老龄平台结构完整性动态评估与风险控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界范围内有大量老龄平台需要延寿继续服役,为保证平台延寿服役期间的安全,必须对老龄平台结构完整性进行动态评估,研究相关的风险控制技术。本课题结合国家863项目“近海老龄平台延寿技术研究”、国家自然科学基金项目“面向老龄平台延寿工程的寿命预测与管理理论及方法研究”和中央高校基本科研业务费专项资金资助项目“南海深水油气开采风险控制技术应用基础研究”中老龄平台结构完整性管理的内容展开研究,在老龄平台时变可靠性、动态疲劳可靠性、风险动态评价与控制技术、基于风险的老龄平台检修优化等4个方面取得了较大进展,并综合所取得理论与技术成果,开发老龄平台结构完整性管理软件系统APSIMS,为技术理论的实际工程应用提供方便。本文主要研究成果归纳如下:
     1老龄平台整体时变可靠性分析
     将老龄平台延寿服役期间的结构抗力与载荷效应作为随机过程,研究老龄平台在极值海洋环境载荷作用下的时变可靠性。分析老龄平台抗力衰减的因素,研究腐蚀和裂纹两种主要因素对平台抗力的影响规律,根据腐蚀与裂纹参量随时间的变化分析平台抗力衰减规律,确定平台抗力衰减的多项目函数、幂函数和指数函数共3种函数模型;分析老龄平台延寿服役期间可能出现的极值海冰、台风和地震3种极值载荷概率特征,研究平台在不同极值载荷作用下的载荷效应,提出平台载荷效应概率模型分析方法;根据抗力—载荷干涉理论,分别采用时间离散法、等效载荷法和时间增量法3种方法建立基于极值载荷的老龄平台时变可靠性分析模型;以此为基础利用可靠性更新理论,研究两种老龄平台时变可靠性更新方法:基于检测资料的Bayes更新与基于验证载荷的更新。
     2老龄平台动态疲劳可靠性分析
     随着老龄平台服役时间的增长,平台结构疲劳损伤不断累计从而导致平台疲劳抗力下降,基于S-N曲线法和断裂力学法建立平台疲劳损伤累计模型和裂纹扩展模型,采用时域分析法和频域分析法计算名义应力;将管节点作为平台疲劳分析的基本单元,提出基于路径映射技术的管节点热点应力集中系数计算方法,并研究复合载荷下管节点应力集中系数沿管节点分布规律;分别将平台延寿服役期间疲劳损伤和裂纹扩展尺寸作为随机过程,基于动态疲劳损伤干涉理论和动态裂纹尺寸干涉理论,建立动态疲劳可靠性分析模型;考虑腐蚀对平台疲劳损伤累计与裂纹扩展的影响,研究腐蚀作用下疲劳应力范围随时间的变化函数,建立考虑疲劳与腐蚀交互作用的平台动态可靠性模型;基于检测与维修情况对平台动态可靠性进行更新,给出在2种不同检测结果与维修情况下的动态疲劳可靠性更新模型;将可靠性分析提高至系统层面,分析平台系统动态疲劳可靠性,研究老龄平台系统失效模式确定方法与系统动态可靠性计算方法。
     3老龄平台动态风险评价与控制技术研究
     将风险作为老龄平台结构完整性评价指标,采用故障类型及影响分析法对老龄平台风险进行识别,借助于有限元分析方法确定危险因素对平台结构的影响程度,采用故障类型和影响、危险度分析法对平台结构风险进行半定量评价;研究老龄平台结构风险衡量方法和接受准则,通过建立老龄平台失效事故树模型计算平台失效概率,研究平台失效后果分析方法,根据“最低合理可行(ALARP)”原则对老龄平台进行定量风险评价;考虑到平台延寿服役期间结构失效概率与风险后果的动态特征,研究老龄平台动态风险评价方法;针对风险超过临界值的情况提出4种风险控制技术,采用ANSYS软件建立每种风险控制方法评价模型,并对采取风险控制措施后的平台结构风险进行动态评估,利用数值方法验证这些风险控制技术的有效性。
     4基于风险优化的老龄平台检测与维修规划
     检测与维修是保证老龄平台结构完整性的主要方式,为确定老龄平台合理的检修方案,建立基于风险的老龄平台检修规划优化模型,分析模型中检测、维修和失效期望费用的计算方法,制定采用MATLAB工具箱中遗传算法进行检修优化求解的步骤;鉴于各种期望费用为检测、维修和失效事件发生概率的函数,建立这三个事件的安全裕度方程,根据事件树模型分析各个检测时间点平台需要检测、维修以及结构失效的概率。首先根据建立的检修优化模型对检修过程中的检测次数和时间、检测方法以及维修方法三种单项影响因素进行优化,并对相关费用进行敏感性分析;再根据实际情况,综合考虑各种因素的不确定性,对各种检测与维修方法进行组合,并对每种方案均进行基于风险的检修优化分析,通过对优化结果确定最佳检修方案。
     5老龄平台结构完整性管理系统的研制
     为方便结构完整性管理理论的应用,采用Visual Basic 6.0语言开发老龄平台结构完整性管理软件系统APSIMS。根据API规范中海洋平台结构完整性管理流程建立详细的老龄平台结构完整性管理框架,据此对软件APSIMS的系统结构进行设计;采用Microsoft Office Access建立软件数据库系统实现软件内部的数据储存与传输,共设计平台结构数据库、海洋环境载荷数据库和结构检测数据库3类数据库,通过调用ANSYS和MATLAB作为程序接口完成平台有限元分析和检修优化求解;APSIMS软件集老龄平台结构完整性管理理论集成为一体,主要功能包括动态可靠性分析、风险分析、风险控制与评价、检修决策与规划,能够实现对老龄平台延寿服役期间的结构完整性进行全过程管理。
At present, there are a large number of ageing platforms that are needed to extend life for continual service in the world. To ensure the continued safe performance of these ageing platforms, it’s necessary to research on the dynamic structural integrity assessment and risk management technologies. The dissertation focuses on structural integrity management (SIM) for ageing offshore platforms, which is a part of the“863”High Technology Research and Development Program of China (No. 2006AA09Z355) of“Research on Life Extension Technology for Ageing Offshore Platforms”, the National Natural Science Foundation Program (No. 50679083) of“Research on Life Prediction Methods and Management Theory of Ageing Offshore Platforms for Life Extension”and the Fundamental Research Funds for the Central Universities (No. 09CX05008A) of“Fundamental Research on Risk Control Techniques Application for Deepwater Oil and Gas exploitation in South China Sea”. The main investigate issues include the time-dependent reliability, dynamic fatigue reliability, risk assessment and management technologies, and risk-based inspection and repair planning for ageing platforms. And based on the theoretical achievements, the ageing platform structural integrity management system software APSISM is developed. The main work is summarized as follows:
     1. Time-dependent reliability analysis of ageing platforms
     As ageing effects would imperil the safety and serviceability of the structures, the global time-dependent reliability of ageing platforms is investigated. The stressors of resistance degradation were analyzed, and within these factors, structural deterioration of the platforms by corrosion and crack are studied. According to the function of corrosion process and crack propagation with time, the resistance degradation models with polynomial expression, power function expression and exponential expression are proposed. The probabilistic characteristics of the extreme loads including extreme ice load, typhoon load and seismic load are analyzed. The methods for determination of the load effect and its probabilistic characteristics are presented. Based on the resistance-load interference theory, the global time-dependent reliability analysis model of ageing platforms is proposed through discrete time method, equivalent load method and incremental time method. On the based of the time-dependent model, reliability updating based on Bayesian approach and proof load is studied.
     2. Dynamic fatigue reliability analysis of ageing platforms
     With the service time increasing, the fatigue resistance of ageing platforms degrades for fatigue damage accumulation. Based on the S-N curve approach and fracture mechanics approach, the models of fatigue damage accumulation and crack propagation are established. The time domain analysis and frequency domain analysis are employed to calculate the nominal stress in the fatigue analysis model. The tubular joint is taken as the basic element of fatigue analysis, by virtue of path mapping technique, a new numerical method on stress concentration factors (SCFs) calculation of welded tubular joints is proposed, and the SCF distribution of tubular joints under combined loadings is studied. Taking fatigue damage accumulation and crack propagation as stochastic processes, the dynamic fatigue reliability analysis models are proposed based on fatigue damage interference and crack parameters interference theories. Considering the effect of corrosion, the fatigue stress under corrosion condition is investigated, and the dynamic reliability analysis model including the fatigue- corrosion interaction is proposed. The reliability is updated based on inspection and repair data, and the updating models under different results of inspection and repair are presented. According to the system-level reliability theory, the methods for failure modes determination and system reliability calculation are presented, and the dynamic fatigue system reliability of ageing platforms is studied.
     3. Dynamic risk assessment and risk management
     Applying risk assessment to SIM of ageing platforms, the failure mode and effect analysis (FMEA) method is used for risk identification. By virtue of finite element analysis, the criticality of hazardous factors is classified, and the structural risk is assessed semiquantita -tively by failure modes and effect and criticality analysis (FMECA) method. For quantitative expression of risk, risk estimation and risk acceptance criteria are investigated. The failure probability of ageing platform is calculated by fault tree analysis method. According to the ALARP (“As Low As Reasonably Practicable”) principle, the quantitative risk assessment is carried out. As the risk of ageing platform is varied with time, the dynamic risk is studied. Mitigation and risk reduction measures are considered if the risk of the platforms does not meet the fitness-for-purpose acceptance criteria, and four methods for risk reduction are proposed in this paper. The validity of these measures is verified by finite element method.
     4 Risk-based inspection and repair planning
     Inspection and repair are the main ways to ensure structural integrity of ageing platforms, and at the same time they bring about economic burden if the times of inspection and repair increase. Therefore, it is necessary to develop the optimal inspection and repair planning. The planning programme is formulated as an optimization problem where the expected lifetime costs are minimized with a constraint on the minimum acceptable reliability index, and the expected inspection, repair and failure costs models are proposed. The genetic algorithm in Matlab toolbox is employed to solve the optimization problems. The safety margins are presented for the inspection events, the repair events and the failure events of ageing platforms. Moreover, based on event tree analysis, the formula is derived to calculate inspection probability, repair probability and failure probability at the time of each inspection. Based on the optimization model, the optimal results of single factor including inspection times, inspection intervals, inspection methods and repair methods are obtained. Then all the indeterminate factors are considered in the optimization problem, and 10 candidate strategies are determined by combining different inspection methods and repair methods. In each strategy, the inspection times and inspection intervals are optimized, and by comparison between the different inspection and repair strategies, the best inspection and repair planning is determined.
     5 Software development of ageing platform structural integrity management system
     For convenient application of the ageing platform SIM theory porposed in the paper, the ageing platform SIM software system APSIMS is developed by Visual Basic 6.0 program. The framework of ageing platform SIM is constructed according to the processes of fixed offshore structures SIM in API standard. And based on the framework, the software structure of APSIMS is designed. The database system is established by Microsoft Office Access for data storage and transmission. And three kinds of database, including platform structure database, environmental load database and inspection database, are designed. ANSYS program and MATLAB program are employed as application programming interface for structural analysis and optimization solution. The main functions of APSIMS consist of dynamic reliability analysis, risk analysis, risk management and assessment, and risk-based inspection and repair planning, which can implement SIM of all the life extension period for ageing platforms.
引文
[1] Nichols N. W., Goh T. K., Bahar H. Managing Structural Integrity for Ageing Platform[C]// Proceedings of the 2006 Offshore Technology Conference, Adelaide, 2006.
    [2] Stacey A., Birkinshaw M., Sharp J. V. Life Extension Issues for Ageing Offshore Installations[C]// Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, 2008.
    [3]陈国明,刘健.近海石油老龄平台延寿技术研究[C]//我国近海油气勘探开发高技术发展研讨会文集.北京, 2005.
    [4] Inglis R. B., Mathieson R. J. B., Snedden N. W., et al. Shell Expro's Northern Operations Structural Integrity Project[R]. SPE19271, Aberdeen, 1989.
    [5] Brown G. M., Holmes R., McCann D. L. Improving Structural Integrity by Injection of Grout into Fatigue-Critical Nodes in Offshore Structures[C]//Proceedings of the 1989 Offshore Technology Conference, Houston, 1989.
    [6] Billington C. J., Ward J. K., Grimm F. David. Structural Integrity of Typhoon Damaged Structures[R]. SPE29321, Malaysia, 1995.
    [7] O'Connor P. E., Bucknell J. R., DeFranco S. J. Structural Integrity Management (SIM) of Offshore Facilities[C]//Proceedings of the 2005 Offshore Technology Conference, Houston, 2005.
    [8] Westlake H. S., Puskar F. J., O'Connor P. E. The Role of Ultimate Strength Assessments in the Structural Integrity Management (SIM) of Offshore Structures[C]//Proceedings of the 2006 Offshore Technology Conference, Houston, 2006.
    [9] Puskar F. J., Westlake H. S., O'Connor P. E. The Development of a Recommended Practice for Structural Integrity Management (SIM) of Fixed Offshore Platforms[C]//Proceedings of the 2006 Offshore Technology Conference, Houston, 2006.
    [10] American Petroleum Institute. API RP 2SIM, Recommended Practice for the Structural Integrity Management of Fixed Offshore Structures Structural Integrity Management of Fixed Offshore Platforms [S]. Washington, D.C.: API Publishing Services, 2009.
    [11] Stacey A., Birkinshaw M. Initiatives On Structural Integrity Management of Ageing North Sea Installations[C]// Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, 2008.
    [12] Sharp J. V., Ersdal G., Galbraith D. Development of Key Performance Indicators for Offshore Structural Integrity[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, 2008.
    [13] Manzocchi M., Shetty N., Stacey A. Reliability-Based Assessment for Fatigue Integrity Management[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, 2008.
    [14] May P., Sanderson D., Sharp J. V., et al. Structural Integrity Monitoring-Review and Appraisal of Current Technologies for Offshore Applications[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, 2008.
    [15] Stacey A., Birkinshaw M., Sharp J. V. Reassessment Issues in Life Cycle Structural Integrity Management of Fixed Steel Installations [C]//Proceedings of the ASME 21th International Conference on Offshore Mechanics and Arctic Engineering. Oslo, 2002
    [16] Aaron D., Vlad S., Sanjay T. Practical Application of Probabilistic Fracture Mechanics for Structural Integrity Management[C]//Proceedings of the 2009 Offshore Technology Conference, Houston, 2009.
    [17] Moses F. System Reliability Developments in Structure Engineering [J]. Structural Safety, 1982-1983, 1(1): 3-13.
    [18] Moses F. New Directions and Research Needs in System Reliability Research [J]. Structural Safety, 1990, 7(2-4): 93-100.
    [19]董聪,杨庆雄.现代结构系统可靠性分析理论发展概况及若干应用[J].力学进展, 1993, 23(2): 206-213.
    [20] Thoft-Christensen P., Sorensen J. Reliability of Structural Systems With Correlated Elements [J]. Applied Mathematical Modeling, 1982, 6(3): 171-178.
    [21]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社. 2001: 6-9.
    [22]董聪.结构系统可靠性分析的统一理论[J].土木工程学报. 2001, 34(03): 35-40.
    [23]董聪.结构系统可靠性理论:进展与回顾[J].工程力学. 2001, 18(04): 79-88.
    [24] Hu Yuren, Chen Bozhen. A first order second moment approach to system fatigue reliability of offshore structures [C]. // Proceedings of the ASME 12th International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, 1993.
    [25]刘健.冰区海洋平台疲劳分析及虚拟安全系统开发[D].东营:中国石油大学, 2005.
    [26]刘健,陈国明,黄东升.冰区海洋平台疲劳可靠性评估方法的研究[J].石油学报, 2006, 27(5): 115-119.
    [27] Braverman J. I., Miller C. A., Hofmayer C. H., et al. Degradation Assessment of Structures and Passive Components at Nuclear Power Plants [J]. Nuclear Engineering and Design, 2004, 228(1-3): 283-304.
    [28] Mori Y., Ellingwood B. R. Reliability-Based Service-Life Assessment of Aging Concrete Structures. Journal of Structural Engineering [J]. 1993, 5(9): 1600-1621.
    [29] Naus D. J., Oland C. B., Ellingwood B. R., et al. Aging Management of Containment Structures in Nuclear Power Plants [J]. Nuclear Engineering and Design, 1996, 166(3): 367-379.
    [30] Ciampoli M., Ellingwood B. R. Probabilistic Methods for Assessing Current and Future Performance of Concrete Structures in Nuclear Power Plants [J]. Materials and Structures, 2002, 35(1): 3-14.
    [31] Toru T., Ellingwood B. R. Reliability-Based Assessment of Roofs in Japan Subjected to Extreme Snows: Incorporation of Site-Specific Data [J]. Engineering Structures, 2005, 27(1): 89-95.
    [32] Zheng R., Ellingwood B. R. Role of Non-Destructive Evaluation in Time-Dependent ReliabilityAnalysis [J]. Structural Safety, 1998, 20(4): 325-339.
    [33] Ellingwood B. R., Mori Y. Reliability-Based Service Life Assessment of Concrete Structures in Nuclear Power Plants: Optimum Inspection and Repair [J]. Nuclear Engineering and Design, 1997, 175(3): 247-258.
    [34] Camarinopoulos L., Chatzoulisa S. A., Frontistou Y., et al. Assessment of the Time-Dependent Structural Reliability of Buried Water Mains [J]. Reliability Engineering and System Safety, 1999, 65(1): 41-53.
    [35] Stewart M. G., Rosowsky D. V. Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks [J]. Structural Safety, 1998, 20(1): 91-109.
    [36] Stewart M. G., Suo Qinghui. Extent of Spatially Variable Corrosion Damage as an Indicator of Strength and Time-dependent Reliability of RC Beams [J]. Engineering Structures, 2009, 31(1): 198-207.
    [37] Buijs F. A., Hall J. W., Sayers P. B., et al. Time-dependent Reliability Analysis of Flood Defences[J]. Reliability Engineering and System Safety, 2009, 94(12): 1942-1953.
    [38]张俊芝.服役工程结构可靠性理论及其应用[M].北京:中国水利水电出版社, 2007.
    [39]许亮斌,近海石油平台动态疲劳可靠性分析与控制研究[D].东营:石油大学, 2004.
    [40]常学将,陈敏,王明生.时间序列分析[M].北京:高等教育出版社, 1993.
    [41]林红.面向延寿工程的老龄平台寿命预测与管理研究[D].东营:中国石油大学, 2008.
    [42] Ji Chunyan, Li Shanshan, Chen Minglu. A Global Reliability Assessment Method Oil Aging Offshore Platforms with Corrosion and Cracks [J]. China Ocean Engineering, 2009, 23(2): 199-210
    [43]李正农.基于灰色系统理论的结构动态可靠度分析[J].武汉水利电力大学学报, 1996, 29(6): 163-165.
    [44]张俊芝.考虑抗力退化的在役结构可靠度验证载荷法[J].工程力学, 1999, 2(A02): 666-671.
    [45]张爱林,王光远,赵国藩.现役结构模糊动态可靠度评估实用方法[J].应用基础与工程科学学报, 1998, 6(1): 83-90.
    [46] Chou K. C., Yuan Jie. Fuzzy-Bayesian Approach to Reliability of Existing Structures [J]. Journal of Structural Engineering, 1993, 119(11): 3276-3290.
    [47]张道坤. FPSO全生命周期结构风险研究[D].上海:上海交通大学, 2007.
    [48]孙彦杰.基于火灾、爆炸灾害下海洋平台定量风险评估[D].镇江:江苏科技大学, 2008.
    [49] American Bureau of Shipping, Risk Evaluations for the Classification of Marine-Related Facilities[S]. Houston, 2003.
    [50] Nummedal T. A., Hide Asbj?n, Heyerdahl R. Cost Effective Risk Management on Aging Offshore Installations [R]. SPE35956, New Orleans, 1996.
    [51] Brandsaer A. Risk Assessment in the Offshore Industry [J]. Safety Science, 2002, 40(1-4): 231-269.
    [52] Smith E. J. Risk Management in the North Sea Offshore Industry: History, Status and Challenges [J]. Aeta Astronautica, 1995, 37(1): 513-523.
    [53] Bai Yong. Marine Structural Design [M]. Oxford: Elsevier Science Ltd, 2003.
    [54] Balmat Jean-Francois, Lafont Frederic, Maifret Robert, et al. A Decision-Making System toMaritime Risk Assessment [J]. Ocean Engineering, 2011, 38(1): 171-176.
    [55]张圣坤,白勇,唐文勇.船舶与海洋工程风险评估[M].北京:国防工业出版社, 2003.
    [56]李奇,牟善军,姜巍巍,等.海上石油平台定量风险评估[J].中国海洋平台, 2007, 22(6): 38-42.
    [57]牟善军.海上石油工程风险评估技术研究[D].青岛:中国海洋大学, 2006.
    [58]李强.海洋平台风险评估技术及应用[D].青岛:中国海洋大学, 2006.
    [59]吕秀艳.固定式海洋平台结构风险评估及应用[D].青岛:中国海洋大学, 2005.
    [60]李晓冬.固定式海洋平台基于GUS&GSA技术的定量风险评估方法研究[D].青岛:中国海洋大学, 2005.
    [61]胡云昌.系统失效树定量分析的新方法[J].天津大学学报, 1989, 36(2): 45-56.
    [62]罗桦槟,张世英.事件树的贝叶斯分析[J].系统工程与电子技术, 1999, 21(9): 78-80.
    [63]肖建勇.海洋平台安全风险分析方法研究[D].天津:天津大学, 2003.
    [64]宋剑.海洋平台结构在偶然灾害作用下的可靠性研究[D].杭州:浙江大学, 2005.
    [65]唐文勇,李典庆,张圣坤.基于风险的船体结构检测及维护研究综述[J].船舶力学, 2005, 9(5): 143-154.
    [66] Faccioli R., Ferrettii C., Piva R., Copello S. System Fatigue Updating for Offshore Structures [C] //Proceedings of the ASME 14th International Conference On Offshore Mechanics and Arctic Engineering, Copenhagen, 1995.
    [67] Facciolli R., Ferretti C., Ginn M. B. Aged Offshore Siimcturcs: Strength and Fatigue Reassessment [C] //Proceedings of Mediterranean Petroleum Conference and Exhibition, Tripoli, 1997.
    [68] Onoufriou T. Reliability Based Inspection Planning of Offshore Structures [J]. Marine Structures, 1999, 12(7-8): 521-539.
    [69] Onoufriou T., Frangopol D. M. Reliability-Based Inspection Optimization of Complex Structures: A Brief Retrospective [J]. Computers and Structures, 2002, 80(12): 1133-1144.
    [70] Baker M. J., Descamps B. Reliability-Based Methods in the Inspection Planning of Fixed Offshore Steel Structures [J]. Journal of Constructional Steel Research, 1999, 52(1): 117-131.
    [71] Garbatova Y., Guedes S. C. Cost and Reliability Based Strategies for Fatigue Maintenance Planning of Floating Structures [J]. Reliability Engineering & System Safety, 2001, 73(3): 293-301.
    [72] Rouhan, Schoefs E. Probabilistic Modeling of Inspection Results for Offshore Structures [J] Structural Safety, 2003, 25(4): 379-399.
    [73]胡云昌,于洪洁,郭振邦,等.导管架式海洋平台可靠性检测与维修策略研究[J].中国造船, 1995, 36(3): 27-36.
    [74]宋儒鑫,陆鑫森.海上结构物损伤检测的探测概率分析[J].上海交通大学学报, 1996, 30(10): 122-128.
    [75]陈国明.海洋结构裂纹检测与维修优化[J].石油大学学报:自然科学版, 2000, 24(5): 73-75.
    [76]陈国明.冰区海洋石油平台疲劳断裂评估与可靠性分析[D].东营:石油大学, 1999.
    [77]安伟光,陈燕,孙克淋.基于检测结果的海洋工程结构TLP系索系统疲劳可靠性分析[J].哈尔滨工程大学学报, 2004, 25(6): 700-704.
    [78] Det Norske Veritas. DNV-RP-G101, Risk Based Inspection of Offshore Topsides Static MechanicalEquipment [S]. Hovik, 2002.
    [79] American Bureau of Shipping. Guide for Surveys Using Risk-Based Inspection for the Offshore Industry[S]. Houston, 2003.
    [80] American Petroleum Institute. API RP580, Risk-based Inspection [S]. Washington, D.C.: API Publishing Services, 2002.
    [81] Khan F. I., Haddara M. M. Risk-Based Maintenance (RBM): a Quantitative Approach for Maintenance/Inspection Scheduling and Planning [J]. Journal of Loss Prevention in the Process/Industries, 2003, 16(6): 561-573.
    [82] Franck S., Mustapha R. Risk Based Inspection of Jackets Submitted to through-Wall Cracks[C] // Proceedings of the ASME 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, 2003.
    [83] Jannie Jessen Nielsen, John Dalsgaard S?rensena. On Risk-Based Operation and Maintenance of Offshore Wind Turbine Components [J]. Reliability Engineering & System Safety, 2011, 96(1): 218-229.
    [84] Dey P. K., Ogunlan S. O., Naksuksakul S. Risk-Based Maintenance Model for Offshore Oil and Gas Pipeline: a Case Study [J]. Journal of Quality in Maintenance Engineering, 2004, 10(3): 169-183.
    [85] Daniel S., Faber M. H. Risk Based Inspection Planning for Structural Systems [J]. Structural Safety, 2005, 27(4): 335-355.
    [86]李奇,李延渊,黄贤滨,等.基于风险检测的风险评估方法[J].安全、健康和环境, 2004, 4(2): 35-38.
    [87]石超,张圣柱,罗艾民,等.基于可靠度理论的RBI修正模型研究[J].中国安全生产科学技术, 2010, 6(5): 77-81.
    [88]李典庆,张圣坤,唐文勇.基于风险的船体结构腐蚀优化检测及维修规划[J].上海交通大学学报, 2004, 38(11): 1875-1879.
    [89] Li Dianqing, Zhang Shengkun, Tang Wenyong. Risk Based Optimal Inspection and Repair Planning for Ship Structures Subjected to Corrosion Deterioration [J]. China Ocean Engineering, 2004, 18(2): 185-196.
    [90] Xu T., Bai Y.,Wang M., et, al. Risk Based Optimum Inspection for FPSO Hulls[C] // Proceedings of the 2001 Offshore Technology Conference, Houston, 2001.
    [91] Garbatov Y., Guedes S. C. Bayesian Updating in the Reliability Assessment of Maintained Floating Structures [J]. Journal of Offshore Mechanics and Arctic Engineering, 2002, 124(3): 139-145.
    [92] Estrada C., Escobedo D. Development of a Cost-Benefit Model for Inspection of Offshore Jacket Structures in Mexico[C] // Proceedings of the ASME 22nd International Conference On Offshore Mechanics and Arctic Engineering, Mexico, 2003.
    [93] Faber M. H., Straub D., Goyet J. Unified Approach to Risk Based Inspection Planning for Offshore Production Facilities [J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125(2): 126-131.
    [94] Mathisen J., Larsen K. Risk-Based Inspection Planning for Mooring Chain [J]. Journal of OffshoreMechanics and Arctic Engineering, 2004, 126(3): 250-261.
    [95]李典庆.基于风险的船体结构检测及维修规划[D].上海:上海交通大学, 2003.
    [96] Schittkowski K. NLPQL: A FORTRAN Subroutine Solving Constrained Nonlinear Programming Problems [J]. Annals of Operations Research, 1985, 5(2): 485-500.
    [97]陈团海,陈国明,林红.冰区老龄平台整体时变可靠性分析与更新[J].石油学报, 2011, 32(3): 518-523.
    [98] Bruhns O. T., Dietrich Hartmann, Rüdiger H?ffer, et al. Lifetime-Oriented Structural Design Concepts [M]. Berlin: Springer-Verlag Berlin Heidelberg, 2009.
    [99]许亮斌,陈国明.考虑断裂和腐蚀失效的海洋平台动态可靠性研究[J].石油学报, 2009, 29(1): 132-135.
    [100]许亮斌,陈国明.考虑疲劳失效的海洋平台动态可靠性分析[J].石油学报, 2007, 28(3): 131-134.
    [101]山东海盛海洋工程集团有限公司工程公司.埕岛A平台延寿评估结构检测完工报告[R].东营, 2009.
    [102]山东海盛海洋工程集团有限公司工程公司.埕岛C平台延寿评估结构检测完工报告[R].东营, 2009.
    [103] Southwell C. R., Bultman J. D., Hummer Jr C. W. Seawater Corrosion Handbook [M]. New Jersey: Noyes Data Corporation, 1979: 374-387.
    [104] Melchers R. E. Probabilistic Modeling of Immersion Marine Corrosion [J]. Structural Safety and Reliability, 1998, 3(10): 1143-1149.
    [105] Melchers R. E. Corrosion Uncertainty Modeling for Steel Structures [J]. Constructional Steel Research, 1999, 52(1): 3-19.
    [106]中国海洋石油总公司. SY/T10030,海上固定平台规划、设计和建造的推荐作法、工作应力设计法[S].北京:海洋石油工程专业标准化技术委员会, 2004.
    [107] American Petroleum Institute. API RP 2A-WSD, Recommend Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design [S]. Washington, D. C: API Publishing Services, 2000.
    [108] Paik J. K., Kim S. K., Lee S. K. Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Bulk Carriers[J]. Ocean Engineering, 1998, 25(10): 837-860.
    [109] Guades Soares C, Garbatov Y. Reliability of Maintained, Corrosion Protected Plates Subjected to Non-Linear Corrosion and Compressive Loads [J]. Marine Structures, 1999, 12(6): 425-445.
    [110] Qin Shengping, Cui Weicheng. Effect of Corrosion Models on the Time-Dependent Reliability of Steel Plated Elements [J]. Marine Structures, 2003, 16(1): 15-34.
    [111]秦圣平,崔维成,凯沈.船舶结构时变可靠性分析的一种非线性腐蚀模型[J].船舶力学, 2003, 7(1): 94-103.
    [112]欧进萍,段忠东.基于随机裂纹扩展机制的构件抗力衰减分析[J].机械强度, 1994, 16(3): 46-51.
    [113]欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用[M].北京:科学出版社, 2003.
    [114]陈团海,陈国明,林红,等.海洋平台含裂纹管节点CFRP修复效果仿真研究[J].石油机械,2008, 36(1): 1-4, 50.
    [115] Ciampoli M, Ellingwood B. R. Probabilistic Methods for Assessing Current and Future Performance of Concrete Structures in Nuclear Power Plants [J]. Materials and Structures, 2002, 35(1): 3-14.
    [116] Mori Y., Ellingwood B. R. Maintaining Reliability of Concrete Structures. I: Role of Inspection /Repair [J]. Journal of Structural Engineering, ASCE, 1994, 120(3): 824-845.
    [117]段忠东,欧进萍.基于概率疲劳累积损伤理论的构件抗力衰减分析[J].哈尔滨建筑大学学报, 1996, 29(1): 1-8.
    [118] Gandhi P., Ramachandra Murthy D. S., Raghava G., et, al. Fatigue Crack Growth in Stiffened Steel Tubular Joints in Seawater Environment [J]. Engineering Structures 2000, 22(10): 1390-1401.
    [119]欧进萍,段忠东.渤海导管架平台桩柱冰压力随机过程模型及其参数确定[J].海洋学报, 1998, 20(3): 110-118.
    [120] Li Gang, Liu Xiang, Liu Yuan, et al. Optimum Design of Ice-Resistant Offshore Jacket Platforms in The Bohai Gulf in Consideration of Fatigue Life of Tubular Joints [J]. Ocean Engineering, 2008, 35(5-6): 484-493.
    [121]陈团海,陈国明.海洋平台冰激疲劳时域精细评估[J].石油工业技术监督, 2008, 24(12):17-21.
    [122] Rausand M, H?yland A. System Reliability Theory: Models, Statistical Methods, and Applications, 2nd ed [M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2004: 240-245.
    [123]方华灿,陈国明.冰区海上结构物的可靠性分析[M].北京:石油工业出版社, 2000.
    [124] Mori Y., Ellingwood B. R. Reliability-Based Service-Life Assessment of Aging Concrete Structures [J]. Journal of Structural Engineering, 1993, 119(5): 1600-1621.
    [125]吴俊杰.老龄石油平台抗震可靠性分析[D].东营:中国石油大学(华东), 2009.
    [126]中国船级社. CCS-GD04,海上平台状态评定指南[S].北京:人民交通出版社, 2005.
    [127]刘健,陈国明,黄东升.冰区海洋平台疲劳可靠性评估方法的研究[J].石油学报, 2006, 27(5): 115-118.
    [128]姚继涛,赵国藩,浦聿修.结构抗力的独立增量过程概率模型[C]//中国土木工程学会第九届年会,杭州, 2000.
    [129] Xie Li-yang, Wang Zheng. Reliability Degradation of Mechanical Components and Systems [M]// Misra Krishna B. Handbook of Performability Engineering. London: Springer-Verlag London Limited, 2008: 413-429.
    [130] Chen Tuanhai, Chen Guoming. Time-Dependent Reliability of Ageing Platforms in Ice Zone [C]. Proceedings of the 20th International Offshore (Ocean) and Polar Engineering Conference & Exhibition. Beijing, 2010.
    [131]许亮斌,陈国明.基于模糊贝叶斯理论更新概率可靠性模型[J].石油大学学报:自然科学版, 2003, 27(6): 53-56.
    [132] Estes A. C., Frangopol D. M., Foltz S. D. Updating Reliability of Steel Miter Gates On Locks and Dams Using Visual Inspection Results [J]. Engineering Structures, 2004, 26(3): 319-333.
    [133]林红,陈国明,孙友义.基于验证载荷的老龄平台结构可靠性更新分析[J].石油机械, 2008, 36(9): 39-42.
    [134] Michael H. F, Dimitri V. V, Mark G. S. Proof Load Testing for Bridge Assessment and Upgrading [J]. Engineering Structures, 2002, 22(12): 1677-1689.
    [135]张俊芝.验证荷载对服役结构抗力的影响分析[J].南昌大学学报:理科版, 2001, 25(2): 187-191, 196.
    [136]索清辉,钱永久,伍建强,等.既有结构已服役荷载对可靠度评估结果的验证影响[J].计算力学学报, 2007, 24(3): 323-327.
    [137] Energo Engineering Inc. Assessment of Fixed Offshore Platform Performance in Hurricanes Andrew, Lili, and Ivan[R]. E05114, Houston, 2006.
    [138]陈团海,陈国明,许亮斌.基于台风验证载荷的平台时变可靠性分析与更新[J].中国石油大学学报:自然科学版, 2011, 35(3): 127-134.
    [139] Energo Engineering Inc. Assessment of Fixed Offshore Platform Performance in Hurricanes Katrina and Rita[R]. E06117, Houston, 2007.
    [140] Chen Guoming, Yang Xiaogang. Reliability Based Fatigue Safety Assessment of Offshore Structures in Ice Zone [C]//Proceedings of the ASME 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, 2002.
    [141]方华灿.海洋石油钢结构的疲劳寿命[M].东营:石油大学出版社, 1990
    [142] Chen Guoming, Fang Huacan, Yang Xiaogang. Fatigue Analysis and Assessment of Offshore Structures in Ice Environment [C]//Proceedings of the ASME 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, 1997.
    [143]刘健,陈国明,黄东升.不同冰力作用下结构的动力响应分析[C]//中国钢结构协会海洋钢结构分会2004年学术会议论文集.金华, 2004: 19-22.
    [144]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社, 1991: 188-189.
    [145] Yue Qianjin, Qu Yan, Bi Xiangjun, K?rn? T. Ice force spectrum on narrow conical structures [J]. Cold Regions Science and Technology, 2007, 49(2): 161-169.
    [146]李刚,张大勇,岳前进.冰区海洋平台的时变疲劳可靠性分析[J].计算力学学报, 2006, 23(5): 513-517.
    [147] Potvin A. B., Kuang J. G., Leick R. D., et al. Stress Concentration in Tubular Joints[C]// The Proceedings of the Seventh Annual Offshore Technology Conference, Houston, 1975: 287-299.
    [148] Shao Yongbo. Geometrical Effect on the Stress Distribution Along Weld Toe for Tubular T- And K-Joints Under Axial Loading [J]. Journal of Constructional Steel Research, 2007, 63(10): 1351-1360.
    [149] Gho W. M., Gao F. Parametric Equations for Stress Concentration Factors in Completely Overlapped Tubular K(N)-joints [J]. Journal of Constructional Steel Research, 2004, 60(12): 1761-1782.
    [150] Det Norske Veritas, DNV-RP-C203, Fatigue Design of Offshore Steel Structures [S]. Hovik, 2010.
    [151]贾法勇,霍立兴,张玉凤,等.热点应力有限元分析的主要影响因素[J].焊接学报, 2003, 24(3): 27-30.
    [152]陈团海,陈国明. T型焊接管节点应力集中系数数值分析[J].焊接学报, 2010, 31(11): 45-48.
    [153]美国焊接协会: AWS D1.1/D1.1M-2008,钢结构焊接规范[S].北京:北方咨讯服务中心, 2005.
    [154] Chen Tuanhai, Chen Guoming. Stress Concentration Factors in Tubular K-Joints under Combined Loadings[C] // Proceedings of the ASME 29th International Conference on Ocean, Offshore, and Arctic Engineering. Shanghai, 2010.
    [155] Chang E., Dover W. D. Prediction of Stress Distributions along the Intersection of Tubular Y and T-Joints [J]. International Journal of Fatigue, 1999, 21(4): 361-381.
    [156]高飞,朱宏平,章小蓉.复合荷载作用下完全叠接管节点热点应力的实验研究[J].华中科技大学学报:城市科学版, 2007, 24(3): 40-44.
    [157] Gulati K. C., Wang W. J., Kan D. K. Y. An Analytical Study Of Stress Concentration Effects In Multibrace Joints Under Combined Loading [C] // Proceedings of 14th Annual Offshore Technology Conference, Houston, 1982.
    [158]陈团海,陈国明.复合载荷下T型管节点应力集中系数研究[J].西安建筑科技大学学报:自然科学版, 2010, 42(2): 272-277.
    [159] Gho W. M., Gao F., Yang Y. Load Combination Effects On Stress And Strain Concentration Of Completely Overlapped Tubular K(N)-Joints [J]. Thin-Walled Structures, 2005, 43(8): 1243-1263.
    [160] Wirsching P. H. Fatigue Reliability for Offshore Structures [J]. Journal of Structural Engineering, ASCE, 1984, 110(10): 1233-1241.
    [161]胡毓仁,李庆典,陈伯真.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社, 2010
    [162]方华灿,陈国明.模糊概率断裂力学[M].东营:石油大学出版社, 1999
    [163] Moan T., Ayala-Uraga E. Reliability-Based Assessment of Deteriorating Ship Structures Operating in Multiple Sea Loading Climates [J]. Reliability Engineering & System Safety, 2008, 93(3): 433-446.
    [164]余建星,郭振邦,徐慧,等.船舶与海洋结构物可靠性原理[M].天津:天津大学出版社, 2001.
    [165]胡毓仁,陈伯真,顾剑民.用一阶二次矩方法进行海洋平台结构系统的疲劳可靠性分析[J].上海交通大学学报, 1997, 31(2): 26-29.
    [166]李鹤林.油气管道运行安全与完整性管理[J].石油科技论坛, 2007, 26(2): 18-25.
    [167]张景林,崔国璋.安全系统工程[M].北京:煤炭工业出版社, 2002.
    [168] Jan Erik Vinnem. Offshore Risk Assessment, 2nd ed [M]// Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2007.
    [169]严大凡,翁永基,董绍华.油气长输管道风险评价与完整性管理[M].北京:化学工业出版社, 2005.
    [170] Grimvall G?ran, Holmgren ?ke J., Jacobsson Per, et, al. Risks in Technological Systems[M]// Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2010.
    [171]代利明,陈玉明.几种常用定量风险评价方法的比较[J].安全与环境工程, 2006, 13(4): 95-98.
    [172] Mohammad Modarres. Probabilistic Risk Assessment [M]//Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2008.
    [173] Liudong Xing, Suprasad V. Amari. Fault Tree Analysis [M]//Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2008.
    [174] Terje Aven. Risk Management [M]//Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2008.
    [175] Krishna B. Misra. Risk Analysis and Management: An Introduction [M]//Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2008.
    [176] Terje Aven, Jan Erik Vinnem. Risk Management: With Applications from the Offshore Petroleum Industry [M]//Hoang Pham. Springer Series in Reliability Engineering. London: Springer-Verlag London Limited, 2007.
    [177] MSL Engineering Limited. Assessment of Repair Techniques for Ageing or Damaged Structures[R]. C357R001, Egham, 2004.
    [178] Turton T. J., Dalzel-Job J., Livingstone F. Oil Platforms, Destroyers and Frigates-Case Studies of QinetiQ’s Marine Composite Patch Repairs [J]. Composites: Part A, 2005, 36(1): 1066-1072.
    [179]陈养厚.滩海石油老龄平台维修方法及应用研究[D].东营:中国石油大学, 2009.
    [180]代万宝,宋春娜.固定导管架式平台水下结构的定期检测[J].中国修船, 2008, 21(5): 49-51.
    [181] Chung Hsin-Yang. Fatigue Reliability and Optimal Inspection Strategies for Steel Bridges [D]. Austin: The University of Texas at Austin, 2004.
    [182] Hellevik S. G., Langen I., S?rensen J. D. Cost Optimal Reliability Based Inspection and Replacement Planning of Piping Subjected to CO2 Corrosion [J]. International Journal of Pressure Vessels and Piping, 1999(76): 527-538.
    [183]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005.
    [184] Frangopol D. M., Liu M. Multiob J. Optimization for Risk-based Maintenance and Life-Cycle Cost of Civil Infrastructure Systems[C]//Proceedings of International Federation for Information Processing Digital Library, System Modeling and Optimization, Turin, 2005.
    [185] International Organization for Standards, ISO19902, Petroleum and Natural Gas Industries-Fixed Steel Offshore Structures[S], New York, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700