滩海石油老龄平台维修方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托国家高技术研究发展计划(863计划)“近海石油老龄平台延寿技术研究”课题,进行滩海石油老龄平台维修方法及应用研究。借鉴国内外海洋平台维修的基本理论及关键技术,结合我国海上油田的实际状况,以及碳纤维维修加固混凝土结构的成功应用,研究和开发老龄平台延寿服役的安全保障维修技术,通过试验、理论研究、数值计算和计算机仿真,在老龄平台的维修装备工艺设计改进、滩海平台的桩基冲刷机理及防治、新材料碳纤维平台维修、平台的维修分级、优化、维修策略以及老龄平台的延寿利用上取得较大的研究进展。主要研究成果总结如下:
     1老龄平台维修过程及加固方法
     老龄平台在服役的阶段内,影响其寿命的因素主要如下方面:疲劳载荷、坠物、船只碰撞、腐蚀、安装导致破坏、焊接制造缺陷、爆炸、海冰、生产过程载荷以及设计缺陷等,针对上述影响因素及其导致后果,平台的维修方法有构件去除、干焊、湿焊、灌浆、焊缝增强以及复合材料加固等,对比研究现有修理方法的优缺点,并结合胜利滩海油田的工程实际进行研究。结合小尺度模型试验,研究设计了浅海潜水伞及复杂节点简易焊接罩,通过理论分析、有限元计算以及实验验证,这两种装备经济可行,安装施工方便,研究了平台维修方法卡箍的类型及特点,得到卡箍设计流程规范。
     2滩海石油平台桩基冲刷防治
     平台桩基冲刷给平台安全运营带来隐患,不仅仅使平台倾斜力矩增加,而且平台附属管线易于折断,若根本上改变周围外界条件(波浪、海流大小以及周期等参数),从而减轻桩基的冲刷,具体实施起来存在很大困难,研究设计了导流法及阻流自埋法的冲刷防治方法,利用流体计算软件Fluent进行装置效果的仿真模拟,通过着手于引起泥沙起动运移的各种因素,采用正交试验法进行模拟的设计、分析,减少模拟仿真次数,提高模拟效率,有效分析模拟试验中影响装置主要因素,找出其变化趋势,并进行装置的设计优化。改变桩基周围局部流场,降低泥面桩基处流体质点流速的思路,是一种经济可行的桩基冲刷防治办法。
     3碳纤维在老龄平台维修的应用
     老龄平台维修加固工艺的发展,可通过对现有维修加固手段的研究提高而提高维修加固质量及经济性,另外一个方向是碳纤维增强复合材料(Carbon Fiber Reinforced Polymer,简称CFRP)的使用,对碳纤维的力学特性进行理论探讨,并就单向碳纤维布加固平台的工艺方法进行了研究,提出相应的施工方法,对碳纤维加固带裂纹金属杆件进行疲劳试验,试验结果表明,碳纤维对裂纹构件的维修加固,可有效提高其疲劳寿命。对不同的平台构件加固提出不同纤维走向的加固方法,对碳纤维预应力加固平台节点进行探讨。研究发现,预应力的施加,可以抵消一部分的内力,也可以有效的缓解残余应力和应力集中的情况,减小裂纹应力强度因子。
     4滩海老龄平台维修策略、管理及延寿应用
     平台维修是维持或恢复平台到一种完成所需功能的状态。通过有效地决策规划维修工作的内容和周期,以减少不确定性,通过执行维修来实现成本控制。从一定的技术经济因素来考虑,对所进行的维修方式和程度作出规定。
     在对平台的修理进行分级的基础上,相应的对平台进行维修级别分级。平台的修理级别分析,平台可靠性分析以及平台可维修性分析,其目的是有利于维修的实施,且可对后续平台的设计以及建造提供修改建议。通过对平台系统串并联的关系计算,可获得整个平台或功能组件的总体失效概率,通过对比组件或构件的临界重要性,获得故障组件的维修先后次序,为进一步的维修提供决策依据。
     通过各个组件的失效度以及修复率进行Markov分析,计算平台系统的每一状态时间,获得平台可靠度随着时间变化的关系,据此制定科学的维护方法,为进一步的维修优化提供判断的依据。
     通过对平台后期有效利用及延寿使用,可大大节约成本,进行资源的有效利用。通过对部分平台进行计算,通过适当的维修,可以使平台服役更长的时间。针对某平台进行风力发电,利用有限元进行计算,结果说明平台经过适当的维修加固,对于风电基础应用,其强度刚度及疲劳性能满足需求。提出的方法对今后我国日益增多的浅海钻采老龄平台的处置具有一定的指导意义。
The dissertation focuses on maintenance methods and its applications for shallow water aged oil platform, which is a part of the“863”High Technology Research and Development Program of China (No.2006AA09Z355).The study is based on fundamental theory of offshore platform repairing and the key technology in china and abroad. Maintenance methods and applications for shallow water oil platform is investigated systemically based on theoretical research, numerical calculation and computer simulation, and much progress is achieved including improving of maintenance equipments and technology of aged offshore platform, scour mechanism of shallow water platform pile and its preventions, new material used in platforms repairing, classificatiaon of platform mainterance, optimization and its maintenance strategy, disposal and utilization of aged offshore platform, and so on.The main works are summarized as follows:
     1 Techniques and Processes of Strengthening, Modification and Repair for Aged Offshore Platform
     There are some factors to shorten the service life of offshore platform, which can be summarized as these categories: fatigue loads; dropped objects; vessel collision; corrosion; damage during installation; welding and/or fabrication fault; explosions; ice; build-up of drill cuttings; under-design. The factors and their results lead to a requirement for strengthening, modification and repair as follows: remove damage; dry welding; wet welding; grout filling; weld improvement; composites and so on. A comparative study on advantages and disadvantages of present repair methods were put in practice with the engineering practice of ShengLi shallow water oil field. A simple steel habitat is designed. The installation and construction of the habitat is convenient. Theory analysis and ANSYS finite element calculation show that the habitat is not restricted to depth of water. Clamping technology is studied and the design process for clamps is obtained.
     2 Scour Prevention Methods for Offshore Platform of Shallow Water Oil Field
     Scour can result in removal of vertical and lateral support for foundations, causing undesirable settlements of pile foundations and overstressing of foundation elements. It not only can increase loads on platform, but also can cause production line of jacket platform easily to fracture. It is difficult to change the external environment conditions(such as wave, current and periods) to prevent scour. Prevention methods of fluid diversion and self-bury are designed. Methods of these two scour prevention are simulated by Fluent to find out how can the parameters affect the purpose of prevention. The devices are optimized by the simulated results. The factors of sands and silts' movement are considered. And the experiment of orthogonal method is used in simulation design and analysis. Results obtained from the computer models have demonstrated that the combination of CFD simulation and orthogonal design is suitable for the scour prevention. The idea of changing local flow field around the pile is an economic practicable method.
     3 Carbon Fiber Used in Maintenance of Aged Jacket Platform
     To improve the quality and economy of strengthening, modification and repair techniques of aged offshore platform, developing the present processes and introducing a new material called Carbon Fiber Reinforced Polymer(CFRP) are prefered. Mechanical properties of carbon fiber are studied theoretically and strengthening processes with unidirectional carbon fiber sheets are discussed. A new method of its application in strengthening platform components is brought forward. Strengthening used prestressed carbon fiber sheets are analysed with crack stress intensity factors. And some interesting results are obtained.
     4 Maintenance Strategy, Management and Maintenance Program Optimization of Offshore Platform and Prolong Aged Offshore Platform's Life
     Offshore platform maintenance means keeping or restoring the platform in the required state. The cost can be controlled by carrying out maintenance in premeditated plane and effective decision making of repair contents and repair cycle. Considering certain technical factors and economic factors, style and degree of repair are prescribed. Classification of offshore platform maintenance is made based on the Level of Repair Analysis(LORA). Level of Repair Analysis(LORA), Reliability Analysis(RA) and Maintainability Analysis(MA) are beneficial to implementation of repair. And it can give some advices to design and construction of a new platform to increase availability. The whole failure probability can be obtained by systemic connection in series or parallel and their calculation. Maintenance sequence of faulty components can be gained through comparison between their critical importance. And further maintenance optimization can be done with the results. The platform reliability along with the time variation can be obtained through the anlysis of failure ratio and repair rate with Markov analysis.
     The effective use of aged platforms are not only meet the standard of the environmental but also save the cost of oil production. An example calculation of aged platform for wind power generation is given. The method of reconstruct for other use have some practical value for real processing and guiding significance for offshore platform disposal.
引文
1陈国明.冰区海洋石油平台疲劳断裂评估与可靠性分析[D].东营:中国石油大学, 1999.
    2欧进萍,段忠东,肖仪清.海洋平台结构安全评定——理论、方法与应用[M].北京:科学出版社,2003.
    3 An Introduction to Offshore Maintenance[M]. Ledbury, Herefordshire:Oilfield Pub. Ltd.,1991.
    4 Dunlap &C.W.Ibbs. Proceedings of international workshop on assessment and requalification of offshore production structures[C]. API. 1994.
    5 Tebbet I E.最近五年钢质平台的修理经验[A].海上结构物检测、维护与修理技术文集第I集[C].渤海石油海上工程公司.
    6刘健,陈国明.基于Maattanen模型的冰激疲劳寿命分析[J].石油大学学报(自然科学版), 2004, 28(4): 89-93.
    7方华灿,陈国明.冰区海上结构物的可靠性分析[M].北京:石油工业出版社, 2000.
    8邢金有,隋智享.老龄平台极限强度评估[J].中国海洋平台, 2004, 19(2):35-37, 29.
    9黄小平,崔维成.服役中后期海洋平台的安全寿命评估与维修决策[J].中国造船, 2003, 44 (增刊):27-32.
    10陈国明.海洋结构裂纹检测与优化[J].石油大学学报(自然科学版), 2000, 24(5): 73-75.
    11方华灿,陈国明.海洋平台结构整体疲劳寿命的预测[J].石油矿场机械, 2000, 29(5): 1-5.
    12陈国明. Reliability based defect assessment for offshore structure[C]. Proceedings of sixth Pacific structural steel conference, Vol 1, 278-283. 2001.
    13许亮斌,陈国明. Fuzzy reliability assessment for offshore structures considering inspection and maintenance[C]. Proc OMAE, vol.2, 163-169. 2003.
    14刘健.冰区海洋平台疲劳评估及其虚拟安全系统研究[D].东营:中国石油大学, 2005.
    15陈国明.基于等风险原则确定在役平台安全分析的评估载荷[J].中国海洋平台, 2002, 17(2): 35-37.
    16许亮斌.近海石油平台动态疲劳可靠性分析与控制研究[D].东营:中国石油大学, 2004.
    17 Galbraith, D.N., Lalani, M., Sincock, P.S. and Geddes, T. Beryl Bravo: Diverless Structural Repairs[C]. Paper OTC 007501 presented at the Offshore Technology Conference, Houston, May 1994.
    18 MSL Engineering Ltd. Demonstration trials of diverless strengthening and repair for offshore installations[R]. Report for a Joint Industry Project, MSL Doc. Ref. C15800R025, September 1997.
    19 Harris G. The use of cofferdams for welded repair to offshore structures[R]. Comex Houlder Diving Ltd, c.1986.
    20 Stevenson AW and Sleveland A. Damaged brace on offshore platform replaced using hyperbaric welding. Part 1 Preparation and Part 2 Repair procedure[J]. Metal Construction, December 1983 and January 1984.
    21 Stevenson AW, Melton DR and Sleveland A. Platform structural repairs - a case study of repairs to the Phillips Ekofisk Delta platform - May to August 1981[C]. Paper EUR 347, European Petroleum Conference, London, 25-28 October 1982.
    22 Liu S,Olson DL,Smith C,Spencer JS. International Workshop on Underwater Welding-Underwater welding of marine structures[R]. New Orleans, Louisiana, Mineral Management Services Project Number 218, December 7-9,1994.
    23 Szelagowski P, Osthus V, Petershagen H, Pohl R, Lafaye G. New Development Activities in the Field of Wet Welding[C]. OMAE 14th International Conference on Offshore Mechanics & Arctic Engineering,1995, vol.14,no. 3, pp571-587.
    24 Thandavamoorthy TS,Rao AGM,Santhakumar AR. Welded repair to damaged offshore platforms a review[C]. International Welding Conference,1999,vol.2,pp 915-922.
    25 Specification for Underwater Welding. AWS D3.6M:1999[R]. American Welding Society,1999.
    26 Parsanejad S. Strength of grout filled tubular members[J]. J Struct Div ASCE Vol 113(3). March 1987.
    27 Health and Safety Executive. Grouted and mechanical strengthening and repair of tubular steel offshore structures[R]. Report No. OTH-88283,HMSO,1988.
    28 Ricles,J.M.,Bruin,W.M. and Sooi T.K. Residual strength assessment and repair of damaged offshore tubulars[C]. Paper OTC 007807 presented at the 27th Annual Offshore Technology Conference, May 1-4, 1995.
    29 Mogensen,L. High strength grout extends life of Baltic jack-up[J]. Offshore Tulsa,Vol.62,No. 11,pp 88-95,November 2002.
    30龙广成,孙振平.新型高性能水泥基灌浆材料的研究[J].新型建筑材料, 2005,32(3):32-34.
    31郭永昌,张红州.纤维增强混凝土材料的研究与工程应用[J].广东建材, 2004,20(7):8-9.
    32 Fredborg Andreas, Haagensen P J. Fatigue life extension of structural details of a floating production unit by weld improvement methods[C]. Proc OMAE, 2003, Mexico.
    33 Williams,J.R and Ma,S.Y. A new repair and strengthening technique for steel offshore structures[C]. Paper OTC 007149, 25th Annual Offshore Technology Conference,May 3-6, 1993.
    34 Grundy,P. and Foo,J.E.K. Prestress enhancement of grouted pile/sleeve connections[C]. International Offshore and Polar Engineering Conference(ISOPE), Edinburgh, 1991.
    35 Elnashai, A.S., Carroll, B. and Dowling, P.J. A prestressed, high strength grouted connection for offshore construction[C]. Paper OTC 4892 presented at Offshore Technology Conference, 1985.
    36 Thandavamoorthy, T.S., Rao, A.G.M., Santhakumar, A.R. Epoxy based high performance grout for the repair of offshore platforms[C]. Proceedings of the International Conference on Advances in Structural Engineering, 1999.
    37 Thandavamoorthy, T.S., Rao, A.G.M., Santhakumar, A.R. Development of a fly ash and epoxy based high performance grout for the repair of offshore platforms. ACI Special Publications,Vol.199,No.1, pp 239-258, 2001.
    38 AW Stevenson, and A Sleveland. Damaged brace on offshore platform replaced using hyperbaric welding[J]. Metal Construction. January 1982.
    39 Daniel KP, Couch J, Puskar FJ, Repair of a Gulf of Mexico Platform Using API RP 2A Section 17 Guidelines and Multiple Underwater Repair Techniques[C]. OTC 008734, 30th Offshore Technology Conference, May 4-7, 1998.
    40 Souza M, Bayazitoglu Y, Lu LS, Vaquez R. Repairs of Hurricane Damaged Platforms in the Bay of Campeche[C]. OTC 008694, 30th Offshore Technology Conference, May 4-7, 1998.
    41 U.S. Dept. of the Interior, Minerals Management Service, Removal of Offshore Structures[R]. Gulf of Mexico OCS Region, New Orleans,LA. OCS Study MMS 2004-074. 50 pp.
    42 Sumer B M, Fredsoe J, Christiansen N. Scour around a vertical pile in waves[J]. Journal of waterway, Port, Coastal and Ocean Engineering, 1992, 118(1): 15-31.
    43孙永福,宋玉鹏,孙惠凤,等.潮流作用下海洋平台桩基冲刷过程及冲刷深度计算[J].海洋科学进展, 2007,25(2);178-183.
    44黄莹,佘昌莲,严仁军.海洋平台桩基的冲刷机理[J].船海工程, 2006(5): 85-88.
    45仲德林,刘建立.埕岛油田海上石油平台基础冲刷研究[J].海岸工程, 2003, 22(2): 37-43.
    46赵威,呼和敖德.圆柱绕流局部冲刷机制的实验研究[J].力学学报, 2006(5): 577-584.
    47亓和平.浅海导管架平台的冲刷灾害评估分析[J].中国海洋平台, 2006, 21(3): 45-49.
    48 Onshore disposition of offshore oil and gas platform: Western politics and international standards, A1lan G.Pulsipher, William B.Danie IV Ocean and Coastal Management 43(2000) 973-995.
    49郝静辉,杨树耕.海上石油平台拆除技术的发展现状[J].中国港湾建设, 2004,4:51-54.
    50陈继红.浅海导管架采油平台拆除方法初探[J].石油规划设计, 2003,14(6):29-31.
    51高战朝.国外废弃海洋石油平台处置现状[J].海洋信息, 2002(4):19-21.
    52周愫承,张太佶.海上石油平台拆除技术和工程的研究[J].中国海洋平台, 2002,17(2):1-6.
    53李新仲,徐本和.海上油气田的废弃处置[J].中国海上油气(工程), 2003,15(1):46-49.
    54徐爱民,孟凡生,李军.钢质桩基式固定平台拆除技术探讨[J].中国造船, 2005,46(增刊):31-36.
    55 Wang, S.S. and Fitting, D.W. International Workshop on Composite Materials for Offshore Operations[R]. Mineral Management Services Project Number 185, 1993.
    56 Arockiasamy, M. and Dutta, P.K. Retrofitting and Structural Repair with Advanced Polymer Matrix Composite Materials[C]. Paper presented at the Proceedings of the 6th International Offshore and Polar Engineering Conference (ISOPE), 1996.
    57 Workshop on State-of-the-Art Development of Composite Structures for Offshore Production Platforms.[R]. Mineral Management Services Project Number 322, 1999.
    58 Gibson, A.G. The cost effective use of fibre reinforced composites offshore[R]. Health and Safety Executive– Research Report 039, 2003.
    59 Det Norske Veritas. Composite components[S]. DNV-OS-C501, January, 2003.
    60 T.J.Turton,J.Dalzel-Job,F. Livingstone Oil platforms, destroyers and frigates-case studies of QinetiQ’s marine composite patch repairs[J] Composites:Part A 36,2005:1066-1072.
    61陈养厚,陈国明.碳纤维材料在海洋结构修复工程中的应用[J].中国造船, 2007, 48(B11): 198-203.
    62 J.A. Soden and B.J. Hill. Conventional weaving of shaped preforms for engineering composites[J]. Composites Part A 29A, 1998: 757-762.
    63 R.Hill and E.U.Okoroafor. Weibull statistics of fibre bundle failure using mechanical and acoustic emission testing: the influence of interfibre friction[J]. Composites 1995(26): 699-705.
    64 Tavakkolizadeh, Mohammadreza and Hamid Saadatmanesh. Galvanic corrosion of carbon and steel inaggressive environments[J]. Journal of Composites for Construction, 2001, 5(3):200-210.
    65 D.Schnerch,M.Dawood,S.Rizkalla,E.Sumner and K.Stanford. Bond behavior of CFRP strengthened steel structures[J]. Advances in Structural Engineering. 2006, 9(6):805-817(13).
    66 Tavakkolizadeh, Mohammadreza and Hamid Saadatmanesh. Galvanic corrosion of carbon and steel in aggressive environments[J]. Journal of Composites for Construction, 2001, 5(3):200-210.
    67李葆文.规范化的设备维修管理-SOON[M].机械工业出版社, 2006,4.
    68陆朝荣,施毅.设备故障率和设备维修策略[J].石油化工技术经济, 2004, 20(3):48-51.
    69张怀亮,卜英勇.基于安全性的特种设备维修策略研究[J].工业安全与环保, 2002, 28(4):19-22.
    70 Alessandro Guarino,左洪福.维修管理的研究现状和发展趋势[J].江苏航空, 2008, (1):24-25.
    71刘学元.欧洲维修工程发展特点[J].中国设备工程, 1995, (03):39.
    72 HISHAM BIN JABAR,Segi Perkasa Sdn Bhd.企业维修策略:增加利润的关键因素http://www.cetin.net.cn/storage/cetin2/QRMS/ztzsbz101.pdf.
    73陈学楚,郑东良.以可靠性为中心的维修理论剖析[J].航空杂志, 2000, (2):36-37.
    74黄勇,王凯全.基于RCM和RBI的设备寿命周期管理与应用[J].工业安全与环保, 2008, 34(10): 31-
    33.
    75贾希胜,程中华.以可靠性为中心的维修(RCM)发展动态[J].军械工程学院学报, 2002, 14(3):29-32.
    76 http://www.sbgl.net/bencandy-84-4395-1.htm.
    77 C.-T.Chen,Y.-W.Chen, J.Yuan, On the dynamic preventive maintenance policy for a system under inspection[J]. Reliability Engineering and System Safety, 80(2003)41-47.
    78 C.C. Karamatsoukis, E.G. Kyriakidis. Optimal maintenance of a production-inventory system with idle periods[J].European Journal of Operational Research, 196(2009)744-751.
    79吴翠兰.关于设备维修与更新决策问题的两种方法[J].北京工业职业技术学院学报, 2007, 6(4):34-36,33.
    80 Wirahadikusumah R, Abraham D M, Castello J. Markov decision p rocess for sewer rehabilitation[J]. Engineering,Construction and Architectural Management, 1999, (4):358-370.
    81李恒,王树刚,袁赓.基于马尔可夫链模型燃气管道维修方案的确定[J].煤气与热力, 2007, 27(6):50-54.
    82时圣革,常文兵.基于马尔可夫链的设备大修决策研究[J].中国设备工程, 2006, (11):5-7.
    83李修全,帅典勋.用马尔可夫预测法决策电力设备的维护停运[J].发电设备, 2006, (2):139-142.
    84张秀斌,郭波,谭跃进.马尔可夫决策过程在视情维修中的应用[J].工业工程, 2002, 5(6):53-55.
    85 J?rn Vatn. Maintenance Optimisation. Norwegian University of Science and Technology,Trondheim, November, 2007.
    86 Rodriguez-Sanchez J.E, Dover W.D, Brennan F P. Application of short repairs for fatigue life extension[J]. International Journal of Fatigue, 2004, 26(4): 413-420.
    87 W.F.Krieger, S.K.Paulson, S.T.Hong, etc. Strength/Risk Assessment and Repair Optimization for Aging, Low-Consequence, Offshore Fixed Platforms[J]. Paper OTC 5931, Offshore Technology Conference, Houston, 1989.
    88 Adrian F Dier. Assessment of repair techniques for ageing or damaged structures[R] MSL ServicesCorporation MMS Project Number 502, November 2004.
    89 American Petroleum Institute. API RP2A-WSD-2000 Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design[R]. 2000.
    90中国船级社.海上移动平台入级与建造规范[S].人民交通出版社, 1992.
    91 J M Ricles, T E Gillum and W B Lamport. Grout Repair of Dent-Damaged Steel Tubular Bracing[C].The 25th Offshore Technology Conference,Houston,1993, OTC 7151.
    92 J R Williams and S Y Ma. A New Repair and Strengthening Technique for Steel Offshore Structures[C].The 25th Offshore Technology Conference,Houston,1993, OTC 7149.
    93龚顺风,金伟良,王全增.海洋固定平台受损构件的修理与评估[J].中国海洋平台, 2001,16(2):37-42.
    94金伟良,宋剑,龚顺风海洋平台受损构件的承载能力与加固分析[J].工程力学, 2003, 10.
    95 Health and Safety Executive. Grouted and mechanical strengthening and repair of tubular steel offshore structures[R]. Report OTH 88283, HMSO, London, 1988.
    96肖仪清.现役固定式海洋平台结构体系可靠度分析与安全评定[D].哈尔滨工业大学:哈尔滨, 2001, 93-98.
    97 Chen Yang-hou, Chen Guo-ming, Lin Hong. Simulation of Scour Prevention Methods for Offshore Platform in Chengdao Oil Field [C]. The 38th International Conference on Computers & Industrial Engineering. Beijing, 2008.
    98 Chen Yang-hou, Chen Guo-ming. Orthogonal CFD Simulation based Optimization for Fluid Diversion in Scour Prevention[J]. Journal of System Simulation, 2008, 20(19):5358-5361.
    99 Engelund F,Hansen E. A monograph on sediment transport in alluvial streams[J]. Teknisk Vorlag, Copenhagen, Denmark, 1967, 62.
    100 Bagnold R A. Mechanics of marine sedimentation. In: Hill ,M. N. ed[J]. The Sea: Wiley-Interscience , 1963, 3: 507-527.
    101 Kimberly A. Hatton Scour and Ripple Migration Offshore of a Vertically Mounted Pile Subjected to Irregular Waves [D]. The Ohio State :The Ohio State University, 2006.
    102周益人.波浪作用下的泥沙起动[J].水利水运科学研究, 1998, (4): 338-346.
    103李华国,袁美琦,张秀芹.淤泥临界起动条件及冲刷率试验研究[J].水道港口, 1995, 3: 20-26.
    104洪大林,缪国斌,邓东升,谢瑞,张思和.黏性土起动研究现状综述[J].水利水电科技进展, 2005, 25 (6): 102-106.
    105邹舒觅,林缅.波浪和风生浪流作用下的近岸海底泥沙运移模型的推广和应用[J].地球物理学进展, 2007, 22(1):273-278.
    106吴保生,张原锋.黄河下游输沙量的沿程变化规律和计算方法[J].泥沙研究, 2007, 1:30-35.
    107周益人,尹畅安.波浪边界层下的泥沙起动[J].泥沙研究, 2004, (1):15-22.
    108曹祖德,孔令双,焦桂英.波、流共同作用下的泥沙起动[J].海洋学报(中文版), 2003, 25 (3):113-119.
    109舒彩文,王军,谈广鸣.干容重对粘性淤积物起动和冲刷的影响[J].武汉大学学报(工学版), 2007, 40(1):25-28.
    110陈国平,左其华,黄海龙.波浪作用下大尺径圆柱周围局部冲刷[J].海洋工程, 2004, 22(1):46-51,58.
    111窦国仁.再论泥沙起动流速[J].泥沙研究, 1999, (6):1-9.
    112王西录.滩海泥沙起动装置的动力分析[D].东营:中国石油大学(华东), 2007.
    113埕岛油田灾害地质研究成果报告[R].国家海洋局第一海洋研究所, 2006, 1.
    114姚熊亮,方媛媛,戴绍仕,王领.基于LES方法圆柱绕流三维数值模拟[J].水动力学研究与进展, 2007, 22(5):564-572.
    115 http://instruct1.cit.cornell.edu/courses/fluent/Fluent tutorial.
    116栾军.现代试验设计优化方法[M].上海交通大学出版社, 1995, 3.
    117 NJ Marston. Fibre reinforced ploymer composites[R]. BRANZ. 2007.
    118 A.G.Gibson. The cost effective use of fibre reinforced composites[R] University of Newcastle Upon Tyne for the Health and Safety Executive 2003.
    119 Ozden O. Ochoa. Composite Repair Methods for Steel Pipes[R]. MMS Project Number 558, June, 2007.
    120马运志.沥青基碳纤维的发展和应用[J].山东纺织经济, 2006, (3):74-76.
    121 Karbhari,V.M.,S.B.Shulley. Use of composites for rehabilitation of steel structures determination of bond durability[J]. Journal of Materials in Civil Engineering,1995, 7(4):239-245.
    122 Hutchinson,A.R. Surface pretreatment - the key to durability[C]. Proceedings of the International Conference on Structural Faults & Repair. University of London, 1987:235-244.
    123 McKnight,Steven H.,Pierre E. Bourban,John W. Gillespie,Jr., and Vistap M. Karbhari. Surface preparation of steel for surface bonding applications[C]. Infrastructure:New Materials and Methods of Repair, Proceedings of the 3rd Materials Engineering Conference, ASCE, Kim D.Basham, Ed., Nov 13-16, San Diego, California, 1994:1148-1155.
    124 Allan, R.C., J. Bird and J.D. Clarke. Use of adhesives in repair of cracks in ship structures[J]. Materials Science and Technology, 1988, (4):853-859.
    125 Miriyala,S.K.,W.C.Tucker,T.J.Rockett, and R.Brown. Degradation of carbon reinforced polymer composites under galvanic coupling conditions[C]. Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Dallas,Texas, 1992:3036-3045.
    126李业绩,岳清瑞,杨勇新,曲选辉.加固修复用碳纤维布力学性能试验值的研究[J].玻璃钢/复合材料, 2007, (3):9-11.
    127陈祥宝,张宝艳.工程复合材料[M].北京:化学工业出版社, 2004.
    128陈绍杰.聚焦碳纤维[J].高科技纤维与应用, 2006, 31(1):1-8.
    129 R.Hill and E.U.Okoroafor. Weibull statistics of fibre bundle failure using mechanical and acoustic emission testing: the influence of interfibre friction[J]. Composites 1995(26):699-705.
    130郑云,叶列平,岳清瑞. FRP加固钢结构的研究进展[J].工业建筑, 2005, 35(8): 20-25,34.
    131郑云,叶列平,岳清瑞,等. CFRP加固含疲劳裂纹钢板的有限元参数分析[J].工业建筑, 2006, 36(6): 99-103.
    132陈誉,彭兴黔,赵宪忠.钢管搭接节点的研究现状[J].基建优化, 2007, 28(5):154-157.
    133徐兆娟,魏德敏. K型相贯节点静力工作性能的研究近况[J].科技情报开发与经济, 2007,17(1):129-131.
    134邵永波,LIE Seng-Tjhen. K节点应力集中系数的试验和数值研究方法[J].工程力学, 2006, 23(增刊I):79-85.
    135张耀,仇仲翼,刘文珽,等.应力强度因子手册(增订版)[M].北京:科学出版社, 1993.
    136陈团海,陈国明,林红,等.海洋平台含裂纹管节点CFRP修复效果仿真研究.石油机械,2008,36(10):1-4,50.
    137田中,刘俊,司马明.海上石油钻井平台设备风险维修策略的探讨[J].石油机械, 2005,33(6):81-83.
    138王远达,宋笔锋,姬东朝.修理级别分析方法[J].火力与指挥控制, 2008, 33(4):1-3:19.
    139申莹,单志伟,刘福胜.修理级别分析方法探讨. http://www.cetin.net.cn/ storage/cetin2/QRMS/ ztzsbz112.pdf.
    140万毅,邓斌,李会杰,田志军,柯坚.铁路接触网系统的Markov分析[J].应用科学学报, 2006,24(6):633-636.
    141国家海洋局.海洋石油平台弃置管理暂行办法[S]. 2002, 6,24.
    142 Decommissioning and Removal of Oil and Gas Facilities Offshore California. MMS [C].1998.
    143陈养厚,陈国明.废弃浅海平台的处置及利用[C].浙江大学博士论坛论文集. 2008.
    144徐爱民,孟凡生,李军.中国造船, 2005, 46(增刊):31-36.
    145薛清梅,王金柱.大型海上风力发电的开发[J].发电设备, 2007, (2):161-163.
    146刁瑞盛,徐政,常勇.几种常见风力发电系统的技术比较[J].能源工程, 2006, 2:20-25.
    147胡其颖.谈风力发电装备的大型化和风电生产的规模效应[J].能源技术(上海), 2004 ,5(25):207-209.
    148倪安华.我国海上风力发电的发展与前景[J].安徽电力, 2007, 24(2):64-68.
    149宋础,刘汉中.海上风力发电场开发现状及发展趋势[J].太阳能, 2006, 2:26-28.
    150中国投资咨询网. 2008年中国可再生能源市场分析及投资咨询报告[R]. 2008, 5.
    151 http://www.windpower-china.cn/ node/40.
    152周洪军.中国海洋电力业的发展研究[J].海洋信息, 2007, (2):13-15.
    153胡其颖.欧洲海上风电技术的发展现状[J].可再生能源, 2005, 2:67-69.
    154黄东风.欧洲海上风电的发展[J].能源工程, 2008, (2):24-28.
    155战培国,于虹,侯波.海上风力发电技术综述[J].电力设备, 2005, 6(12):42-44.
    156刘文白,李才志.近海风力发电导管架平台结构分析[J].计算机辅助工程, 2008, 17(4):55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700