基于CYP多态性的氯吡格雷-质子泵抑制剂相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为确定细胞色素P450 2C19CYP2C19)在甘肃地区回族藏族汉族人群中的基因型及等位基因分布特征,并考察性别对其基因多态性的影响。本文通过选取甘肃地区回族藏族汉族无亲缘关系健康人,采用多聚酶链反应-限制性片段长度多态性(PCR-RFLP)法分析CYP2C19基因多态性。本研究中检测到CYP2C19的六个基因型,其分布在男女间无显著差异,但在三个民族间分布差异显著(P<0.05)。本研究表明在甘肃地区回族藏族汉族健康人群中,CYP2C19的基因型分布有显著差异,而性别对CYP2C19遗传多态性无显著影响。
     由于与细胞色素P450酶的相互作用,使用奥美拉唑会显著降低氯吡格雷抗血小板效力。因为大多PPIs由CYP2C19代谢,只是程度有所不同,我们假设已报道的负面奥美拉唑–氯吡格雷药物相互作用可能不是由类效应导致。在建立CYP2C19基因分型方法和甘肃地区主要聚居人口CYP2C19遗传多态性数据考察的基础上,本研究分别考察了CYP2C19遗传多态性对非ST段抬升急性冠脉综合症(NSTE ACS)患者冠脉支架植入术后合用2个质子泵抑制剂(PPIs) (奥美拉唑和泮托拉唑)的氯吡格雷抗血小板效应的影响。分别对行冠脉支架植入术后接受奥美拉唑或泮托拉唑20毫克治疗的241名和232名NSTE ACS患者进行前瞻性、随机研究。患者同时接受100毫克阿司匹林和75毫克氯吡格雷治疗。采用血小板反应活性指数(PRI)血管刺激磷蛋白(VASP)以测定氯吡格雷效应并以二磷酸腺苷(ADP)–诱导聚集指示血小板反应活性(ADP-Ag)。1个月后,以PRI VASP为指标,EMhomo组患者的血小板对氯吡格雷的反应显著好于PM组患者:36±20% vs50±17% (p=0.007)。与EMhomo组相比,在PM组中我们发现了更多的氯吡格雷无效者:44% vs 23% (p=0.04),优势比:2.6 (95%置信区间: 1.2 to 6.2)。相似地,以ADP-Ag为指标,EMhomo和PM组间血小板反应活性存在显著性差异:42.2±18%和62.7±15% (p=0.04)。结果提示,对于接受氯吡格雷治疗的患者而言,与奥美拉唑相比应优先使用泮托拉唑以避免任何潜在与CYP2C19相关的负面相互作用。
We identify the genotype and allele distribution feature of cytochrome P450 2C19 (CYP2C19) in Chinese Hui,Zang and Han populations from Gansu area, and investigate the effects of gender on genetic polymorphism of CYP2C19 in these populations. The CYP2C19 genotypes of the unrelated healthy Chinese Hui,Zang and Han population subjects were assessed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Six different CYP2C19 genotypes were observed in this study. There was no significant difference between male and female, but significant difference among three Chinese populations (P<0.05). Population has significant effect on genetic polymorphism of CYP2C19 in Chinese Hui,Zang and Han populations from Gansu area, and gender hasn’t.
     Using of omeprazole to significantly decrease the clopidogrel antiplatelet effect because of cytochrome P450 interaction. Because all PPIs are metabolized by CYP2C19, but to a varying degree, we hypothesized that the reported negative omeprazole–clopidogrel drug interaction may not be caused by a class effect. On the bases of method for genotyping of CYP2C19 and the CYP2C19 polymorphisms of the major populations in Gansu area, this study sought to investigate the effect of the CYP2C19 polymorphisms on platelet response to clopidogrel with 2 proton pump inhibitors (PPIs) (omeprazole and pantoprazole) after coronary stenting for non–ST-segment elevation acute coronary syndrome (NSTE ACS). A total of 241 or 232 patients undergoing coronary stenting for NSTE ACS were prospectively included and taken omeprazole or pantoprazole 20 mg. They received at discharge 100-mg aspirin and 75-mg clopidogrel. Platelet reactivity index (PRI) vasoactive stimulated phosphoprotein (VASP) was used to assess clopidogrel response and adenosine diphosphate (ADP)–induced aggregation for platelet reactivity (ADP-Ag). After 1 month, patients belonging to EMhomo group had a significantly better platelet response to clopidogrel as assessed with the PRI VASP: 36±20%versus50±17% (p =0.007). We identified more clopidogrel nonresponders in the PM group than in the EMhomo group: 44%versus23%(p=0.04), odds ratio: 2.6 (95% confidence interval: 1.2 to 6.2). Similly, we observed significant difference in platelet reactivity with ADP-Ag between the EMhomo and PM groups:42.2±18% and 62.7±15%, respectively(p=0.04). The present findings suggest the preferential use of pantoprazole compared with omeprazole in patients receiving clopidogrel to avoid any potential negative interaction with CYP2C19.
引文
[1] Adams, P. C., Badimon, J. J., Badimon, L., Chesebro, J. H., & Fuster, V. (1987). Role of platelets in atherogenesis: Relevance to coronary arterial restenosis after angioplasty. Cardiovasc Clin 18(1), 49?71.
    [2] Le Breton, H, Plow, E. F., & Topol, E. J. (1996). Role of platelets in restenosis after percutaneous coronary revascularization. J Am Coll Cardiol 28(7), 1643?1651.
    [3] Steinhubl, S., & Moliterno, D. J. (2005). The role of the platelet in the pathogenesis of atherothrombosis. Am J Cardiovasc Drugs 5(6), 399?408.
    [4] Savi, P, Beauverger, P, Labouret, C., Delfaud,M, Salel, V, Kaghad, M., et al. (1998). Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett 422(3), 291?295.
    [5] Savi, P., Nurden, P., Nurden, A. T., Levy-Toledano, S., & Herbert, J. M. (1998). Clopidogrel: A review of its mechanism of action. Platelets 9(3–4), 251?255.
    [6] Herbert, J. M., & Savi, P. (2003). P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3(2), 113?122.
    [7] CAPRIE Steering Committee (1996). A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet348(9038), 1329?1339.
    [8] Smith, S. C., Allen, J., Blair, S. N., Bonow, R. O., Brass, L. M., Fonarow, G. C., et al. (2006). AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: Endorsed by the National Heart, Lung, and Blood Institute. Circulation 113(19), 2363?2372.
    [9] Smith, S.M., Judge, H. M., Peters, G., Armstrong, M., Fontana, P., Gaussem, P., et al. (2006). Common sequence variations in the P2Y12 and CYP3A5 genes do not explain the variability in the inhibitory effects of clopidogreltherapy. Platelets 17(4), 250?258.
    [10] King, S. B., Smith, S. C., Hirshfeld, J.W., Jacobs, A. K., Morrison, D. A., Williams, D. O., et al. (2007). Focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention. Circulation 117(2), 261?295 [Erratum, Circulation 2008;117 (6):e161].
    [11] Gurbel, P. A., Bliden, K. P., Hiatt, B. L., & O'Connor, C. M. (2003). Clopidogrel for coronary stenting: Response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107(23), 2908?2913.
    [12] Gurbel, P. A., Cummings, C. C., Bell, C. R., Alford, A. B., Meister, A. F., Serebruany, V. L., et al. (2003). Onset and extent of platelet inhibition by clopidogrel loading in patients undergoing elective coronary stenting: The Plavix Reduction Of New Thrombus Occurrence (PRONTO) trial. Am Heart J 145(2), 239?247.
    [13] O'Donoghue, M., & Wiviott, S. D. (2006). Clopidogrel response variability and future therapies: Clopidogrel: Does one size fit all? Circulation 114(22), e600?e606.
    [14] Wang, T. H., Bhatt, D. L., & Topol, E. J. (2006). Aspirin and clopidogrel resistance: an emerging clinical entity. Eur Heart J 27(6), 647?654.
    [15] Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Alfonso, F., Macaya, C., Bass, T. A., et al. (2007). Variability in individual responsiveness to clopidogrel: Clinical implications, management, and future perspectives. J Am Coll Cardiol 49(14), 1505?1516.
    [16] Angiolillo, D. J., Shoemaker, S. B., Desai, B., Yuan, H., Charlton, R. K., Bernardo, E., et al. (2007). Randomized comparison of a high clopidogrel maintenance dose in patients with diabetes mellitus and coronary arterydisease: Results of the Optimizing Antiplatelet Therapy in Diabetes Mellitus (OPTIMUS) study. Circulation 115(6), 708?716.
    [17] Matetzky, S., Shenkman, B., Guetta, V., Shechter, M., Bienart, R., Goldenberg, I., et al. (2004). Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic vents in patients with acute myocardial infarction. Circulation 109(25), 3171?3175.
    [18] Gurbel, P. A., Bliden, K. P., Hayes, K. M., Yoho, J. A., Herzog, W. R., & Tantry, U. S. (2005). The relation of dosing to clopidogrel responsiveness and the incidence of high post treatment platelet aggregation in patients undergoing coronary stenting. J Am Coll Cardiol 45(9), 1392?1396.
    [19] Gurbel, P. A., Bliden, K. P., Samara, W., Yoho, J. A., Hayes, K., Fissha, M. Z., et al. (2005). Clopidogrel effect on platelet reactivity in patients with stent thrombosis: Results from the CREST Study. J Am Coll Cardiol 46(10), 1827?1832.
    [20] Hochholzer, W., Trenk, D., Bestehorn, P., Fischer, B., Valina, C. M., Ferenc, M., et al. (2006). Impact of the degree of peri-interventional platelet inhibition after loading with clopidogrel on early clinical outcome of elective coronary stent placement. J Am Coll Cardiol 48(9), 1742?1750.
    [21] Buonamici, P., Marcucci, R., Migliorini, A., Gensini, G. F., Santini, A., Paniccia, R., et al. (2007). Impact of platelet reactivity after clopidogrel administration on drug eluting stent thrombosis. J Am Coll Cardiol 49(24), 2312?2317.
    [22] Ernesto, O., Martin, H., & Ronald, D. (2007). Clopidogrel resistance. Heart Lung Circ 16(3), S17?S28.
    [23] Savi, P., Herbert, J. M., Pflieger, A. M., Dol, F., Delebassee, D., Combalbert, J., et al. (1992). Importance of hepatic metabolism in the anti-aggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol 44(3), 527?532.
    [24] Savi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger,Y., et al. (1994). The anti-aggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A. Thromb Haemost 72(2), 313?317.
    [25] Woulfe, D., Yang, J., & Brass, L. (2001). ADP and platelets: The end of the beginning. J Clin Invest 107(12), 1503?1505.
    [26] Pereillo, J. M., Maftouh, M., Andrieu, A., Uzabiaga, M. F., Fedeli, O., Savi, P., et al. (2001). Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos 30(11), 1288?1295.
    [27] Savi, P., Labouret, C., Delesque, N., Guette, F., Lupker, J., & Herbert, J. M. (2001). P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 283(2), 379?383.
    [28] Marteau, F., Le Poul, E., Communi, D., Communi, D., Labouret, C., Savi, P., et al. (2003). Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64(1), 104?112.
    [29] Savi, P., Zachayus, J. L., Delesque-Touchard, N., Labouret, C., Caroline, H., Uzabiaga, M. F., et al. (2006). The active metabolite of clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A 103(29), 11069?11074.
    [30] Thebault, J. J., Kieffer, G., & Cariou, R. (1999). Single-dose pharmacodynamics of clopidogrel. Semin Thromb Hemost 25(2), 3?8.
    [31] Thebault, J. J., Kieffer, G., Lowe, G. D., Nimmo, W. S., & Cariou, R. (1999). Repeated dose pharmacodynamics of clopidogrel in healthy subjects. Semin Thromb Hemost 25(2), 9?14.
    [32] Müller, I., Seyfarth, M., Rüdiger, S., Wolf, B., Pogatsa-Murray, G., Sch?mig, A., et al. (2001). Effect of a high loading dose of clopidogrel on platelet function in patients undergoing coronary stent placement. Heart 85(1), 92?93.
    [33] Von Beckerath, N., Taubert, D., Pogatsa-Murray, G., Sch?mig, E., Kastrati, A., & Sch?mig, A. (2005). Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: Results ofthe ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) Trial. Circulation 112(19), 2946?2950.
    [34] Von Beckerath, N., Von Beckerath, O., Koch, W., Eichinger, M., Sch?mig, A., & Kastrati, A. (2005). P2Y12 gene H2 haplotype is not associated with increased adenosine diphosphate induced platelet aggregation after initiation of clopidogrel therapy with a high loading dose. Blood Coagul Fibrinolysis 16(3), 199?204.
    [35] Nguyen, T. A., Diodati, J. G., & Pharand, C. (2005). Resistance to clopidogrel: A review of the evidence. J Am Coll Cardiol 45(8), 1157?1164.
    [36] Pinto Slottow, T. L., Bonello, L., Gavini, R., Beauzile, P., Sushinsky, S. J., Scheinowitz,M., et al. (2009). Prevalence of aspirin and clopidogrel resistance among patients with and without drug-eluting stent thrombosis. Am J Cardiol 104(4), 525?530.
    [37] Michelson, A. D., Frelinger, A. L., III, & Furman, M. I. (2006). Current options in platelet function testing. Am J Cardiol 98(10A), 4N?10N.
    [38] Michelson, A. D. (2009). Methods for the measurement of platelet function. Am J Cardiol 103(3 Suppl), 20A?26A.
    [39] Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. Lancet 360(9340), 1155?1162.
    [40] Wilkinson, G. R. (2005). Drug metabolism and variability among patients in drug response. N Engl J Med 352(21), 2211?2221.
    [41] Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Ramírez, C., Cavallari, U., Trabetti, E., et al. (2005). Lack of association between the P2Y12 receptor gene polymorphism and platelet response to clopidogrel in patients with coronary artery disease. Thromb Haemost 116(60), 491?497.
    [42] Clarke, T. A., & Waskell, L. A. (2003). The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos 31(1), 53?59.
    [43] Wrighton, S. A., Schuetz, E. G., Thummel, K. E., Shen, D. D., Korzekwa, K. R., & Watkins, P. B. (2001). The human CYP3A subfamily: Practical considerations. Drug Metab Rev 32(3–4), 339?361.
    [44] Evans, W. E., & McLeod, H. L. (2003). Pharmacogenomics: Drug disposition, drug targets, and side effects. N Engl J Med 348(6), 538?549.
    [45] Kuehl, P., Zhang, J., Lin, Y., Lamba, J., Assem, M., Schuetz, J., et al. (2001). Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(6), 383?391.
    [46] Lau, W. C., Waskell, L. A., Watkins, P. B., Neer, C. J., Horowitz, K., & Hopp, A. S. (2003). Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: A new drug–drug interaction. Circulation 107(1), 32?37.
    [47] Lau, W. C., Gurbel, P. A., Watkins, P. B., Neer, C. J., Hopp, A. S., Carville, D. G., et al. (2004). Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation 109(2), 166?171.
    [48] Farid, N. A., Payne, C. D., Small, D. S., Winters, K. J., Ernest, C. S., II, Brandt, J. T., et al. (2007). Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther 81(5), 735?741.
    [49] Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Ramírez, C., Cavallari, U., Trabetti, E., et al. (2006). Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arterioscler Thromb Vasc Biol 26(8), 1895?1900.
    [50] Fontana, P., Hulot, J. S., De Moerloose, P., & Gaussem, P. (2007). Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects. J Thromb Haemost 5(10), 2153?2155.
    [51] Kim, K. A., Park, P.W., Hong, S. J., & Park, J. Y. (2008). The effect ofCYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel: A possible mechanism for clopidogrel resistance. Clin Pharmacol Ther 84(2), 236?242.
    [52] Kim, K. A., Park, P. W., & Park, J. Y. (2008). Effect of CYP3A5*3 genotype on the pharmacokinetics and antiplatelet effect of clopidogrel in healthy subjects. Eur J Clin Pharmacol 64(6), 589?597.
    [53] Suh, J. W., Koo, B. K., Zhang, S. Y., Park, K. W., Cho, J. Y., Jang, I. J., et al. (2006). Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ 174(12), 1715?1722.
    [54] Hulot, J. S., Bura, A., Villard, E., Azizi, M., Remones, V., Goyenvalle, C., et al. (2006). Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108(7), 2244?2247.
    [55] Brandt, J. T., Close, S. L., Iturria, S. J., Payne, C. D., Farid, N. A., Ernest, C. S., II, et al. (2007). Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5(12), 2429?2436.
    [56] Umemura, K., Furuta, T., & Kondo, K. (2008). The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics to an active metabolite of clopidogrel in healthy subjects. J Thromb Haemost 6(8), 1439?1441.
    [57] Giusti, B., Gori, A. M., Marcucci, R., Saracini, C., Sestini, I., Paniccia, R., et al. (2007). Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 +12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics 17(12), 1057?1064.
    [58] Frere, C., Cuisset, T., Morange, P. E., Quilici, J., Camoin-Jau, L., Saut, N., et al. (2008). Effect of cytochrome P450 polymorphisms on platelet reactivity after treatment with clopidogrel in acute coronary syndrome.Am J Cardiol 101(8), 1088?1093.
    [59] Trenk, D., Hochholzer, W., Fromm, M. F., Chialda, L. E., Pahl, A., Valina, C. M., et al. (2008). Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol 51(20), 1925?1934.
    [60] Trenk, D., Hochholzer, W., Frundi, D., Stratz, C., Valina, C. M., Bestehorn, H. P., et al. (2008). Impact of cytochrome P450 3A4-metabolized statins on the antiplatelet effect of a 600-mg loading dose clopidogrel and on clinical outcome in patients undergoing elective coronary stent placement. Thromb Haemost 99(1), 174?181.
    [61] Collet, J. P., Hulot, J. S., Pena, A., Villard, E., Esteve, J. B., Silvain, J., et al. (2009). Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: A cohort study. Lancet 373((9660), 309?317.
    [62] Mega, J. L., Close, S. L., Wiviott, S. D., Shen, L., Hockett, R. D., Brandt, J. T., et al. (2009). Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med 360 (4), 354?362.
    [63] Simon, T., Verstuyft, C., Mary-Krause, M., Quteineh, L., Drouet, E., Méneveau, N., et al. (2009). Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 360(4), 363?375.
    [64] Sibbing, D., Stegherr, J., Latz, W., Koch, W., Mehilli, J., D?rrler, K., et al. (2009). Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur Heart J 30(8), 916?922.
    [65] Giusti, B., Gori, A. M., Marcucci, R., Saracini, C., Sestini, I., Paniccia, R., et al. (2009). Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am J Cardiol 103(6), 806?811.
    [66] Neubauer, H., Günesdogan, B., Hanefeld, C., Spiecker, M., & Mügge, A.(2003). Lipophilic statins interfere with the inhibitory effects of clopidogrel on platelet function: a flow cytometry study. Eur Heart J 24(19), 1744?1749.
    [67] Müller, I., Besta, F., Schulz, C., Li, Z., Massberg, S., & Gawaz, M. (2003). Effects of statins on platelet inhibition by a high loading dose of clopidogrel. Circulation108(18), 2195?2197.
    [68] Mitsios, J. V., Papathanasiou, A. I., Rodis, F. I., Elisaf, M., Goudevenos, J. A., & Tselepis, A. D. (2004). Atorvastatin does not affect the antiplatelet potency of clopidogrel when it is administered concomitantly for 5 weeks in patients with acute coronary syndromes. Circulation 109(11), 1335?1338.
    [69] Angiolillo, D. J., Fernández-Ortiz, A., Bernardo, E., Ramírez, C., Sabaté,M., Ba?uelos, C., et al. (2004). High clopidogrel loading dose during coronary stenting: Effects on drug response and interindividual variability. Eur Heart J 25(21), 1903?1910.
    [70] Vinholt, P., Poulsen, T. S., Korsholm, L., Kristensen, S. R., Hallas, J., Damkier, P., et al. (2005). The antiplatelet effect of clopidogrel is not attenuated by statin treatment in stable patients with ischemic heart disease. Thromb Haemost 94(2), 438?443.
    [71] Hochholzer, W., Trenk, D., Frundi, D., Blanke, P., Fischer, B., Andris, K., et al. (2005). Time dependence of platelet inhibition after a 600-mg loading dose of clopidogrel in a large, unselected cohort of candidates for percutaneous coronary intervention. Circulation 111(20), 2560?2564.
    [72] Brophy, J. M., Babapulle, M. N., Costa, V., & Rinfret, S. (2006). A pharmacoepidemiology study of the interaction between atorvastatin and clopidogrel after percutaneous coronary intervention. Am Heart J 152(2), 263?269.
    [73] Saw, J., Steinhubl, S. R., Berger, P.B., Kereiakes,D. J., Serebruany, V. L., Brennan,D., etal. (2003). Lack of adverse clopidogrel atorvastatin clinical interaction from secondary analysis of a randomized, placebo-controlledclopidogrel trial. Circulation 108(8), 921?924.
    [74] Lim, M. J., Spencer, F. A., Gore, J. M., Dabbous, O. H., Agnelli, G., Kline-Rogers, E. M., et al. (2005). Impact of combined pharmacologic treatment with clopidogrel and a statin on outcomes of patients with non-ST-segment elevation acute coronary syndromes: Perspectives from a large multinational registry. Eur Heart J 26(11), 1063?1069.
    [75] Wienbergen, H., Gitt, A. K., Schiele, R., Juenger, C., Heer, T., Meisenzahl, C., et al. (2003). Comparison of clinical benefits of clopidogrel therapy in patients with acute coronary syndromes taking atorvastatin. Am J Cardiol 92(3), 285?288.
    [76] Mukherjee, D., Kline-Rogers, E., Fang, J., Munir, K., & Eagle, K. A. (2005). Lack of clopidogrel-CYP3A4 statin interaction in patients with acute coronary syndrome. Heart 91(1), 23?26.
    [77] Cannon, C. P., Braunwald, E., McCabe, C. H., Rader, D. J., Rouleau, J. L., Belder, R., et al. (2004). PROVE-IT-TIMI 22 Investigators Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350(15), 1495?1504.
    [78] Saw, J., Brennan, D. M., Steinhubl, S. R., Bhatt, D. L., Mak, K. H., Fox, K., et al. (2007). Lack of evidence of a clopidogrel–statin interaction in the CHARISMA trial. J Am Coll Cardiol 50(4), 291?295.
    [79] Blagojevic, A., Delaney, J. A., Lévesque, L. E., Dendukuri, N., Boivin, J. F., & Brophy, J.M. (2009). Investigation of an interaction between statins and clopidogrel after percutaneous coronary intervention: a cohort study. Pharmacoepidemiol Drug Saf 18(5), 362?369.
    [80] Bhatt, D. L., Scheiman, J., Abraham, N. S., Antman, E. M., Chan, F. K., Furberg, C. D., et al. (2008). ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use. Circulation 118(18), 1894?1909.
    [81] Tan, V. P., Yan, B. P., Kiernan, T. J., & Ajani, A. E. (2009). Risk and management of upper gastrointestinal bleeding associated with prolongeddual-antiplatelet therapy after percutaneous coronary intervention. Cardiovasc Revasc Med(1), 36?44.
    [82] Ishizaki, T., & Horai, Y. (1999). Review article: cytochrome P450 and the metabolism of proton pump inhibitors—Emphasis on rabeprazole. Aliment Pharmacol Ther 13(3), 27?36.
    [83] Horn, J. (2004). Review article: Relationship between the metabolism and efficacy of proton pump inhibitors—Focus on rabeprazole. Aliment Pharmacol Ther 20(Suppl 6), 11?19.
    [84] Gilard, M., Arnaud, B., Le Gal, G., Abgrall, J. F., & Boschat, J. (2006). Influence of omeprazole on the antiplatelet action of clopidogrel associated to aspirin. J Thromb Haemost 4(11), 2508?2509.
    [85] Gilard, M., Arnaud, B., Cornily, J. C., Le Gal, G., Lacut, K., Le Calvez, G., et al. (2008). Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: The randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol 51(3), 256?260.
    [86] Siller-Matula, J. M., Spiel, A. O., Lang, I. M., Kreiner, G., Christ, G., & Jilma, B. (2009). Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am Heart J 157(1), 148.e1-5.
    [87] Ho, P. M., Maddox, T. M., Wang, L., Fihn, S. D., Jesse, R. L., Peterson, E. D., et al. (2009). Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301(9), 937?944.
    [88] Juurlink, D. N., Gomes, T., Ko, D. T., Szmitko, P. E., Austin, P. C., Tu, J. V., et al. (2009). A population-based study of the drug interaction between proton pump inhibitors and clopidogrel. CMAJ 180(7), 713?718.
    [89] Aubert, R. E., Epstein, R. S., Teagarden, J. R., Xia, F., Yao, J., Desta, Z., et al. (2008). Proton pump inhibitors effect on clopidogrel effectiveness: The Clopidogrel Medco Outcomes Study (Abstract). Circulation 118, S_815.
    [90] Dunn, S. P., Macaulay, T. E., Brennan, D.M., Campbell, C. L., Charnigo, R.J., Smyth, S. S., et al. (2008). Baseline proton pump inhibitor use is associated with increased cardiovascular eventswith andwithout the use of clopidogrel in the CREDOtrial.Circulation 118, 815A (abstract).
    [91] O'Donoghue, M. L., Braunwald, E., Antman, E. M., Murphy, S. A., Bates, E. R., Rozenman, Y., et al. (2009). Pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or without a proton-pump inhibitor: An analysis of two randomized trials. Lancet 374(9694), 989?997.
    [92] Wiviott, S. D., Trenk,D., Frelinger, A. L., O'Donoghue,M., Neumann, F. J.,Michelson, A. D., et al. (2007). Prasugrel compared with high loading- and maintenance-dose clopidogrel in patients with planned percutaneous coronary intervention: the Prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysis in Myocardial Infarction 44 trial. Circulation 116(25), 2923?2932.
    [93] Wiviott, S. D., Braunwald, E., McCabe, C. H., Montalescot, G., Ruzyllo,W., Gottlieb, S., et al. (2007). Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357(20), 2001?2015.
    [94] Wiviott, S. D., Braunwald, E., McCabe, C. H., Horvath, I., Keltai, M., Herrman, J. P., et al. (2008). Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITONTIMI 38 trial: A subanalysis of a randomised trial. Lancet 371(9621), 1353?1363.
    [95] Siller-Matula, J. M., Lang, I., Christ, G., & Jilma, B. (2008). Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol 52(19), 1557?1563.
    [96] Jeremias, A., Sylvia, B., Bridges, J., Kirtane, A. J., Bigelow, B., Pinto, D. S., et al. (2004). Stent thrombosis after successful sirolimus-eluting stent implantation. Circulation 109(16), 1930?1932.
    [97] Iakovou, I., Schmidt, T., Bonizzoni, E., Ge, L., Sangiorgi, G. M., Stankovic, G., et al. (2005). Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293(17), 2126?2130.
    [98] Spertus, J. A., Kettelkamp, R., Vance, C., Decker, C., Jones, P. G., Rumsfeld, J. S., et al. (2006). Prevalence, predictors, and outcomes of premature discontinuation of thienopyridine therapy after drug-eluting stent placement: Results from the PREMIER registry. Circulation 113(24), 2803?2809.
    [99] Silber, S., Albertsson, P., Avilés, F. F., Camici, P. G., Colombo, A., Hamm, C., et al. (2005). Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J 26(8), 804?847.
    [100] Han, Y. L.,Wang, B., Li, Y., Xu, K.,Wang, S. L., Jing, Q. M., et al. (2009). A high maintenance dose of clopidogrel improves short-term clinical outcomes in patients with acute coronary syndrome undergoing drug-eluting stent implantation. Chin Med J 122(7), 793?797.
    [101] Antman, E. M., Wiviott, S. D., Murphy, S. A., Voitk, J., Hasin, Y., Widimsky, P., et al. (2008). Early and late benefits of prasugrel in patients with acute coronary syndromes undergoing percutaneous coronary intervention a TRITON-TIMI 38 (trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel thrombolysis in myocardial infarction) analysis. J Am Coll Cardiol 51(21), 2028?2033.
    [102] Wallentin, L., Becker, R. C., Budaj, A., Cannon, C. P., Emanuelsson, H., Held, C., et al. (2009). Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11), 1045?1057.
    [103] Wedlund PJ, Aslanian WS, McAllister CB, et al. Frenquency of mephenytoin hydroxylation deficiency in a Caucasian population: Independence from debrisoquine hydroxylation deficiency [J]. ClinPharmacol Ther, 1984, 36(6):773-780.
    [104] Wrighton SA, Stevens JC, Becker GW, et al. Isolation and characterization of human liver cytochrome P4502C19: correlation between 2C19 and S-mephenytoin 4’-hydroxylation [J]. Arch Biochem Biophys, 1993, 306 (1):240-246.
    [105] de Morais SMF, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin in humans[J]. J Biol Chem, 1994, 269: 15419-15422.
    [106] Kubota T, Chiba K, Ishizaki T. Genotyping of S-mephenytoin 4’-hydroxylation in an extend Japanese population [J]. Clin Pharmacol Ther, 1996, 60 (2): 661-666.
    [107]王红,李瑜元,聂玉强,等.广州地区肝酶CYP2C19基因型人群调查[J].广东医学, 2004, 25:1204-1206.
    [108]付琼瑶,李佩琼,王九辉,等.海南黎族人群细胞色素P450 2C19基因多态性的研究[J].中国热带医学, 2005, 5:1807-1808.
    [109]牛春燕,关丽,罗金燕.维吾尔族健康人群CYP2C19基因多态性分析[J].新疆医科大学学报, 2005, 28:247-249.
    [110]闫春兰,詹金彪,陈枢清.浙江省汉族与畲族CYP2C19基因多态性研究[J].中国药学杂志, 2004, 39:866-868.
    [111]叶峻杰,彭林,张松,等.中国独龙族人群中CYP2C19基因多态性的分布[J].中国新药杂志, 2004, 13:266-268.
    [112]付良青,黄丰,吴德政,等.中国汉族和蒙族人群细胞色素氧化酶CYP2C19遗传多态性的比较[J].中国临床药理学与治疗学, 2003, 8:551-553.
    [113]段于峰,武战鹏,张松,等.中国土族人群中细胞色素P450 2C19基因多态性的研究[J].中国优生与遗传杂志, 2001, 9:13-14.
    [114]周健,吕虹,康熙雄.中国汉族人群不同性别、年龄、体重指数之间细胞色素氧化酶CYP2C19基因多态性的检测[J].中国临床药理学与治疗学, 2007, 12(2):208-213.
    [115] Kimura M, Ieiri I, Mamiya K.et a1. Genetic Polymorphism of Cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese Population[J]. Ther Drug Monit, 1998, 20:243-247.
    [116] Roh HK, Dahl ML, Tybring G,et a1.CYP2C19 genotype and phenotype detemined by omeprazole in a Korean population[J]. Pharmacogenetics, 1996, 6:547-551.
    [117] Chang M, Dahl ML, Tybring G, et al. Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians:Comparision with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype[J]. Pharmacogenetics, 1996, 5:358-363.
    [118] Persson I, Akillu E, Rodrigues F. et al. S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians [J]. Pharmacogenetics, 1996, 6: 521 -526.
    [119] Nakamoto K, Kidd J R, Jenison R D, et al. Genotyping and haplotyping of CYP2C19 functional alleles on thin-film biosensor chips[J]. Pharmacogenet Genomics, 2007, 17 (2): 103-114.
    [120] Wang J F, Wei D Q, Chen C, et al. Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design[J]. Protein Pept Lett, 2008, 15 (1): 27-32.
    [121] J.萨姆布鲁克, D.W拉塞尔[美]著.黄培堂等译.分子克隆实验指南(第三版).北京:科学出版社, 2002, 611-613.
    [122] Saraeva RB, Paskaleva ID, Doncheva E, et al. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements[J]. J Clin Pharm Ther, 2007, 32 (6): 641-649.
    [123] Hirt D, Mentre F, Tran A, et al. Effect of CYP2C19 polymorphism on nelfinavir to M8 biotransformation in HIV patients[J]. Br J Clin Pharmacol, 2008, 65(4):548-557.
    [124] Cuisset T, Frere C, Quilici J, et al. High post-treatment platelet avtivityidentified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stenting for acute coronary syndromes. J Thromb Haemost 2006;4:542–9.
    [125] Richter T, Mürdter TE, Heinkele G, et al. Potent mechanism-based inhibition of human CYP2B6 by Clopidogrel and ticlopidine. J Pharmacol Exp Ther 2004;308:189–97.
    [126] Schwarz UR, Geiger J, Walter U, Eigenthaler M. Flow cytometry analysis of intracellular VASP phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets-definition and detection of ticlopidine/Clopidogrel effects. Thromb Haemost 1999;82:1145–52.
    [127] Bhatt DL, Scheiman J, Abraham NS, et al. ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2008;52:1502–17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700