金属矿选矿,2003,(6):37 - 39.
    [108] Gao, Q. Y., Liu, B., Li, L. H., et al. Oxidation and Decompostion Kinetics of Thiourea Oxides [J]. J. Phys. Chem. A, 2007, 111:872 - 877.
    [109]刘兵.高压液相色谱研究硫脲氧化反应动力学[D].徐州:中国矿业大学,2005.
    [110] Gao, Q. Y., Wang, G. P., Sun, Y. Y., et al. Simltaneous Tracking of Sulfur Sppecies in the Oxidation of Thiourea by Hydrogen Peroxide [J]. J. Phys. Chem. A, 2008, 112: 5771-5773.
    [111]王广平.硫脲氧化过程中硫价态的直接追踪和反应动力学[D].徐州:中国矿业大学,2008.
    [112] Wang, S., Gao, Q. Y., Wang, J. C. Thermodynamic Analysis of Decomposition of Thiourea and Thiourea Oxides[J]. J. Phys. Chem. B, 2005, 109 (36): 17281-17289.
    [113]王舜.乙烯硫脲及其氧化中间产物的热降解和氧化降解反应动力学行为与机理研究[D].徐州:中国矿业大学,2007.
    [114] Wang, J. C., Yadav, K., Zhao, B., et al. Photocontrolled Oscillatory Dynamics in the Bromate - 1, 4 - Cyclohexanedione Reaction [J]. J. Chem. Phys., 2004, 121: 1-7.
    [115]宗春燕,高庆宇,王玉梅. CSTR中Ferroin催化BZ反应中的倍周期振荡和混沌[J].中国科学B,2006,36(6):449-455.
    [116] Szalai, I., Kurin-Csorgei, K., Epstein, I. R., et al. Dynamics and Mechanism of Bromate Oscillators with 1, 4 - Cyclohexanedione [J]. J. Phys. Chem. A, 2003, 107: 10074 -10081.
    [117] Orban, M., Epstein, I. R. A New Bromite Oscillator: Large-Amplitude pH Oscillations in the Bromite-Thiosulfate -Phenol Flow System [J]. J. Phys. Chem., 1995, 99: 2358-2362.
    [118]迪安,J. A.兰氏化学手册[M].北京:科学出版社,1991.
    [119] Alamgir, M., Epstein, I. R. Complex Dynamical Behavior in a New Chemical Oscillator: The Chlorite - Thiourea Reaction in a CSTR [J]. International Journal of Chemical Kinetics, 1985, 17: 429-439.
    [120] Epstein, I. R., Kustin, K., Simoyi, R. H. Kinetics and Mechanism of the Chlorite - Thiourea Reaction in Acidic Medium [J] . J. Phys. Chem.,1992, 96(14): 5852-5856.
    [121] Doona, C. J., Blittersdorf, R., Schneider, F. W. Deterministic Chaos Arising from Homoclinicity in the Chlorite - Thiourea Oscillator [J]. J. Phys. Chem., 1993, 97: 7258-7263.
    [122] Nagypal, I., Epstein, I. R. Fluctuations and Stirring Rate Effects in the Chlorite - Thiosulfate Reaction [J]. J. Phys. Chem., 1986, 90: 6285-6292.
    [123] Orban, M., De Kepper, P., Epstein, I. R. An Iodine-Free Chiorite-Based OsciLlator: The Chlorite -Thiosulfate Reaction in a Continuous Flow Stirred Reactor [J]. J. Phy. Chem., 1982, 86: 431-433.
    [124] Masel Ko, J., Epstein, I. R. Chemical Chaos in the Chlorite - Thiosulfate Reaction [J]. J. Chem. Phys. 1984, 80(7): 3175-3176.
    [125] Gao, Q. Y., Wang, J. C. pH Oscillations and Complex Reaction Dynamics in the Nonbuffered Chlorite - Thiourea Reaction [J]. Chem. Phys. Lett., 2004, 391: 349-353.
    [126] Peintler, G., Nagyal, I., Epstein, I. R. Kinetics and Mechanism of the Reaction between Chlorite Ion and Hypochlorous Acid [J]. J. Phys. Chem., 1990, 94: 2954-958.
    [127] Horváth, A. K., Nagypál, I., Peintler, G., et al. Kinetics and Mechanism of the Decomposition of Chlorous Acid [J]. J. Phys. Chem. A, 2003, 107: 6996.
    [128]孙水裕,王淀佐,李柏淡.硫化钠作还原剂硫化矿物无捕收剂浮选规律及分离方案的设计[J].有色金属(选矿部分),1993,(1):2-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700