埕岛海域自然地质环境对海上构筑物的响应分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解埕岛海域自然地质环境对海上构筑物的响应关系,本文通过高分辨率的侧扫声纳、浅地层剖面及单波束测深仪等声学仪器对该海区进行勘查,并结合大量的井场资料、现场和室内实验分析。近几十年来,海浪对海岸线冲蚀越来越严重,对周围的海洋工程设施造成重大的安全威胁。认识人工构筑物与自然地质环境变化的关系,研究海岸线及周边海域在人工构筑物的动力响应,对研究油田钻井平台、海底管线、电缆等人工构筑物对海岸冲刷淘蚀作用以及保护油田设施具有重要的实际意义。
     埕岛海区在区域自然地质环境作用下,水深呈现逐渐增大的趋势,整体上埕岛海区的冲淤环境处于冲淤调整状态,长期的调整趋势使该海区的水下岸坡坡度逐渐减小。埕岛海区的海底冲淤变化规律是开始时由于黄河改道原因以快速冲刷作用为主,然后逐渐进入缓慢冲刷阶段,最后形成以冲刷为主的冲淤调整期。影响埕岛海区海底地形变化的地质作用主要表现形式有废弃三角洲的冲蚀作用和海底不稳定性地质作用。海底不稳定地质作用的主要方式表现为海底的塌陷凹坑、沉积物碎屑流和局部的滑坡与崩塌。
     随着胜利油田海上石油的开发,在埕岛海域兴建了大量人工构筑物,如石油平台、海底石油管线、海底电缆等等,其中石油平台的桩柱部分对自然地质环境的影响最为强烈。分析认为,石油平台的修建会对影响其周围的海底地形,石油平台的桩柱的存在,打破了原有的水动力条件环境,造成二次涡旋,在波浪和潮流共同作用下,对海底的地形造成了冲刷,最大冲刷深度可达2.2m,同时在平台周围存在大量不稳定性地貌,例如:侵蚀洼地、蚀余凸起等;海底管线的铺设同样也会对海底的地形造成影响,通过对管线冲刷机理的分析、实测管线路由区不同年份水深值和管线路由区的多波束图像以及浅地层剖面图像的分析解译,认为管线对埕岛海区地形变化影响较大,海底管线的铺设,不仅改变其周围原有的地貌、土体力学等特征,还使水动力条件更加强烈,泥沙更趋于起动,造成对海底地形的冲蚀,最大冲刷深度可达0.3m,在管线附近主要存在塌陷凹坑等不稳定性地貌。
     埕岛海域上的各式各样的海上人工构筑物群,它们对海底的影响已不再是小范围的局部冲刷海底,而是区域性的改变埕岛海域自然地质环境,自然地质环境同时又影响着人工构筑物的稳定性,它们之间存在着相互相成的关系。埕岛海域大量的人工构筑物群加剧了该海域海底底床的冲刷,使其周围水深逐渐变大,水深等值线明显凸向靠岸一侧,同时,被冲蚀的海底物质在波浪潮流循环荷载的作用下,向人工建筑物附近海域就地填充淤积,形成浅滩,致使该处水深等值线明显凸向海一侧,填充淤积的浅滩又对于保护该区海底管道电缆等路由工程设施的安全具有十分重要的现实意义。
     本论文定性分析自然地质环境对人工构筑物的反馈作用,不足之处是缺乏定量的深入研究人工构筑物对自然地质环境的数值计算,到目前尚无法建立定量的海域水深等值线变化动力模式。
In order to understand the response of natural geological environment to marine structure into Chengdao sea area, this paper is combining the survey data of side-scan sonar, sub-bottom profiler, the single-beam sounder and etc, same with a large number data of well site and experimentation. In recent decades, coastline was been eroded by waves more and more, and it is a big security threat to marine engineering facilities. understanding of the relationship between artificials and natural the geologierocal, studying the response of coastline or near sea to artificial structures, are important practical significance for studying the effect of oil drilling platforms, subsea pipelines, cables and other artificial structures to coastal erosion, as well as corrosion protection of oil facilities.
     Under the natural geological environment in Chengdao area, the water depth will be increased gradually, the evolution law is from the status of rapid erosion, to washed into the slow phase, final dynamic equilibrium. The main geological changes form of the impact of sea bottom topography in Chengdao, have the abandoned delta of the erosion and geological instability of the seabed. geological The instability of Seabed has embodied in the ways of collapse pits for the seabed, sediment and debris flow landslides and collapsed partially.
     With the development of Shengli Oil, it have constructed a large number of artificial structures, such as oil platforms, undersea oil pipelines, submarine cables and others, including oil platforms which of some of the piles have very strong impact of natural geological to environmental. The result of analysis show that the construction of oil platforms will affect the surrounding seabed topography, breaking the original hydrodynamic conditions of the environment, causing the second vortex in the waves and the deepest of scour is up to 2.2m, which is under the combined effect of the trend on the seabed. At the same time, there are a large number of unstable landforms around platforms, such as: low-lying land erosion, convex. The pipelines will also impact on the seabed topography. Through the analysis of the mechanism of pipeline erosion, and the depth data measured in different years and the multi-beam images, sub-bottom profiler images, it show that the pipeline have important effect on its terrain, and pipelines are not only change its original surrounding topography and soil characteristics, but also make more intense of the hydrodynamic conditions, finally resulting the erosion of the seabed topography and the largest erosion may up to 0.3m, and there are unstable landforms such collapse pit near pipeline.
     The influence of manmade buildings to seabed is no longer a small-local but is regional. On the other way, natural geological environment is also affecting the engineering facilities. There is a mutual relationship between each other. The lots of artificial structures increasing the effect to the seabed, so that the contour map of the depth of water is clearly convex the side of the land. Another, the seabed material which had eroded, is filling sediment around the structures and forming a shallow by the circular action of tide wave. So it clear that the contour map of the depth of water near here is clearly convex side of the sea, which have a great practical significance to the protection of cables and other submarine pipeline routing facilities.
     In this paper, there is only a qualitative analysis of the feedback effect which the geological environment to the artificial structure, there is lack of quantitative in-depth study of the numerical calculation that the influence which artificial structures on the natural geological environment, and have not a model that quantitative calculate changes the contour map of the depth of water in Chengdao waters.
引文
[1] Prior D.B, Z.S.Yang, et al . Active slope failure sediment collapse and silt flows on the modern subaqueous Huanghe(Yellow River)Delta. Geo-Marine Letters, 1986(6): 85-95
    [2] D.S.Jeng. Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review. Ocean engineering, 2001, 28: 537-570
    [3] Dag Myrhaug, Havard Rue. Scour below pipelines and around vertical piles in random waves. Coastal Engineering. 2003, 48: 227-242
    [4] J.M.Metz, J.a.Dowdeswell, C.M.T. Woodyworth-lynas . Sea-floor scour at the mouth of Hudson Strait by deep-keeled icebergs from the Laurentide Ice Sheet. Marine Geology, 2008, 253: 149-159
    [5] Y.S.Lin, D.S.Jeng. The effects of variable permeability on the wave-induced seabed response. Ocean Engineering, 1997, 42(7): 623-647
    [6] D.S.Jeng. Wave-induce seabed instability in front of a breakwater. Ocean Engineering, 1997, 24(10): 887-917
    [7] J.G.Wang, Bingyin Zhang,T.Nogami. Wave-induced seabed response analysis by radial point interpolation meshless method. Ocean Engineering. 2004, 31: 21-42
    [8] Rahaman M.S. Wave-induced instability of seabed:mechanism and Conditions. Marine Geotechnology,1 986
    [9] De WithPJK ranenburg. The wave-induced liquefaction of cohesive imentbeds. Estuarine Coastaland Shelf Science,1997
    [10] Coleman J M, Wright L D. Analysis of Major River Systems and their deltas, Procedures and Rationale with Two Examples. Louisiana State University, Coastal Studies Inst. Tech. Rept,1971,95,125
    [11]李陆平,孔祥德.风暴浪对埕岛油田海域海底冲刷的影响.海岸工程,1996,15(2):1-8
    [12]杨作升,陈为民,陈彰榕等.黄河口水下滑坡体系.海洋与湖沼,1994,25(6):573- 581
    [13]李广雪,庄振业,韩得亮.末次冰期以来地层序列与地质环境特征—渤海南部地区沉积序列研究.青岛海洋大学学报,1997,28(1):161-166
    [14]李广雪,薛春汀.黄河水下三角洲沉积厚度、沉积速率及砂体形态.海洋地质与第四纪地质,1993,13(4):35-44
    [15]赵维霞,杨作升,冯秀丽.埕岛海区浅地层地质灾害因素分析.海洋科学,2006,30(10):20-24
    [16]秦崇仁,彭亚.波浪作用下海底裸置管道周围的冲刷.港工技术,1995,3:7-12
    [17]周永青,陈宗团,任于灿,成国栋.渤海埕岛海区近岸冲淤变化规律.海洋通报,1996,15(1):48-52
    [18]赵文哲.埕岛海区浅表层地质特点分析.海岸工程,2005,24(4):27-34
    [19]常方强,贾永刚,孟祥梅等.埕岛海域波浪引起不同区域土体的液化程度. 2008,28(2):37-42
    [20]陈晖,曹立华,李安龙,杨荣民,邓声贵.埕岛海域浅水区人工构筑物周边海底地形演化与海洋灾害地质现象关系研究.海岸工程,2003, 22(3):19-24
    [21]张卫明,梁瑞才,牟晓东,邹积山.埕岛油田海域海底沉积特征与工程地质特性.海洋科学进展,2005,23(3):305-312
    [22]贾永刚,单红仙.黄河口海底斜坡不稳定性调查研究.中国地质灾害与防治学报,2000,11(1):1-5
    [23]李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质,2000,20(2):21-26
    [24]李安成,杨荣民,林霖,曹立华,杨少丽.波浪加载下海底土质特性变化的研究.青岛海洋大学学报,2003,33(1):101-106
    [25]刘效国,朱孝强.埕岛海域水深地形特征及冲淤规律探讨.黄渤海海洋,2000,18(1): 34-39
    [26]刘升发,庄振业,吕海青,范德江.埕岛及现代黄河三角洲海域晚第四纪地层与环境演变.海洋湖沼通报,2006,4:32-37
    [27]俞聿修.波浪对建筑物和海底的作用.港工技术,2001,2:1-6
    [28]韩西军,曹祖德,杨树森.粉砂质海床上建筑物周围局部冲刷的系统模型延伸法研究.海洋学报,2007,29(1):150-154
    [29]初丽敏,李影,姚百超.河流岸坡冲刷原因分析.黑龙江水利科技,2004,1:16-17
    [30]王恺忱,王开荣,陈孝男,茹玉英.黄河河口对下游河道反馈影响研究.人民黄河,2008,30(1):18-21
    [31]宠家珍,姜明星.黄河河口演变—(二)1855年以来黄河三角洲流路变迁及海岸线变化及其他.海洋湖沼通报,2003, 4:1-13
    [32]曹文洪.黄河口三角洲演变及其反馈影响的研究.泥沙研究,1997,4:1-6
    [33]张琦,杨作升,陆念祖,陈卫民,赵晓燕.黄河口水下底坡不稳定的水动力机制探讨.海洋学报,1992,14(3):133-141
    [34]常瑞芳,崔青,欧素英.黄河口水下三角洲海底冲蚀沟发育的动力机制探讨.海洋学报,1999,21(3):90-97
    [35]鹿洪友,李广雪.黄河三角洲埕岛地区近年海底冲淤规律及水深预测.长安大学学报(地球科学版),2003,25(1):57-61
    [36]李俊杰,李广雪,文世鹏,杨荣民,郝坤.黄河三角洲埕岛海域浅地层剖面结构与灾害地质.海洋地质动态,2007,23(12):8-13
    [37]冯秀丽,吴世强,林霖,刘涛,周松望.黄河三角洲埕岛近岸海域悬浮泥沙运动.海洋科学,2003,27(12):65-69
    [38]杨怀仁,王建.黄河三角洲地区第四纪海进与岸线变迁.海洋地质与第四纪地质,1990,10(3):1-14
    [39]于文青.黄河三角洲海岸线蚀退的防治.油气田地面工程,2006,25(10):7-8
    [40]李福林,庞家珍,姜明星.黄河三角洲海岸线变化及环境地质效应.海洋地质与第四纪地质,2000,20(4):17-21
    [41]尹明泉,李采.黄河三角洲河口段海岸线动态及演变预测.海洋地质与第四纪地质,2006,26(6):35-40
    [42]李安龙,杨荣民,曹立华,孙映涛.黄河水下三角洲海底斜坡波致稳定性分析.中国海洋大学学报,2004,31(2):273-280
    [43]常瑞芳,陈樟榕,陈卫民,欧素英,蒋东辉,曹振轶.老黄河口水下三角洲前缘底坡不稳定地形的近期演变及控制因素.青岛海洋大学学报,2000,30(1):159-164
    [44]周良勇,刘健,刘锡清,李广雪,陈正新.现代黄河三角洲滨浅海区的灾害地质.海洋地质与第四纪地质,2004,24(3):19-27
    [45]任于灿.现代黄河水下三角洲的地貌特征及演化.海洋地质与第四纪地质,1992,12(4):59-68
    [46]林振宏,杨作升.现代黄河水下三角洲底坡的不稳定性.海洋地质与第四纪,1995,15(3):11-23
    [47]李海东,王厚杰,魏合龙,赵晓辉.现代黄河水下三角洲地质灾害现象的空间分布.海洋地质与第四纪地质,2006,26(4):37-43
    [48]冯秀丽,沈渭铨,杨荣民.现代黄河水下三角洲砂土液化模式.青岛海洋大学学报,1995,25(2):221-228
    [49]孙永福,宋玉鹏,边淑华.海洋平台桩基周围冲刷过程及冲刷机理分析.中国海洋大学学报,2007,37(4):636-640
    [50]孙永福,宋主鹏,孙惠凤,马江.潮流作用下海洋平台桩基冲刷过程及冲刷深度计算.海洋科学进展,2007,25(2):178-183
    [51]韩西军,杨树森,孙汉宝,曹祖德.粉沙质海岸上栈桥桩基的波流冲刷试验.水运工程,2006,387(4):14-19
    [52]孙宁松,孙永福,宋玉鹏.海洋平台桩基冲刷及影响因素分析.海岸工程,2004,23(4):38-44
    [53]黄莹,祭昌莲,严仁军.海洋平台桩基的冲刷机理.船海工程,2006,174(5):85-88
    [54]王利金,刘锦昆.埕岛油田海底管道冲刷悬空机理及对策.油气储运,2004,23(1):44-48
    [55]阎通,李萍,李广雪.埕北海域海底管线冲刷稳定性研究.青岛海洋大学学报,1999,29(4):721-726
    [56]胡洪勤.埕岛油田海底管道冲刷及工程治理.海洋科学,2005,29(6):13-16
    [57]吴钰骅,金伟良,毛根海等.海底输油管道砂床冲刷机理研究.海洋工程,2006,24(4):43-48
    [58]潘冬子,王立忠,潘存鸿等.推进波作用下海底管线周围局部冲刷试验研究.海洋工程,2007,25(4):27-32
    [59]冯秀丽,沈渭全等.海洋工程地质专论.中国海洋大学出版社,2006:160-178
    [60]冯秀丽,戚洪帅,王腾,李安龙,林霖.黄河三角洲埕岛海域地貌演化及其地质灾害分析.岩土力学,2004(9):17-20
    [61] Laura Sbaffi,Forese Carol Wezel etc. Response of pelagic environment to palaeoclimatic changes in the central Mediterranean Sea during the Late Quaternary. Marine Geology, 2001,178: 39-62
    [62] Dag Myrhaug, Muk Chen Ong, Ceilie Gjengedal . Scour below marine pipelines in shoaling conditions for random waves. Coastal Engineering, 2008, 55: 1219-1223
    [63] Mohammad Zounemat-Kermani etc. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Applied SoftComputing, 2009, 9: 747-755
    [64] Hui Fan, Haijun Huang. Response of coastal marine eco-environment to river fluxes into the sea: A case study of the Huanghe(Yellow) River mouth and adjacent waters. Marine Environment Research, 2008, 65: 378-387
    [65]宋玉鹏,孙永福,刘伟华.海底管线稳定性影响因素分析.海岸工程,2003,22(2):78-84
    [66] Chirstoffersen J B, Jonsson I G. Bed friction and dissipation in combined current and wave motion. Ocean Engneering, 1985, 12: 387-423
    [67] Engelund F, Fredsoe J. A sediment transport model for straight alluvial channels. Nordic Hydrology, 1976, 7: 293-306
    [68]赵久冲.近海动力环境中粉砂质泥沙运动规律的研究.天津大学博士学位论文, 2003, 9:23-26
    [69] Sumer, B.M., Freds?e, J., Christiansen, N., 1992b. Scour around vertical pile in waves. ASCE J. Waterw., Port, Coastal OceanEng. 114 (5): 599- 614
    [70] Sumer, B.M., Christiansen, N., Freds?e, J., 1993. Influence of cross-section on wave scour around piles. ASCE J. Waterw., Port, Coastal Ocean Eng. 119 (5): 477-495
    [71] Andrew C.Palmer, Roger A.King. Subsea Pipeline Engineering. Tulsa Oklahoma of American: PennWell. 2004, 333-334
    [72] M. Ram Babua, S. Narasimha Raob, V. Sundarb. A simplified instrumentation for measuring scour in silty clay around a vertical pile. Applied Ocean Research, 2002, 24: 355-360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700