长江中下游干流沉积物磁学及重金属地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流沉积物中蕴含丰富的环境信息。利用河流沉积物的磁性特征进行物源识别、沉积环境信息提取和环境污染评价是当前环境磁学的重要发展方向。沉积物中的重金属则常被用作判别河流水环境质量的重要指标。作为我国经济发展最快和城市化水平最高的地区之一,长江中下游干流地区的沉积物研究一直都是学术界的热点。以往的工作主要集中在长江口、三峡库区及干流的部分城市或区域江段,以流域整体为对象的系统研究相对薄弱。本文以长江中下游干流河道及长江口为研究对象,于2006年三峡水库156m蓄水前,在宜昌、荆州、城陵矶、鄂州、九江、湖口、安庆、铜陵、芜湖、南京、江阴、镇江、等城市江段以及长江口崇明环岛潮滩系统采集干流中泓沉积物、边滩沉积物、支流沉积物、表层水样及植物样品,综合运用环境化学、环境磁学、生态学、土壤学、水文学等学科知识及测试手段,从流域角度探讨了长江中下游河道沉积物的重金属地球化学及环境磁学特征。
     主要取得以下认识和成果:
     (1)磁铁矿主导了长江中下游河道沉积物的磁性特征,磁铁矿晶粒以假单畴(PSD)-多畴(MD)为主。纵断面上,从中游到下游,磁性矿物含量呈下降趋势,晶粒呈变细趋势;横断面上,从中泓到边滩,磁性矿物含量亦呈下降趋势,晶粒亦呈变细趋势。与干流相比,支流沉积物中不完整反铁磁性物质含量相对较多,亚铁磁性矿物晶粒较细。随着支流泥沙的入江,干流沉积物的磁性特征相应发生改变,支流物源贡献是干流沉积物的磁性特征空间变化的主要影响因子。
     (2)中泓沉积物的重金属总量及生物可利用态含量较低,与本流域土壤岩石元素背景值相近,符合土壤环境质量一级标准(GB15618-1995),不存在重金属污染。边滩与支流沉积物已遭受不同程度的重金属污染,与城市排污有关的Cu、Pb、As、Ni等元素含量较高。边滩与支流沉积物中生物可利用态重金属的含量较高,所占比重较大,容易通过食物链传递,危害性大,应予以关注。从中游到下游,中泓沉积物的重金属含量沿程分布差异较大。粒径与重金属沿程差异密切相关,经过粒径校正后的沿程差异明显减小。
     (3)长江中下游干流沉积物中汞的含量总体较低,基本能达到土壤环境质量一级标准。中泓沉积物基本保持自然地质背景状态。边滩沉积物中汞含量明显偏高,反映出人类活动对近岸水域影响较大。边滩沉积物汞的含量高值出现在九江-铜陵区域。
     (4)崇明环岛潮滩植物主要通过根系吸收沉积物中的重金属。吸收重金属时,各重金属元素共同进入植物根系,未发现选择性吸收现象。植物对重金属的吸收具有地域差异性,崇明北岸芦苇体内的重金属含量普遍高于南岸。互花米草对重金属的吸收与累积能力高于芦苇和蔗草。芦苇和互花米草体内重金属含量的分布规律为根系>茎>叶,地上部分的重金属含量一般大于50%,通过植物收割方式能有效转移重金属。被广泛用作造纸原材料的芦苇的收割在减轻长江口重金属污染上发挥着巨大生态效应。
     (5)中泓沉积物颗粒整体较粗,以砂粒为主,砂粒含量达63%,平均粒径112μm;边滩沉积物颗粒相对较细,以粉砂组分为主,粉砂组分含量达51%,平均粒径26μm;支流沉积物颗粒最细,以粘土和粉砂粒级组分为主,粘土和粉沙粒级组分含量分别为39%和52%,平均粒径9.2μm。
     (6)粒度是影响沉积物磁性特征的重要因素。由于长江中下游河道沉积物中晶粒以假单畴一多畴为主(粉砂)的磁铁矿,与较粗粒级的石英、长石(细砂)伴生,并富集于细砂沉积物中,因此长江中下游河道沉积物细砂组分的磁化率最大。但将沉积物筛分为三种不同的粒级组分后再测磁化率,出现磁化率与粒径成反比现象,即随着粒级的变细,磁化率愈高。粒度亦是影响重金属含量的重要因素,不同粒径颗粒吸附重金属能力不同。重金属元素Cu、Mn、Pb、As和Ni等性质较为相似,主要富集于细颗粒组分中;与此相反,Sr、Cr和Zr元素趋于富集在粗颗粒组分中。
     本论文的创新点:
     (1)综合运用环境磁学、环境地球化学、沉积学、生态学等手段,从流域角度探讨了长江中下游干流沉积物的磁学特征和地球化学特征,建立了沉积物元素数据库,为三峡完全封坝后的后续研究提供科学的比照参数。
     (2)系统探讨了长江中下游干流河道中泓、边滩、支流沉积物中重金属的总量与生物可利用态含量水平、污染状况、沿程分布及影响因素,为制定防治长江中下游重金属污染的对策措施提供依据。
     (3)研究了植物对沉积物中重金属吸收与累积的能力大小、地域差异、及其影响因素,探讨了重金属的植物生态效应。
     (4)探讨了粒度对长江中下游干流河道沉积物的磁性特征和重金属特征的影响。
There is a variety of environmental information contained in the river sediments. Lots of methods have been introduced to research the information stored in the sediments. It's an important developing direction in the Environmental Magnetism to use river sediments' magnetic property to track material source, extract environmental information and assess environmental pollution. The content of heavy metals is an important index to evaluate the quality of the river. Since the middle and lower reaches of the Yangtze River belongs to one of the regions where the economy developed fast and the urbanization reached a high level, the health of water environment is a hot environmental topic. Because of sampling problems and other limited factors, past investigations of the river sediments in the mainstream of the Yangtze River mainly focused on the Yangtze River Estuary, Three Gorges Reservoir area as well as part cities or areas of the mainstream, and they are lack of the systemic study of the whole drainage area.
     In this work we investigate the sediments of the mainstream of the middle and lower reaches of the Yangtze River and the Yangtze River Estuary. Samples are from the central mainstream, the beach, the tributary, the surface water and the plant such as Spartina alterniflora, Phragmites australis and Scirpus mariqueter in Yichang, Jingzhou, Chenglingji, Ezhou, Jiujiang, Hukou, Anqing, Tongling, Wuhu, Nanjing, Jiangyin and Zhenjiang etc.. Sampling works have been done before the Three Gorges Reservoir stored water to the altitude of 156m in 2006. Through comprehensive use of Environmental Chemistry, Environmental Magnetism, Ecology, Pedology, Hydrology etc. as well as testing methods, heavy metals geochemistry and environmental magnetic property of sediments in the middle and lower reaches of the Yangtze River are discussed.
     Following results have been acquired:
     (1) The magnetic property of sediments in the middle and lower reaches of the Yangtze River is dominated by the ferromagnetic magnetite, with the particle size being pseudo single domain (PSD) - multi-domain (MD). From the middle reaches to the lower reaches, the content of magnetic minerals is decreasing, and their particles are fining. It's the same from the central river to the beach. The content of imperfect anti-ferromagnetic materials in the tributary is higher than that in the mainstream, and their particles are finer. With sand from tributaries inflowing into the Yangtze River, the magnetic property in the mainstream changed accordingly. The material from tributaries is an important factor to the change of the magnetic property in the mainstream.
     (2) Contents of heavy metals and bio-available heavy metals are low in the central river. They are in the scope of background value of soil elements in this drainage area. So there is almost no pollution due to heavy metals. Sediments in the beach and tributaries have been polluted by heavy metals. The content of elements related with urban contamination draining such as Cu, Pb, As, Ni is high. The content of bio-available heavy metals is higher in the beach and tributaries. So heavy metals in the beach and tributaries are delivered more easily through food link and do greater harm, which should be paid more attention. The distribution of heavy metals is of great difference from the middle reaches to the lower reaches. The particle size is closely correlated with the distribution of heavy metals. The distribution of heavy metals fluctuates much steadier after the particle size correction.
     (3) The content of mercury is lower than the environment quality standard value for soil- category I in the central mainstream of the Yangtze River, mostly in the scope of the natural geological context. The content of mercury in the beach is obviously higher than it in the central mainstream of the Yangtze River, which shows that waters near the beach are influenced more frequently by human activities. The content of mercury in the beach shows such characteristics, that is, it is lower in both the upper reaches and the lower reaches and higher in the middle reaches, and the highest value appears in the area from Jiujian to Tongling, which is possibly related with the exploitation of mineral resources.
     (4)The plant absorbs heavy metals by the root mainly. When absorbing heavy metals, all heavy metals are absorbed into the plant root and selective absorption is not found. It shows regional differences when the plant absorbs and accumulates heavy metals. The content of heavy metals in Phragmites australis on the north shore is generally higher than that on the south shore. It's possibly related with bank protection works of the south shore that damaged the natural ecosystem of the tidal flat. The content of heavy metals in Scirpus mariqueter of bao-town is higher than the others, most likely because of the pollution from the thermal power plant near around. The ability of Spartina alterniflora on absorption and accumulation of heavy metals is higher than that of Phragmites australis and Scirpus mariqueter. Distributions of heavy metals in Phragmites australis and Spartina alterniflora are both root>stem>leaf. The content of heavy metals in the part of plants aboveground (total of stem and leaf) is generally more than 50%. Phragmites australis as raw materials of the paper have enormous ecological effects on clearing heavy metals in the tidal flat.
     (5)The particle size is coarser overall in the central river, which is dominated by sand. The content of sand is 63%, and its average particle size is 112μm. The particle size is finer in the beach, which is dominated by silt. The content of silt is 63%, and its average particle size is 112μm. The particle size is the finest in tributaries, which are dominated by clay and silt. Contents of clay and silt are separately 39% and 52%, and their average particle size is 9.2μm.
     (6)The particle size is an important factor for the magnetic property. The susceptibility of fine-grained sediments is the highest in the middle and lower reaches of the Yangtze River, because in fine-grained sediments. The magnetite whose particle size is dominated by pseudo single domain and multi-domain (silt) accompany the cease quartz and feldspar (fine sand), and they are enrichment in fine sand. However, when the susceptibility is tested separately in three different particle sizes the susceptibility and the particle size change oppositely, that is, with finer particle the susceptibility is higher. The particle size is also an important factor for the content of heavy mental. Different particle sizes have different abilities to adsorb heavy metals. Heavy metals such as Cu, Mn, Pb, As, Ni and so on are mainly in the fine-grained sediments, and show similar properties. On the contrary, heavy metals like Sr, Cr and Zr are mainly in the coarse-grained sediments.
     The innovation of this dissertation:
     (1)Heavy metals geochemistry and environmental magnetic properties of sediments in the middle and lower reaches of the Yangtze River were discussed by comprehensive use of Environmental Chemistry, Environmental Magnetism, Sedimentology, and Ecology etc.. The database was established, which could provide scientific comparing parameters for following studies after the full closure of the Three Gorges Reservoir.
     (2)It was thoroughly investigated on the content of heavy metals and bio-available heavy metals, the pollution, distributions and affecting factors in the mainstream of the middle and lower reaches of the Yangtze River, which provides a basis for taking measures to prevent and treat heavy metals contamination.
     (3) The plant's ability to absorb and accumulate heavy metals, regional differences and affecting factors were investigated. Also bio-availability of heavy metals was discussed
     (4)The particle size's affection to the magnetic propertity and heavy metals' characteristics was discussed in this dissertation.
引文
安志装,陈同斌,雷梅等.蜈蚣草耐铅、铜、锌毒性和修复能力的研究.生态学报,2003,23(12):2594-2598.
    白世强,卢升高,单红丹.环境物质磁性对重金属污染的指示作用研究进展.土壤通报,2005,36(5):773-777.
    毕春娟,陈振楼,许世远等.长江口滨岸潮滩重金属源汇通量估算.地球化学,2006,35(2):187-193
    毕春娟,陈振楼,许世远.芦苇与海三棱藨草中重金属的累积及季节变化.海洋环境科学,2003a,22(2):6-9.
    毕春娟,陈振楼,许世远.上海滨岸潮滩根际重金属含量季节变化及形态分布.海洋与湖沼,2003b,34(2):194-200.
    毕春娟,陈振楼,许世远等.长江口潮滩植物根际重金属的分布与累积.矿物岩石地球化学通报,2003c,22(1):38-41.
    毕春娟,陈振楼,郑祥民.根际环境重金属地球化学行为及其生物有效性研究进展.地球科学进展,2001,16(3):387-393
    毕春娟.长江口滨岸潮滩重金属环境生物地球化学研究.华东师范大学博士论文,2004.
    曹希强,郑祥民,周立旻等.洪湖沉积物的磁性特征及其环境意义.湖泊科学,2004,16(3)227-232.
    陈吉余(伊石).从事河口海岸研究五十五年论文选.上海:华东师范大学出版社,2000.
    陈建斌.水体中重金属离子的形态及其对生物富集影响.微量元素与健康,2003,20(4):46-49
    陈静生,王飞越,陈江麟.论小于63μm粒级作为水体颗粒物重金属研究介质的合理性级有关粒级转换模拟研究.环境科学学报,1994,14(4):419-425
    陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社,1992
    陈静生主编.水环境化学.北京:高等教育出版社,1987
    陈满荣,俞立中,韩晓非.环境磁学样品干燥过程中的磁性效应[J].沉积学报,2001,19(4):630-636
    陈沈良,杨世伦,吴瑞明.杭州湾北岸潮滩沉积物粒度的时间变化及其沉积动力学意义.海洋科学进展,2004,22(3):299-305
    陈诗越,王苏民,金章东等.青藏高原中部湖泊沉积物中 Zr/Rb 值及其环境意义.海洋地质与第四纪地质,2003,23(4):35.38
    陈松、廖文卓、潘皆再等.长江口重金属固液界面过程Ⅰ沉积相中Pb、Cu、Cd 的行为和沉积机理.海洋学报,1984,6(2):181-185
    陈秀法,冯秀丽,刘冬雁等,激光粒度分析与传统粒度分析方法相关对比,青岛海洋大学学报,2002,32(4):608-614
    陈振楼,许世远,柳林等.上海滨岸潮滩沉积物重金属元素的空间分布与累积.地理学报,2000,55(6):641-651.
    成杭新,杨忠芳,奚小环等.长江流域沿江镉异常示踪与追源的战略与战术.第四纪研究,2005,25(3):285-291
    程兵岐,马梅,王子健等.长江武汉段和黄河花园口段水体中重金属污染物的急性毒性效应.北京大学学报(自然科学版),2004,40(6):950-956
    崔慧敏.拒马河悬浮沉积物对重金属的吸附-解吸研究.水资源保护,2000,3(1):25-28
    戴树桂.环境化学.北京:高等教育出版社,1996
    戴志军,陈吉余,程和琴等.南汇边滩的沉积特征和沉积物输运趋势.长江流域资源与环境,2005,14(6):735-739地表水环境质量标准,中华人民共和国国家标准GB3838-2002
    丁喜桂,叶思源,高宗军.粒度分析理论技术进展及其应用.世界地质,2005,(24)2:203-207
    丁振华,刘彩娥,汤庆合等.长江口及邻近海域环境污染研究的必要性——以汞污染为例.长江流域资源与环境,2005a,14(2):204-207
    丁振华,王文华,刘彩娥等.黄浦江江水和沉积物中汞的分布和形态特征.环境科学,2005b,26(5):62-66
    董永发,丁文鋆.长江河口沉积物粒度特征与水动力关系.见:陈吉余,沈焕庭,恽才兴主编,长江河口动力过程和地貌演变.上海:上海科学技术出版社,1988.314-322.
    方涛,张晓华等.水体悬移质对重金属吸附规律研究-以长江宜昌段为例.长江流域资源与环境,2001,10(2):185.192
    韩晓非,张卫国,陈满荣等.长江口潮滩植物对沉积物铁的地球化学循环及磁性特征的影响.沉积学报,2003,21(3):495-499
    何江,王新伟,李朝生等.黄河包头段水、沉积物系统中重金属的污染特征.环境科学学报,2003,23(1):53-57.
    侯亚敏,冯新斌,仇广乐等.贵州百花湖表层水中不同形态汞的分布规律.湖泊科学,2004,16(2):125.132
    黄昌勇.土壤学.北京:中国农业出版社,2000,71.
    霍文毅,黄风茹,陈静生等.河流颗粒物重金属污染评价方法比较研究.地理科学,1997,17(1):81-86.
    贾海林,刘苍字,张卫国等.崇明岛 CY 孔沉积物的磁性特征及其环境意义.沉积学报,2004,22(1):117-123
    贾振邦,梁涛,林健枝等.香港河流重金属污染及潜在生态危害研究.北京大学学报(自然科学版),1997,33(3):485-492.
    贾振邦,赵智杰,杨小毛等.洋涌河、茅洲河和东宝河沉积物中重金属的污染及评价.环境化学,2001,20(3):212-219.
    贾振邦,霍文毅等.应用次生相富集系数评价柴河沉积物重金属污染.北京大学学报(自然科学版).2000,36(6):808-812
    贾振邦,汪安,吴平等用脸谱图法对太子河本溪市区段河流沉积物中重金属污染进行评价的研究.北京大学学报(自然科学版),1993,29(6):736-744.
    姜兆雄.长江水资源状况与可持续利用.水利水电快报,2005,26(13):1-5
    金相灿.湘江底泥悬浮物对镉、铜、砷、汞的吸附与解吸速率系数的研究.中国环境科学,1983,12(3):19-24
    金相灿.湘江悬浮沉积物对镉、铜、砷、汞的吸附-解吸速率研究.中国环境科学,1987,7(2):21-26
    李从先,汪品先.长江晚第四纪河口地层学研究.北京:科学出版社,1998.111-173
    李从先,杨守业,范代读等.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响.第四纪研究,2004,24(5):495-500
    李克斌、刘维屏等.重金属离子在腐殖酸上吸附的研究.环境污染与防治.1997,19(1),9-11
    李茂田.长江中下游干流水沙与现代河床地貌祸合作用研究.华东师范大学博士论文,2005.
    李淑媛,苗丰民,刘国贤.渤海底质重金属环境背景值初步研究.海洋学报,1996,17(2):78-85.
    李志亮.长江下游干流水环境现状及对策.水资源研究,2002,23(1)39-40
    廖文卓、陈松等.长江口腐殖质对重金属的吸附作用.环境科学.1986,7(2):31-36
    刘东生等.黄土与环境.北京:科学出版社,1985,1-467.
    刘东印.安徽省长江干流城市江段近岸水域水质特征分析.水环境,2007(5):37-39
    刘恩峰,沈吉,朱育新等.太湖表层沉积物重金属元素的来源分析.湖泊科学,2004,16(2):113-119.
    刘红,何青,王元叶,孟翊.长江口表层沉积物粒度时空分布特征.沉积学报,2007,(25)3:445-454
    刘连文,陈骏,陈旸等,最近130ka 以来黄土中 Zr/Rb 值变化及其对冬季风的指示意义.科学通报,2002,9(5):702-706
    刘素美,张经.沉积物中重金属的归-化问题,以 A1 为例.东海海洋,1998,16(3):48-55.
    刘永懋.松花江汞与甲基汞污染综合防治及其研究成果.水资源保护,1995(3):7-12
    卢升高,俞劲炎,章明奎等.长江中下游第四纪沉积物发育土壤磁性增强的环境磁性机制.沉积学报,2000,18(3):336-340
    陆家驹.长江南京江段水质遥感分析.国土资源遥感,2002,53(3):33-36
    鹿化煜,安芷生,前处理方法对黄土沉积物粒度测量影响的实验研究,科学通报,1997,(42)23:2535-2538
    鹿化煜,苗晓东,孙有斌.前处理步骤与方法对风成红粘土粒度测量的影响.海洋地质与第四纪地质,2002,22(3):129-135
    吕达,郑祥民,周立旻等.崇明东滩湿地沉积物重金属污染的磁诊断.环境科学研究,2007,20(6):38-43.
    栾兆坤、汤鸿宵.污染水体重金属化学稳定性的研究.环境科学,1990,11(4):18-25
    马振东,张凌,蒋敬业等.长江中游鄂东南铜矿集区土壤铜环境地球化学特征.2002,31(1):91-96
    孟宪伟,杜德文,陈志华等.长江、黄河流域泛滥平原细粒沉积物~(87)Sr/~(86)Sr空间变异的制约因素及其物源示踪意义.地球化学,2000,29(6):562-570.
    潘永信,朱日祥.环境磁学研究现状和进展.地球物理学进展,1996,11(4):87-99.
    裘祖楠,方宇翘等.城市河流底泥中镉的形态分布及其向水相释放的关系.中国环境科学,1989,9(6):401-407
    曲政.沉积物粒度数据表征方法的研究.中国粉体技术,2001,7(4):24-31
    沈焕庭.长江河口物质通量.北京:海洋出版社,2001
    沈明洁,胡守云,u.Blaha 等.北京石景山工业区附近一个污染土壤剖面的磁学研究.地球物理学报,2006,49(6):1665-1673
    水利部长江水利委员会.长江防洪地图集.北京:科学出版社,2001.
    宋传广.山东莱州浅滩动力地貌、动力沉积与沉积物重金属关系研究.山东师范大学硕士学位论文,2005
    孙晓静,王起超,邵志国.第二松花江中下游沉积物汞的时空变化规律.环境科学,2007,28(5):1062-1066
    滕彦国,倪师军,度先国等.攀枝花地区河流沉积物的重金属污染研究.长江流域资源与环境,2003,12(6):569-573.
    滕彦国,度先国,倪师军等.应用地质累积指数评价沉积物中重金属污染:选择地球化学背景的影响.环境科学与技术,2002,25(2):7-9
    王建,董龄祥,姜文英等.磁化率与粒度,矿物的关系及其古环境意义.地理学报,1996,51(2):155-163
    王莉红,汤福隆,胡岭等.杭州西湖水中四种重金属的形态分布和交换过程研究.环境科学学报,1998,18(2):147-152.
    王文涛,马振东,赵宾等.武汉市葛店地区汞污染及其分布特点.环境化学,2005,24(4):454-458
    王晓蓉.金沙江颗粒物对重金属的吸附.环境化学,1983,3(3):10-18
    王新伟,何江,李朝生.黄河包头段沉积物中生物可给态重金属分布研究.环境科学研究,2002,15(1):20-23.
    王学松,秦勇.徐州城市表层土壤中金属元素的磁学响应.科技导报.2006(5):39-43
    王永红,沈焕庭,张卫国.长江与黄河河口沉积物磁性特征对比的初步研究.沉积学报,2004,22(4):658-663
    王张峤.三峡封坝前长江中下游河床沉积物分布及河床稳定性模拟研究.华东师范大学硕士学位论文,2006
    王中波,杨守业,王汝成等.长江河流沉积物磁铁矿化学组成及其物源示踪.地球化学,2007,36(2):176-184
    韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状.地球科学进展,2002,17(6):833-839
    韦桃源,陈中原,魏子新等.长江河口区第四纪沉积物中的地球化学元素分布特征及其古环境意义.第四纪研究,2006,26(3):397-405
    文雪琴,迟清华.中国汞的地球化学空间分布特征.地球化学,2007,36(6):621-627
    吴攀,刘丛强,张国平等.黔西北炼锌地区河流重金属污染特征.农业环境保护,2002,21(5):443-446.
    徐南妮等.湘江悬浮沉积物对铜和砷的吸附-解吸速率研究.中国环境科学,1986,12(3):29-35
    徐小清,邓冠强,惠嘉玉等.长江三峡库区江段沉积物的重金属污染特征.水生生物学报,1999,23(1):1-10.
    徐争启,倪师军,张成江等.金沙江攀枝花段水系沉积物中重金属的分布特征及污染评价.物探化探计算技术,2004,26(3):252-255.
    许世远,俞立中等.上海滨岸带资源与环境结构与调控研究-研究报告.华东师范大学,2000.
    许世远.长江三角洲地区风暴潮沉积研究.北京:科学出版社,1997.
    闫海涛,朱育新,胡守云等.西笤溪流域重金属污染磁学研究及多元分析.中国环境科学,2004b,24(4):385-389.
    闫海涛,胡守云,朱育新.磁学方法在环境污染研究中的应用.地球科学进展,2004a,19(2):230-236.
    燕文明,刘凌.长江流域生态环境问题及其成因.河海大学学报,2006,34(6):610-613
    杨桂山,翁立达,李利锋主编.长江保护与发展报告(2007).武汉:长江出版社,2007.
    杨世伦,谢文辉,朱骏等.大河口潮滩地貌动力学过程的研究——以长江口为例.地理学与国土研究,2001,17(3):44-48.
    杨守业,李从先,朱金初等.长江与黄河沉积物中磁铁矿成分标型意义.地球化学,2000,29(5):480-484
    杨守业,韦刚健,夏小平等.长江口晚新生代沉积物的物源研究:REE 和 Nd 同位素制约.第四纪研究,2007,27(3):339-346
    叶裕中.沉积底泥中重金属的释放.环境化学,1990,9(5),18-25
    俞立中,许羽,许世远等.太湖沉积物的磁性特征及其环境意义.湖泊科学,1995,7(2):141-150
    俞立中,张卫国.沉积物来源组成定量分析的磁诊断模型.科学通报,1998,43(19):2034-2041
    俞立中,张卫国.利用磁信息研究潮滩重金属的初步探讨.环境科学进展,1993,1(5):37-44.
    俞立中.环境磁学在城市污染研究中的应用.上海环境科学,1999,18(4):175-178.
    恽才兴.长江河口近期演变基本规律.北京:海洋出版社,2004.
    张朝生,章申,王立军等.长江与黄河沉积物金属元素地球化学特征及其比较.地理学报,1998,53(4):314-322
    张虎才.元素表生地球化学特征及理论基本.兰州大学出版社,1997
    张磊,王起超,李志博等.中国城市汞污染及防治对策.生态环境,2004,13(3):410-413
    张立诚,佘中盛,章申等著.水环境化学元素研究.北京:中国环境科学出版社,1996.
    张士三、黄衍宽等.九龙江口沉积物中重金属元素在不同粒级中的含量分配.环境科学,1984,5(3):31-35
    张树夫,肖家仪,俞立中等.沉积物矿物磁性测定测量在古环境研究中的应用.地理科学,1991,11(2)182-194
    张卫国,贾铁飞,陆敏等.长江口水下三角洲 Y7 柱样磁性特征及其影响因素.第四纪研究,2007,27(6):1063-1071
    张卫国,俞立中,许羽.环境磁学研究的简介.地球物理学进展,1995,10(3):95-105.
    张卫国,俞立中.长江口潮滩沉积物的磁性特征及其与粒度的关系.中国科学(D辑),2002,32(9):783-792.
    张卫国,俞立中.沉积物磁性测量对铁还原的指示及其在重金属污染研究中的应用.科学通报,1998,43(19):37-43
    张卫国,俞立中等.长江口南岸边滩沉积物重金属污染记录的磁诊断方法.海洋与湖沼,2000,31(6):616-623.
    张卫国.环境磁学研究及其若干进展.世界科学,2005,10:25-27.
    张卫国.长江口潮滩沉积物环境磁学研究.华东师范大学博士毕业论文,2001
    张玉芬,李长安,王秋良等.江汉平原沉积物磁学特征及对长江三峡贯通的指示.科学通报,2008,53(5):577-582
    赵济.中国自然地理.北京:高等教育出版社,1995.
    赵庆,郑祥民,胡志平等.崇明岛滨岸滩地植物系统中重金属元素的分布累积与相互关系.环境科学研究,2007,20(6):44-48
    赵怡文,陈中原.长江中下游河床沉积物分布特征.地理学报,2003,58(2):223-229
    郑祥民,刘飞.长江三角洲与东海岛屿黄土研究综述.华东师范大学学报(自然科学版),2006(6)9-24
    郑祥民.长江三角洲及海域风尘沉积与环境.上海:华东师范大学出版社,1999.
    中国科学院《中国自然地理编委会》.中国自然地理总论.北京:科学出版社,1985
    中国科学院地理研究所,长江水利水电科学研究所,长江航道局规划设计研究所.长江中下游河道特性及其演变.北京:科学出版社,1985
    朱广伟,陈英旭,周根娣等.运河(杭州段)沉积物中重金属分布特征及变化.中国环境科学,2001,21(1):65-69.
    朱俊,董辉,王寿兵等.长江三峡库区干流水体主要污染负荷来源及贡献冰科学进展,2006,17(5):709-713
    朱圣清,臧小平.长江主要城市江段重金属污染状况及特征.人民长江,2001,32(7):23-25
    自晓慧,杨万东,陈华林等.城市内河沉积物对水体污染修复的影响研究.环境利学学报.2002,22(5):562-565
    Ackerman F,et al..Monitoring heavy metals in coastal and estuarine sediments:a question of grain size:<20μm versus<60μm.Environmental Technology and Letters,1983,4:317-328
    Alberts J J,Price MT,Kania M.Metal concentration in tissues of spartina alterniflora loisel and sediments of Georgia salt marshes.Estuarine,Coastal and Shelf Science,1990,30:47-58
    Baker A J M,Brooks R R.Terrestrial higher plants which hyperaccumulate metal licelements,A view of their distribution,ecology and phytochemistry.Biorecovery,1998,1:81-126.
    Baker A.J.M.,McGrath S.P.,Sidoli C.M.D.,et al.The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulating plants,Resources,Conservation and Recycling,1994,11:41-49.
    Berry A.Plater A.J.et al.,Rates of tidal sedimentation from records of industrial pollution and environmental magnetism:the Tees estuary,north-east England.Water,Air and Soil Pollution,1998,106:463-479
    Bischoff JL,Piper DZ,Leong K.The aluminosilicate fraction of north Pacific manganese nodules.Geochimica et Cosmochimica Acta,1981,45:2047-2063.
    Bloemendal J,Liu X M.Rock magnetism and geochemistry of two Plio-Pleistocene Chinese loess-palaeosol sequence-Implications for quantitative palaeoprecipitation reconstruction.Palaeogeography,Palaeoclimatology,Palaeoecology,2005,226(1-2):149-166.
    Cacador I.,Vale C.,Catarino F..Accumulation of Zn,Pb,Cu,Cr and Ni in sediments between roots of the Tagus Estuary salt marshes,Portugal.Estuarine,Coastal and Shelf Science, 1996, 42: 393-403
    Cacador I.,Vale C.,Catarino F.Seasonal variation of Zn,Pb,Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes.Marine Environmental Research,2000,49:279-290.
    Caros G, Itzia A. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77: 229-236.
    Chaney,,et al. Phytoremediation of soil metals.Current Opinion Biotechnol. 1997, 8:279-284.
    Chao TT,Zhou L.Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments.Soil Science Society of America Journal,1983,47:225-232.
    Chen F H ,Feng Z D ,Zhang J W. Loess particle size date indicative of stable winter monsoon during the last interglacial in the western part of the Chinese Loess Plateau.Catena , 2000, 39 :233-244.
    Chen J, An Z S, John H. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research,1999,51:215-219
    Chen Z Y, Wang Z H, Schneiderman Jet al. Holocene climate fluctuations in the Yangtze delta of Eastern China and the Neolithic response.The Holocene, 2005,15(6): 915-924
    Chernoff H.The use of face to represent points in K-di-mensional space grap hically. J. Am. Statist. Assoc, 1973(68):361-368.
    Cheung, K.C., Poon, B.H.T., Lan, C.Y., Wong,M.H., 2003, Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52,1431-1440.
    
    Clarkson T W. Human toxicology of mercury. Trace Elem Exp Med, 1998,11:303
    Covelli S, Fontolau G. Application of a normalization procedure in determining regional geochemical baselines.Environmental Geology, 1997,30(1-2): 34-45.
    Daskalakis K,O conner T.Normalization and elemental sediment contamination in the coastal United States.Environment Science and Technology, 1995,29:470-477
    Dauvalter, V. & Rognerud, S., 2001. Heavy metal pollution in sediments of Pasivik River drainage. Chemosphere 42, 9-18.
    Davies F C W. minamata disease: a 1989 update on the mercury poisoning epidemic in Japan[J]. Environ Geochem health, 1991,13:35-38
    Day R, Fuller M, Schmidt V A. Hysteresis properties of titanomagnetites: grain size and compositional dependence. Phys Earth Planet later, 1977,13: 260~267
    
    Dellwig O,Hinrichs J,Hild A,et al.Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach.Journal of Sea Rearch, 2000,44:195-208.
    Dekkers M J.Environmental magnetism:an introduction.Geologic en Mijnbouw,1997,76:163-182
    Drifmeyer J.E.,Cross F.A.,Zieman J.C.Sorption and desorption of trace elements by Spartina altemiflora detritus.Plant and Soil,1982,66:69-80.
    Dypvik H,Harris N B.Geochemical facies analysis of fine-grained siliciclastics using Th/U,Zr/Rb and(ZR+Rb)/Sr ratios[J].Chemical Geology,2001,181:131-146.
    Evans Me,Heller F.Environmental Magnetism.London:Academic Press,2003.
    Feng,H.,Cochran,J.K.,Lwiza,H.L.,Brownawell,B.J.,Hirschberg,D.J.,1998.Distribution of Heavy Metal and PCB Contaminants in the Sediments of an Urban Estuary:The Hudson River.Marine Environmental Research,45(1),69-88.
    Finney B.History of metal pollution in the Southern California Bight:An update Environment Science and Technology,1989,23:294-303
    Foestner U.Metai pollution in aquatic environment.Springer-Verlag,Berlin Heideberg New York.1981,110-196
    FolkR L,WardW C.Brazos riverbar:a study in the signification of grain size parameters.Journal of Sedimentary Petrology,1957,27:3-27
    Fralick PW,Kronberg BI.Geochemical discrimination of elastic sedimentary rock sources.Sediment Geology,1997,113:111-124.
    Gao S,Collins M.Net sediment transport patterns inferred from grain size trends,based upon definition of"transport vectors".Sedimentary Geology,1992,81:47-60.
    Goldberg.E.D.Marine Geochemistry,Chemical scavengers of the sea.Journal of Geology.1954,62:249-266
    Groot A J,et al..Standardisation of methods of analysis for heavy metals in sediments.Hydrobiologia,1982,92:689-695
    Guo Z T,Liu T S,FedoroffN,et al.Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic.Global and Planetary Change,1998,18(3-4):113-128.
    Gupta,G.,Karuppiah,M.,1996.Heavy metals in sediments of two Chesapeake Bay tributaries-Wicomico and Pocomoke Rivers.Journal of Hazardous Materials 50,15-29.
    Hacanson L.An ecological risk index for aquatic pollution control:A sedimentological approach.Water Re-search,1980,14:975-1001.
    Hatje V,Birch GF,Hill DM.Spatial and temporal variability of particulate trace metals in Port Jackson Estuary,Australia.Estuarine,Coastal and Shelf Science,2001,53:63-77.
    Helmke P A,et al..Determination of trace element concentration of sediments by multielemental analysis of clay-size fractions.Environment science and Technology,1977,11:984-989
    Hilton J,Davison W,Ochsenbein U.A mathematical model for analysis of sediment core data:Implications for enrichment factor calculation and trace metal transport mechanisms,Chemical Geology,1985,48:281-291.
    Hirst D M. The geochemistry of modern sediments from the gulf of Paria. Geochim. Cosmochim. Acta, 1962,26:1147-1187.
    Horwitz A,Elrick K.The relation of stream sediment surface area,grain size,and trace element chemistry. Apply Geochem.,1987,2:437-445
    Hutchinson S.M., The magnetic record of particulate pollution in a saltmarsh, Dee Estuary, UK. The Holocene. 1993,3(4):243-350.
    Jones B. , A. Tirki, Distribution and speciation of heavy-metals in surficial sediments from the Tees Estuary, North-east England.Marine Pollution Bulletin, 1997,34(10):768-779
    Kapicka, A., Jordanova, N., Petrovsky, E., et al.,.Effect of different soil conditions on magnetic parameters of power-plant fly ashes. Journal of Applied Geophysics, 2001(48):93-102.
    Keskinkan, O. M. Z. L. Goksu, A. Yuceer, M. Basibuyuk and C. F. Forster, Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 2003, 39: 179-183.
    Keskinkan, O.M. Z. L. Goksu, M. Basibuyuk and C. F. Forster, Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 2004, 92: 197-200.
    Knight C, Kaiser J, Lalor G C, et al. Heavy metals in surface water and stream sediments in Jamaica. Environmental Geochemistry and Health, 1997,19, 63-66.
    Kohfeld K E, Harrison S P. Glacial-interglacial changes in dust deposition on t he Chinese Loess Plateau. Quaternary Science Reviews, 2003,22:1859-1878.
    Krumbein W CA history of the principle and methods of mechanical analysis. Journal of Sedimentary Petrology, 1932,2(2):89-124.
    Lecoanet H., Leveque F., Ambrosi,J.P. .Combination of magnetic parameters: An efficient way to discriminate soil-contamination sources (South France). Environmental Pollution, 2003 (122): 229-234.
    Lindqvist O, Johansson K, Aastrup M. et al. Mercury in the Swedish environment: recent research on causes consequences and corrective methods. Water,Air and Soil Pollution, 1991,55:73-98
    Loring D. Lithium:A new approach for heavy-metal data from estuarine and coastal sediments.Marine Chemistry,1990,29:155-168
    Maher B A., Magnetic properties of some synthetic submicron magnetites. Geophys. J., 1988, 94:83—96
    Mountouris, A. E. Voutsas and D. Tassios, Bioconcentration of heavy metals in aquatic environments: the importance of bioavailability . Marine Pollution Bulletin, 2002, 44: 1136-1141.
    
    Muller G. Index of geoaccumulatio n in sediment s of Rhine River.Geo J,1969,2:108-118.
    Myung Chae Jung and Iain Thornton. Heavy metal contamination of soils and plants in the vicinity of lead-zinc mine, Korea. Applied geochemistry. 1996: 53-59.
    Oldfield F. Environmental magnetism-a personal perspective. Quaternary Science Review. 1991,10:73-85.
    Oldfield F. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments. J. Geophys Res, 1994a, 99: 9045-9050
    Oldfield F., Yu L..The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea. Sedimentology, 1994b,41:1093-l 108
    Patricia Miretzky, Andrea Saralegui and Alicia Fernandez Cirelli, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 2004,57:997-1005.
    Petrovsky E., Kapicka A.et al, Low-field magnetic susceptibility, a proxy method of estimating increased pollution of different environmental systems. Environmental Geology, 2000, 39 (3-4):312-318
    Pilon-Smits E, Pilon M. Breeding mercury-breathing plants for environmental cleanup. Trends in Plant Science, 2000, 5(6): 235-236.
    Prins A ,Vandenberghe J ,Weltje G J . Paleoclimate signals in loess size dist ributions. Int.Workshop HWK Delmenhorst.From Particle Size to Sediment Dynamics. 2004:123-125.
    Pye K. Aeolian Dust and Dust Deposits. London:Academic Press,1987:29-68.
    Qian J.H.,Zayed A.,Zhu Y.-L.,et al.Phytoaccumulation of trace elements by wetland plants:IIL Uptake and accumulation of ten trace elements by twelve plant species.Journal of Environment Quality, 1999,28:1448-1455.
    Qu, W., & Kelderman, P., 2001. Heavy metal contents in the Delft canal sediments and suspended solids of River Rhine: multivariate analysis for source tracing. Chemosphere. 45, 919-925.
    Rafael P. , Enrique B. et al., Determination and speciation of heavy metals in sediments of the Pisuerga River.Water Research, 1990,20(3):373-379
    Rea D K,Snoeckx H,Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift ,and cooling of the northern hemisphere. Paleoceanography ,1998,3 (3):215-224.
    Robichaud, K. M.Misra, R. W. Smith & I. A. H. Schneider. Adsorption of heavy metals by aquatic plant roots. Water-rock interaction. 1995, 269-272.
    Sarker A.N.,Wynjones R.G.Effect of rhizosphere pH on the availability and uptake of Fe,Mn and Zn.Plant and Soil,1982,66:361-372.
    Schropp S.,et al..Interpretation of metal concentrations in estuarine sediments of Florida using Aluminum as a reference element.Estuaries, 1990,13:227 -23 5
    Scoullos M., Oldfield F. and Thompon R., Magnetic monitoring of marine particulate pollution in the Elefsis Gulf, Greece. Marine Pollution Bulletin. 1979,10: 287-291.
    
    Shu J, Dearing J A, Morse A P,et al. Magnetic properties of daily sampled total suspended particles in Shanghai,China..Environmental Science and Technology, 2000, 34:2393-2400.
    Singh A K,Hasnain SI,Banerjee D K.Grain size and geochemical partitioning of heavy metals in sediments of the Damodar Tiver-a tributary of the lower Ganga,India.Environmental Geology,1999,39(1):90-98.
    Soares,H.M.V.M.,Boaventura,R.A.R.,Machado,A.A.S.C.,Esteves da Silva,J.C.G.Sediments as monitors of heavy metal contamination in the Ave river basin(Portugal):multivariate analysis of data.Environmental Pollution 1999,105,311-323.
    Steiner M,Wallis E,Erdtmann B D,et al.,Submarine-hydrothermal exhalative ore layers in black shales from South China and associated Fossils:Insights into a Lower Cambrian facies and bio-evolution,alaeogeogr Palaeoclimatol,Palaeoecol,2001,169(3-4):165-191
    Syvistski J P M.Factor analysis of size frequency distributions;significance of factor solutions based on simulation experiments//Syvistski J.Principles,methods,and application of particle size analysis.Cambridge:Cambridge University Press,1991:249-263.
    Tauxe L,Mullender T A J,Pick T.Potbellies,wasp-waists,and superparamagnetism in magnetic hysteresis.Journal of Geophysical Research,1996,101(B1):571-584
    Tessier,A.et al.,Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry,1979,51(7):844-851
    Thomas L.T.,John L.W.,Sorptive behavior of trace metals on fly ash in aqueous systems.Environmental Science & Technology,1977,12(11):1096-1100
    Thompon R,Oldfield F.Environmental Magnetism.London:Allen & Unwin,1986.
    Thompon R,Oldfield F.著 严尧基等编译.环境磁学.北京:地质出版社,1995.
    Thompson R.Morton D.J.Magnetic susceptibility and particlesize distribution in recent sediments of the LochLomond drainage basin,Scoltland.J.Sed.Petrol,1979,49(3):801-812
    Turner A,Millward GE,Morris AW.Particulate metals in five major North Sea estuaries.Estuarine,Coastal and Shelf Science,1991,32:325-346.
    Turner A,Millward GE,Tyler AO.The distribution and chemical composition of particles in a macrotidal estuary.Estuarine,Coastal and Shelf Science,1994,38:1-17.
    Turner A.Diagnosis of chemical reactivity and pollution sources from particulate trace metal distributions in estuaries.Estuarine,Coastal and Shelf Science,1999,48:177-191.
    Turner A.Trace metal contamination in sediments from U.K.estuaries:an empirical evaluation of the role of hydrous iron and manganese oxides.estuary.Estuarine,Coastal and Shelf Science,2000,50:355-371.
    UNEP.Report of the global mercury assessment working group on the work of its first meeting.Geneva,Switzerland,9-13,September,2002
    Vale C.,Catarino F.,Cortesao C.,et al.Presence of metal-rich rhizoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus Estuary,Portugal.Science of Total Environment,1990,97-98:617-626.
    Verosub K L , Roberts A P. Environmental magnetism: past, present, and future. J. Geophys. Res. 1995, 100 (B2): 2175-2192.
    
    Wedpohl K H. Handbook of Geochemistry. Berlin: Spring-Verlag, 1970, II/2, 37
    Wheatly B, Wheatley M A. methylmercury and the health of indigenous peoples: a risk management challenge for physical and social sciences and for public health policy. The science of the Total Environment, 2000,259:23-29
    Williams T M,A sedimentary record of the deposition of heavy metals and magnetic oxides in the Loch Dee basin, Galloway, Scotland, since AD1500.The Holocene, 1991, 1(2):142-150
    Windham L.,Weis J.S.,Weis P.Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora(cordgrass)and Phragmites australis(common reed). Estuarine, Coastal and Shelf Science,2003,56(1):63-72.
    Window HL,JR Smithr J,Rawinson C. Particulate trace metal composition and flux across the southeastern U S. Continental Shelf Marine Chemistry, 1989,27: 283-293.
    Woitke, P., Wellmitz, J., Helm, D.,Kube, P., Lepom, P., Litheraty, P., 2003. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere. 51, 633-642
    Xiao Jule,Zheng Hongbo,Zhao Hua. Variation of winter monsoon intensity on the loess plateau,central China during the last 130000 years:evidence from grain size distribution.The Quaternary Research, 1992,31:13-19.
    Xu K, Milliman J D, YangZ et al.,.Yangtze sedimentdecline partly from Three Gorges Dam .EOS, 2006, 87(19): 185
    Yang S L, Belkin IM, BelkinaA Ietal,. Delta response to decline in sediment supply from the Yangtze River: Evidence of the recent four decades and expectations for the next half-century. Estuarine,Coastaland ShelfScience, 2003,57: 689-699
    Yu L, Oldfield F. Amulti-variatemixing model for identifying sediment source from magnetic measurements. Quaternary Research,1989,32: 168-181
    Yu L.Z., Oldfield F. et al., Paleoenvironmental implications of magnetic measurements on sediment core from Kunming Basin Southeast China. Journal of Paleoliminology, 1990 (3):95-111
    Zawislanski P.T.,Chau S.,Mountford H.,et al.Accumulation of selenium and trace metals on plant litter in a tidal marsh.Estuarine,Coastal and Shelf Science,2001,52:589-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700