海南岛中—东部屯昌地区古生代变基性岩体的变质特征及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要论述了海南岛中东部屯昌地区变基性岩体的变质作用特征及与古特提斯构造演化的关系。岩石学、矿物学及显微结构观察表明,研究区变基性岩体原岩可能由辉长岩(粗粒的角闪岩)、辉长-辉绿岩(中-细粒和粗粒的角闪岩)和枕状熔岩(细粒或块状的角闪岩)组成;主要矿物组合为角闪石+斜长石(An=0∽91)+绿泥石+绿帘石,副矿物为:钛铁矿+榍石±金红石±锆石±电气石,次要矿物为白云母、葡萄石、钾长石和富铁(铜)-镍硫化物。大部分矿物(如角闪石)至少表现两个或两个以上的世代。岩体本身则发育良好的脆-韧性剪切变形,表现为褶皱、剪切叶理(或劈理)、S-C组构、北北东-北北西走向的拉伸线理和糜棱状显微结构。变基性岩角闪石环带的矿物化学分析结果表明:从核部到边部,钛、铝、(钠+钾)含量增长,反映了从绿片岩相到角闪岩相或角闪岩-麻粒岩相的进变质演化过程;相反,角闪石环带从核部到边部钛、铝和(钾+钠)含量减少,则暗示了角闪岩-麻粒岩相或角闪岩相到(亚)绿片岩相的退变质演化。测得Sm-Nd全岩及角闪石单矿物内部等时线年龄为128±12 Ma、Rb-Sr全岩等时线年龄为131.8±6.2 Ma和311.1±7.9 Ma。根据角闪石环带以及矿物共生组合、岩石微结构特征、Sr-Nd同位素年代学和变质温压条件的半定量计算,并结合区域地质、岩浆作用和华南大地构造发展特征,屯昌地区古生代变基性岩体可能经历了三个变质演化阶段:第一阶段(约330 Ma)记录了与洋底变质作用有关的(亚)绿片岩相至角闪岩相变质条件,早期的阳起石、Ca质角闪石及镁铁质角闪石残余核为该阶段的产物;第二阶段(约310-260 Ma)进变质作用达到高峰的压力(P)约9 kbar、温度(T)约700℃,显示了过渡性的上角闪岩相-麻粒岩相变质条件。广泛的剪切变形、岩层堆叠及韭闪质普通角闪石和韭闪石边是该阶段的产物;第三阶段(约130 Ma)显示一个绿片岩相变质条件(P约1-3 kbar,T约300-400℃),可能是区域/热退变质作用的反映。研究结果综合表明,屯昌地区变基性岩体在进变质作用阶段压力随着温度升高而升高,随后温度和压力都明显降低而进入退变质作用阶段,显示一个逆时针P-T-t轨迹,暗示了这些变基性岩可能起源于类似于洋内岛弧/俯冲带之上的构造背景。因此,该变基性岩体可能代表了一个不完整的、或被肢解的蛇绿岩套上部组合。
This paper examines the metamorphic characteristics of the Paleozoic metabasites in the Tunchang area, East-central Hainan Island, China with respect to the tectonic processes in connection with the evolution of Paleo-Tethys. The petrology, the mineral paragenese and the microstructure suggested that the protoliths for these metabasites are probably composed of gabbroic rocks (coarse-grained amphibolites), gabbroic-diabasic rocks (medium to fine-grained and coarse-grained amphibolites), and pillowed lava (fine-grained and/or massive amphibolites). The overall mineral assemblages for these rocks are amphibole+ plagioclase(An=:0∽91) + chlorite + epidote, accessory phases: ilmenite + titanite ± rutile ± zircon ± tourmaline. Minor muscovite, prehnite and K-feldspar, and abundant Fe (Cu) -Ni sulphide commonly occur as secondary minerals. Most minerals, e.g., amphiboles, are characterized by at least two generations, and the well-developed ductile-brittle shear deformations are shown by the development of folds, shear foliations or cleavages, S-C fabrics, NNE to NNW-striking stretching lineations and mylonitic microstructures. The mineral chemistry of zoned amphiboles in the metabasites indicates a progressive evolution from greenschist, amphibolite facies to amphibolite-granulite facies, being consistent with increasing Ti, Al and (K + Na) from core to rim. However, Ti, Al and (K+Na) decreasing likely indicate another retrogressive evolution from amphibolite-granulite or amphibolite to low greenschist facies. The whole-rock and amphibole separate yield a Sm-Nd isochronic age of 128 ± 12 Ma, whereas the Rb-Sr whole-rock ages is 131.8 ± 6.2 Ma and 311.1 ± 7.9 Ma, repsectively. Three successive and contrasting tectono-thermal-metamorphic events are clearly identified, based on the zoned amphiboles, the mineral paragenese, the microstructure and the Sr-Nd isochronic age, as well as on the regional geology, the granitic magmatism and the tectonic development of South China. The first stage of metamorphism(~330 Ma) records (sub) greenschist-amphibolite facies conditions, probably due to sea-floor metamorphism shown by the first generation of actinolite,
    hornblende and orthoamphibole cores. The second stage(~310-260 Ma) of "peak" metamorphic pressure and temperature conditions cluster around values of ∽ 9 kbar and ∽ 700 ℃, which show a transitional amphibolite-granulite facies metamorphism, and are marked by the pervasive ductile-shear deformation, the nappe stacking and the pargasitic horblende-pargasite rims. The third stage(~130 Ma) relates to the regional/thermal retrograde metamorphism at P/T= ∽ 1-3 kbar/ ∽ 300-400 ℃ conditions. All the study point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde metamorphism (i.e. an anticlockwise P-T-t path), which characterized these metabasites as an origin of intraoceanic arc/suprasubduction zone-like tectonic setting. Thus the Tunchang area metabasites most likely represent the upper layers of an incomplete, dismembered ophiolite body, owing to the northerly subduction of the eastern Paleo-Tethys.A possible model to delineate the petrogenesises of these metabasites and the Paleozoic tectonic evolution in the Hainan Island has been proposed in this paper. The model further supports that the NE-SW-trending Baisha fault of the Hainan Island is a Late Paleozoic-Earliest Mesozoic suture. The Hainan Island Block had been composed of the northwest Island (separated from South China) and the northeast Island (separeated from Indochina), which have been sutured along the Baisha fault during Late Paleozoic-Earliest Mesozoic.
引文
1.程裕淇,庄育勋,沈其韩.1998.变质作用研究的回顾与展望.地学前缘,5(4):257-265
    2.陈友红,朱节清,邬显康等.1996.双沟蛇绿岩中地幔交代作用的质子微探针研究.岩矿测试,15(3):168-172
    3.丁式江,许长海,龙文国等.2002.海南屯昌变火山岩构造属性及其年代学研究.岩石学报,18:83-90
    4.董申保,魏春景.1997.变质地质学的某些进展.岩石学报,13(3):274-288
    5.付建明,赵子杰.1997.海南岛加里东花岗岩的特征及构造环境分析.矿物岩石,17(1):29-34
    6.侯威,陈惠芳,梁新权等.1992.海南岛前寒武纪地层的确定及其大地构造演化.长春地质学院学报,(2):133-143
    7.姜文波,张立飞.2001.利用钠质角闪石成分环带计算蓝片岩的P-T-t轨迹—以新疆阿克苏前寒武纪蓝片岩为例.岩石学报,17(3):469-475
    8.李荣西,安三元,胡能高等.1994.河南西峡二郎坪群变质岩岩石学及变质作用演化特征研究.西安地质学院学报,16(3):17-22
    9.李献华,周汉文,丁式江等.2000a.海南岛洋中脊型变质基性岩:古特提斯洋壳的残片?.科学通报,45(1):84-89
    10.李献华,周汉文,丁式江等.2000b.海南岛“邦溪-晨星蛇绿岩片”的时代及其构造意义.岩石学报,16(3):425-432
    11.梁新权,范蔚茗,许德如.2000.海南岛屯昌玄武质科马提岩Sm-Nd同位素年龄及其地质意义.地质科学,35(2):240-244
    12.梁新权.1995.海南岛前寒武纪花岗岩-绿岩系 Sm-Nd同位素年龄及其地质意义.岩石学报,11(1):72-76
    13.卢良兆.1991.变质作用P-T-t轨迹及其地球动力学意义.国外前寒武纪地质,3:4-19
    14.卢良兆.1993.麻粒岩相变质作用的P-T-t轨迹及其地质动力学意义.国外前寒武纪地质,1:1-19
    15.孙传敏.1994.四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义. 矿物岩石,14(3):1-15
    16.唐红峰.1999.海南岛晨星玄武岩地球化学特征及其构造环境意义.大地构造与成矿学,23(4):323-327
    17.夏邦栋,施光宇,方中等.1991.海南岛晚古生代裂谷作用.地质学报,(2):103-115
    18.徐安武,张业明,付建明等.1997.海南岛西部早古生代裂陷槽.华南地质与矿产,(3):32-38
    19.徐学成.1995.内蒙古乌拉山地区变质作用的P-T条件和P-T-t轨迹.吉林地质,14(2):1-9
    20.许德如,陈广浩,夏斌等.2003.海南岛几个重大基础地质问题评述.地质科技情报,22(4):37-44
    21.许德如,梁新权,唐红峰.2002.琼西抱板群变质沉积岩地球化学研究.地球化学,31(1):153-160
    22.许德如,梁新权,唐红峰.2000.琼西抱板群变基性火山岩岩石地球化学特征极其大地构造意义.大地构造与成矿学,24(4):303-313
    23.许德如,林舸,梁新权等.2001a.海南岛前寒武纪岩石圈演化的记录—基性岩类岩石地球化学证据.岩石学报,17:589-609
    24.许德如,范蔚茗,梁新权等.2001b.海南岛元古宙变质基底性质和地壳增生的Nd、Pb同位素制约.高校地质学报,7(2):146-157
    25.杨树锋,虞子冶,郭令智等.1989.海南岛的地体划分、古地磁研究及其板块构造意义.南京大学学报(地球科学),1(1-2):38-46
    26.愈受均,夏萍,邓铁殷等.1992.海南抱板地区中元古代花岗岩副矿物锆石的特征及U-Pb同位素年龄测定.地球化学,(3):213-219
    27.袁奎荣,梁全城,李公时.1977.海南岛西部海西期地槽的发现及其对找铁矿的意义.中南矿冶学院学报,(3):13-25
    28.张泽明.1996.大别山地区超高压变质岩的不平衡退变反应及动力学.地球科学,21(5):501-507
    29.张旗,周国庆,王焰等.2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报,19(1):1-8
    30.张仁杰,马国干,徐光洪等.1989.Chuaria-Tawuia生物群在海南岛石碌群的发现及其构造意义.中国科学,(3):304-311
    31.张业明,张仁杰,姚华舟等.1998.海南岛前寒武纪地壳构造演化.地球科学,22:395-400
    32.张业明,付建明,吴桂捷等.1997b.海南岛昌江-邦溪地区海西构造层的变形构造特征及其动力学成因.华南地质与矿产,(2):43-50
    33.张业明,付建明,张波夫等.1997a.海南岛昌江-邦溪地区中深层次动力变质类型划分及动力变质作用.华南地质与矿产,(4):26-31
    34.赵东林,胡能高,安三元.1997.东秦岭秦岭岩群中角闪石环带所记录的P-T-t轨迹.矿物岩石,17(3):27-30
    35.朱云海,陈能松,王国灿等.1997.东昆中蛇绿岩中单斜辉石、角闪石矿物成分特征及岩石学意义.中国地质大学学报-地球科学,22(4):364-368
    36.中国科学院华南富铁科学研究队.1986.海南岛地质与石禄铁矿地球化学.北京:科学出版社,1-376
    37.庄育勋.1997.变质作用P-T-t轨迹及矿物地质温压计研究的评述见:张炳熹、洪大卫、吴宣志主编-岩石圈研究的现代方法北京:原子能出版社,137-150
    38. Aguirre, L., and Atherton, M. P., 1987. Low-grade metamorphism and geoectonic setting of the Macuchi Formation, Western Cordillera of Ecuador. Journal of Metamorpgic Geology 5: 473-494
    39. Alirezaei, S., Cameron, E. M., 2002. Mass balance during gabbro-amphibolite transition, Bamble Sector, Norway: implications for petrogenesis and tectonic setting of the gabbros. Lithos 60: 21-45
    40. Alt, J. C., Teagle, D-A. H., 2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chemical Geology 201: 191-211.
    41. Anonymous, A. H. F., 1972. Penrose field conference on ophiolites. Geotimes 17: 24-25.
    42. Baroz, F., Bebien J. and Ikenne M., 1987. An example of high-pressure low-temperature metamorphic rocks from an island-arc: the Paikon Series (Innermost Hellenides, Greece). Journal of Metamorphic Geology 5: 509-527
    43.Be'gin, N.J., 1992. Contrasting mineral isograd sequences in metabasites of the Cape Smith Belt, northern Que'bec, Canada: three new bathograds for mafic rocks. Journal of Metamorphic Geology 11: 685-704.
    44.Bebout, G. E., Barton, M. D., 2002. Tectonic and metasomatic mixing in a high-T, subduction-zone me'lange —insights into the geochemical evolution of the slab-mantle interface. Chemical Geology 187: 79- 106
    45.Bellot. J.-R, Triboulet, C, Laverne, C, Bronner, G, 2003. Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P-T-t-d paths pf metabasites in distinct allochthonous units of the Maures massif (SE France). International Journal of Earth Science (Geol Rundsch) 92: 7-26
    46.Binns, R. A., 1965. The mineralogy of metamorphosed basic rocks from the Millyama complex, Broken Hill district, New South Wales. Part I. Hornblendes. Mineralogical Magazine 35: 306-326
    47.Blundy, J. D. and Holland, J. B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology 104: 208-224
    48.Bohlen, S. R., 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 95: 617-632
    49.Bosch, D., Jamais, M., Bouderau, A., Kruger, F. J., 2004. Deep and high-temperature hydrothermal circulation in the Oman ophiolite-petrological and isotopic evidence. Journal of Petrology 45: 1181-1208
    50.Brewer, T. S., and Menuge, J. F., 1998. Metamorphic overprinting of Sm-Nd isotopic systematics in volcanic rocks: the Telemark Supergroup, southern Norway. Chemical Geology 145: 1-16
    51.Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Mineral 23: 471-485
    52.Chalot-Prat, F., Ganne, J., Lombard, A., 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos 69: 69- 103
    53.Chen.H-H.,Shu,S.,Hsu.K.J.,Dobson,J.,and Yu,Z-Y.,1992.Tectonics of the Hainan Orogenic belt:A preliminary study:memoir of lithospheric tectonic research,1,pp.43-48
    54.Cortesogono, L., Gaggero, L., Zanetti, A., 2000. Rare earth and trace elements in igneous and high-temperature metamorphic minerals of oceanic gabbros (MARK area, Mid-Atlantic Ridge). Contributions to Mineralogy and Petrology 139: 373-393.
    55.Dick, H-J. B., Natland, J. M., Alt, J. C, Bach, W., Bideau, D., Gee, J. S., Haggas, S., Hertogen, J. G. H., Hirth, G, Holm, P. M., Ildefonse, B., Iturrino, G. J., John, B. E., Kelley, D. S., Kikawa, E., Kingdon, A., LeRoux, P. J., Maeda, J., Meyer, P. S., Miller, D. J., Naslund, H. R., Niu, Y-L., Robinson, P. T., Snow, J., Stephen, R. A., Trimby, P. W., Worm, H. U., Yoshinobu, A., 2000. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179: 31-51
    56.Enami, M., Suzuki, K., Liou, J.C., Bird, D.K., 1993. Al-Fe and F-OH substitutions in titanite and constraints on their P-T dependence. European Journal of Mineralogy 5: 219-231.
    57.England, P. C. and Thompson, A. B., 1984. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25: 894-928
    58.Ernst, W. G, Liu, J., 1998. Experimental phase-equilibrium study of Al- and Ti- contents of calcic amphibole in MORB - a semiquantative thermobarmeter. American Mineralogist 83: 952-969
    59.Essaifi, A., Capdevila, R., Fourcade, S., Lagarde, J . L., Balle'vre, M. and Marignac, CH., 2004. Hydrothermal alteration, fluid flow and volume change in shear zones: the layered mafic-ultramafic Kettara intrusion (Jebilet Massif, Variscan belt, Morocco). Journal of Metamorphic Geology 22: 25-43
    60.Evarts, R. C, Schiffman, P., 1983. Submarine hydrothermal metamorphism of the Del Puerto Ophiolite, California. American Journal of Science 283: 289-340.
    61.Fang, Z., Zhao, J.X. and McCulloch, M.T., 1992. Geochemical and Nd isotopic study of Paleozoic bimodal volcanicsin Hainan Island, South China-implications of rifting tectonics and mantle reservoirs. Lithos 29: 127-139
    62.Fleet, M.E., Barnett, R.L., 1978. A1/A1 partitioning in calciferous amphiboles from the Frood mine, Sudbury, Ontario. Canadian Mineralogist 16: 527-532.
    63.Gaggero, L., Cortesogono L., 1997. Metamorphic evolution of oceanic gabbros: recrystallization from subsoliduss to hydrothermal conditions in the MARK area (ODP Leg 153). Lithos 40: 105-131
    64.Goffe', B., Bousquet, R., Henry, P. and Le Pichon, X., 2003. Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges. Journal of Metamorphic Geology 21: 123-141
    65.Gomez-Pugnaire, M.T., Azor, A., Fernandez-Soler, J.M., Lo'pez Sa'nchez-Vizcai'no, V., 2003. The amphibolites from the Ossa-Morena/Central Iberian Variscan suture (Southwestern Iberian Massif): geochemistry and tectonic interpretation. Lithos 68:23-42
    66.Gomez-Pugnaire, M.T., Peter, V., Vicente, L.S.V., 2000. Petrogenesiss of the mafic igneous rocks of the Beltic Cordilleras: A field, petrological and geochemical study. Contributions to Mineralogy and Petrology 139: 436-457
    67.Gorur,N.,and Sengor,A.M.C.,1992.Palaeogeography and tectonic evolution of the eastern Tethysides:Implications for the northwest Australian margin breakup history,in von Rad,U,Haq,B U,and others:Proceedings of the ocean Drilling Program,Scientific Results,122:83-106
    68.Green, D.H., Hellman, P.L., 1982. Fe-Mg partitioning between coexisting garnet and phengite at high pressures, and comments on a garnet-phengite geothermometer. Lithos 15: 253-266.
    69.Gruau, G, Rosing, M., Bridgwater, D., Gill, R. C. O., 1996. Resetting of Sm-Nd systematics during metamorphism of > 3.7Ga rocks: implications for isotopic models early Earth differentiation. Chemical Geology 133: 225-240
    70.Halkoaho, T., Liimatainen, J., Papunen, H. and VaElimaa, J., 2000. Exceptionally Cr-rich basalts in the komatiitic volcanic association of the Archaean Kuhmo greenstone belt, eastern Finland. Mineralogy and Petrology 70: 105-20
    71.Hammarstrom, J. M., Zen E-an., 1986. Aluminium in hornblende: an empirical igneous geobarometer. American Mineralogist 71: 1297-1313.
    72.Ho ltta , P., Paavola, J., 2000. P-T-t development of Archaean granulites in Varpaisja rvi, Central Finland. I. Effects of multiple metamorphism on the reaction history of mafic rocks. Lithos 50: 97-120
    73.Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole -plagioclase thermometry. Contributions to Mineralogy and petrology 116:433 -447
    74.Holland, T. J. B., Richchardson, S. W., 1979. Amphibole zonation in metabasites as a guide to the evolution of metamorphic conditions. Contributions to Mineralogy and petrology 70: 143- 148.
    75.Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H. H., Sisson, V. B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist (12): 231 ~ 239
    76.Honnorez, J., Me'vel, C, Montigny, R., 1984. Occurrence and significance of gneissic amphibolites in the Vema fracture zone, equatorial Mid-Atlantic Ridge. In: Gass, I.G., Lippard, S.J., Shelton, A.W. (Eds.), Ophiolites and Oceanic Lithosphere. Spec. Publ.-Geol. Soc. (London), vol. 13. Blackwell, London, pp. 121-130.
    77.Hsu, K.J., Li, J.L., Chen, H.H., Wang, Q.C., Sun, S., Sengor, A.M.C., 1990. Tectonics of South China:key to understanding west Pacific geology. Tectonophysics 183:9-39
    78.Indares, A. D., 2003. Metamorphic textures and P-T evolution of high-P granulites from the Lelukuau terrane, NE Grenville Province. Journal of metamorphic Geology 21: 35-48
    79.Jowett, E. C, 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer: GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27-29, 1991), Program with Abstracts 16, A62
    80.Koepke, J., Seidel, E., Kreuzer, H., 2002. Ophiolites on the Southern Aegean islands Crete, Karpathos and Rhodes: composition, geochronology and position within the ophiolite belts of the Eastern Mediterranean. Lithos 65: 183- 203
    81.Kryza, R., Pin, C, 2002. Mafic rocks in a deep-crustal segment of the Variscides (the Gory Sowie, SW Poland): evidence for crustal contamination in an extensional setting. International Journal of Earth Science (Geol Rundsch) 91:1017-1029.
    82.Kuniyoshi, S., Liou, J. G, 1974. Burial metamorphism of the Karmutsen volcanic rocks, northeastern Vancouver Island, British Columbia. American Journal of Science 276: 1096-1119
    83.Laird, J., Albee, A.L., 1981. Pressure, temperature, and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. American Journal of Science 281: 127-175.
    84.Lan, C-Y., Chung, S-L., Shen, J. J-S., Lo, C-H., Wang, P-L., Hoa, T. T., Thanh, H. H., Mertzman, S. A., 2000. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam. Journal of Asian Earth Sciences 18: 267-280
    85.Leake, B.E., Woolley, A.R., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumecher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G, 1997. Nomenclature of amphiboles. Report of the subcommittee on amphiboles of International Mineralogical Association Com-mission on new minerals and minerals names. Mineralogical Magazine 61: 295-321.
    86.Lepoup, P. H., Lacassin, R., Tapponnier, P., Scharer, U., Zhong, D. L., Liu, X. H., Zhang, L. S., Ji, S. C, Trinh, P. T., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251: 3-84.
    87.Li X.H., McCulloch M.T., 1996. Secular variations in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze block: evidence for a Proterozoic continental collision in southeast China. Precambrian Research, 76:67-76
    88.Li, X-H., Zhou, H-W., Chung, S-L., Ding, S-J., Liu, Y., Lee, C-Y., Ge, W-C, Zhang, Y-M. and Zhang, R-J., 2002. Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance. The Island Arc 11: 193-205
    89.Liati, A., Gebauer, D. and Fanning, C.M., 2003. The youngest basic oceanic magmatism in the Alps (Late Cretaceous; Chiavenna unit, Central Alps): geochronological constraints and geodynamic significance. Contributions to Mineralogy and Petrology 146:144-158
    90.Liou, J. G, and Maruyama, S., 1987. Parageneses and compositions of amphiboles from Franciscan jadeite-glaucophane type facies series metabasites at Cazadero, California. Journal of Metamorphic Geology 5: 371-395
    91.Liou, J. G, Maruyama, S. and Cho, M., 1985. Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism. Mineralogical Magzine 49:321-333
    92.Lo'pez Sa'nchez-Vizcai'no, V., Go'mez-Pugnaire, M.T., Azor, A., Ferna'ndez-Soler, J. M., 2003. Phase diagram sections applied to amphibolites: a case study from the Ossa-Morena/Central Iberian Variscan suture (Southwestern Iberian Massif). Lithos 68: 1 - 21.
    93.Ma,C-Q.,Li,Z-C.,Ehlers,C.,Yang,K-G.,Wang,R-J.,1998.A post-collisional magmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone,east-central China.Lithos 45:431-456
    94.Magganas, A. C, 2002. Constraints on the petrogenesis of Evros ophiolite extrusives, NE Greece. Lithos 65: 165- 182
    95.Magganas, A.C., 1990. Relict minerals of metavolcanic and meta-pyroclastic rocks from the Circum-Rhodope Belt in the area of Thrace, Greece. Geologica Rhodopica 2: 251-262.
    96.Mahe'o, G, Bertrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chemical Geology 203: 273-303.
    97.Mark, G., Foster, D. R. W., 2000. Magmatic-hydrothermal albite-actinolite-apatite-rich rocks from the Cloncurry district, NW Queensland, Australia. Lithos 51: 223-245
    98.Maruyama, S., Suzuki, K., Liou, J.G., 1983. Greenschist-amphibolite transition equilibria at low pressures. Journal of Petrology 24: 585-604.
    99.Mason, R., 1990. Petrology of the metamorphic rocks (the second Edition). The Academic Division of Unwin Hyman Ltd, London, UK, pp: 1-230
    100.Massonne, H.J., Schreyer, W., 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite,and quartz.Contributions to Mineralogy and Petrology 96:212 -224
    101.Metcalfe, I., Shergold, I.H., Li, Z.X., 1993. IGCP 321 Gondwana dispersion and Asian accretion: fieldwork on Hainan Island. Episodes 16: 443-447.
    102.Min, K., Cho, M., 1998. Metamorphic evolution of the northwestern Ogcheon metamorphic belt, South Korea. Lithos 43: 31-51
    103.Molina, J.F., Poli, S., 1998. Singular equilibria in paragonite blues-chists, amphibolites and eclogites. Journal of Petrology 39: 1325- 1346.
    104.Nehlig, P. & Juteau, T., 1988. Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman). Tectonophysics 151: 199-221
    105.Niida, K., Green, D. H., 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology 135: 18-40.
    106.Otten, M.T., 1984. The origin of brown hornblende in the Artfjal-let gabbro and dolerites. Contributions to Mineralogy and Petrology 86: 189-199.
    107.Pattison, D. R. M. 2003. Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase ± quartz-bearing metabasites with respect to the amphibolite and granulite facies. Journal of Metamorphic Geology 21: 21-34
    108.Peltonen, P., Kontinen, A., and Huhma, H., 1998. Petrogenesis of the Mantle Sequence of the Jormua Ophiolite ( Finland): Melt Migration in the Upper
    Mantle during Palaeoproterozoic Continental Break-up. Journal of Petrology 39: 297-329.
    109.Plyusnina, L. P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contributions to Mineralogy and Petrology 80: 140-146.
    110.Potel, S., Schmidt, S. Th., Capitani, C-de., 2002. Compositions of pumpellyite, epidote and chlorite from New Caledonia - How important are metamorphic grade and whole-rock composition? Schweizerische Mineralogische und Petrographische Mitteilungen 82: 229-252.
    111.Puga, E., Nieto, J. M., D'iaz de Federico, A., Bodinier, J. L., Morten, L., 1999. Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen' Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos 49: 23-56.
    112.Raase, P., 1974. Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contributions to Mineralogy and Petrology 45: 231-236.
    113.Rebay, G, Spalla, M. I., 2001. Emplacement at granulite facies conditions of the Sesia-Lanzo metagabbros: an early record of Permian rifting? Lithos 58: 85-104.
    114.Robertson, A. H. F., 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65(1-2):1-67
    115.Schmidt, M.W., 1992. Amphibole composition in tonalite as a function pressure: an experimental calibration of the Al-in hornblende barometer. Contributions to Mineralogy and Petrology 110:304 ~ 310.
    116.Schmincke, H-U., Klu"gel, A., Hansteen, T. H., Hoernle, K., Bogaard, Paul van den., 1998. Samples from the Jurassic ocean crust beneath Gran Canaria, La Palma and Lanzarote (Canary Islands). Earth and Planetary Science Letters 163: 343-360.
    117.Shervais, J. W., Dennis, A. J., Mcgee, J. J. and Secor, D., 2003. Deep in the Heart of Dixie: Pre-Alleghanian Eclogite and HP Granulite Metamorphism in the Carolina Terrane, South Carolina, USA. Journal of Metamorphic Geology 21: 65-80
    118.Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths, Monograph Series I. Mineralogical Society of America, Wanshington DC.
    119.Spooner, E. T. C, Fyfe, W. S., 1973. Sub-seafloor metamorphism, heat and mass transfer. Contributions to Mineralogy and Petrology 42: 287-304
    120.Springer, R. K. and Day, H. W., 2002. Hydrothermal amphibole in subgreenschist facies mafic rocks, western Sierra Nevada, California. Schweizerische Mineralogische und Petrographische Mitteilungen 82: 241-354.
    121.Stakes, D., Me'vel, C, Cannat, M. and Chaput, T., 1991. Metamorphic stratigraphy of Hole 735B, in: R.P.a.R. Von Herzen (Ed.), Proc. ODP, Sci. Results 118, Ocean Drilling Program, College Station, TX, pp:153-180.
    122.Thompson, A. B., 2001. Clockwise P-T paths for crustal melting and H_2O recycling in granite source regions and migmatite terrains. Lithos 56: 33-45
    123.Tournon, J., Triboulet, C. and Azema., 1989. Amphibolites from Panama: anticlockwise P-T paths from a Pre-upper Cretaceous metamorphic basement in Isthmian Central America. Journal of Metamorphic Geology 7: 539-546
    124.Triboulet, C, Andren, C, 1988. Controls on P-T-t deformation path from amphibole zonation during progressive metamorphism of basic rocks. Journal of Metamorphic Geology (6): 117 ~ 133
    125.Triboulet, C, 1992. The (Na-Ca) amphibole- albite- chlorite-epidote-qurtz geothermobarometer in the system S-A-F-M-C-N- H_2O. I. An empirical calibration. Journal of Metamorphism Geology 10: 557-566
    126.Tribuzio, R., Tiepolo, M., Vannucci, R., Bottazzi, P., 1999. Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contributions to Mineralogy and Petrology 134: 123-133.
    127.Tsujimori, T. and Liou, J.G., 2004. Metamorphic evolution of kyanite-staurolite-bearing epidote-amphibolite from the Early Palaeozoic Oeyama belt, SW Japan. Journal of Metamorphic Geology 22: 301-313
    128.Valley, P. M., Whitney, D. L., Paterson, S. R., Miller, R. B. and Alsleben, H., 2003. Metamorphism of the deepest exposed arc rocks in the Cretaceous to Paleogene Cascades belt, Washington: evidence for large-scale vertical motion in a continental arc. Journal of Metamorphic Geology 21: 203-220
    129.Vogl, J.J., 2003. Thermal-baric structure and P-T history of the Brooks Range metamorphic core, Alaska. Journal of Metamorphic Geology 21: 269-284
    130.Vo1kova, N.I., Budanov, V.I., 1999. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: seamount volcanism and accretionary tectonics. Lithos 47: 201-216
    131.Volkova, N.I., Stupakov, S.I., Simonov, V.A., Tikunov, Yu.V., 2004. Petrology of metabasites from the Terekta Complex as a constituent of ancient accretionary prism of Gorny Altai. Journal of Asian Earth Sciences 23: 705-713
    132.Wang, H-Z., 1986. Geotectonic development of China. In: Yang, Z-Y., et al. (Editors), The geology of China. Claredon, Oxford, pp. 238-272.
    133.Wang, Z-H., 2002. The origin of the Cretaceous gabbros in the Fujian coastal region of SE China: implications for deformation-accompanied magmatism. Contributions to Mineralogy and Petrology 144:230 -240
    134.Whitney, D. L., Miller, R. B. & Paterson, S. R., 1999. P-T-t constraints on mechanisms of vertical tectonic motion in a contractional orogen. Journal of Metamorphic Geology 17: 75-90.
    135.Willner, A. P., Glodny, J., Gerya, T.V., Godoy, E., Massonne, H.-J., 2004. A counterclockwise PTt path of high-pressure/low-temperature rocks from the Coastal Cordillera accretionary complex of south-central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75: 283-310.
    136.Xu,D.R.,Nonna-Bakun-Czubarow.,Li,P.C.,Robert-Bachlinsk.,Xia.B.,Chen.G.H.,C hen.T.2005.TheGeochemistry and Sr-Nd isotope systematics from the Tunchang area metabasites in the East-central Hainan Island, China. Mineralogy and Petrology (in press)
    137.Xu, X-S., Dong, C-W., Li, W-X., Zhou, X-M., 1999. Late Mesozoic intrusive complexes in the coastal area of Fujian,SE China:the significance of the gabbro-diorite-granite association. Lithos 46:299 -315
    138.Zhang, Q., Zhou, D.J., Zhao, D.S., Huang, Z.X., Han, S., Jia, A.Q., Dong, J.Q., 1994. Ophiolites of the Hengduan Mountains, China: Characteristics and tectonic settings. Journal of Southeast Asian Earth Sciences 9: 335 - 344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700