几种海洋动物酸性多糖的结构和活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝素用于预防和治疗血栓性疾病已有数十年的历史,但由于较大的出血副作用而限制了其临床应用。而且近年来发生的肝素污染事件也迫使人们寻找新的肝素类候选药物。
     当前研究者更有兴趣从非哺乳动物来源制备治疗性药物,以减少病原体污染的危险性,而来自海洋的天然酸性多糖是肝素类候选药物的重要来源。本文选取了多种海洋动物多糖,包括海参硫酸软骨素和海参岩藻聚糖硫酸酯以及鱿鱼墨多糖,采用质谱、核磁等技术对其寡糖和多糖的结构进行分析,并探讨了它们的抗凝抗栓等活性。本文主要研究内容有以下几个部分:
     1)采用质谱为主并结合核磁共振和甲基化技术对海参硫酸软骨素类似多糖—鱿鱼墨多糖的结构进行了确证。从北太平洋鱿鱼墨囊中分离纯化得到鱿鱼墨多糖SIP并采用负离子模式下的二级CID-MS-MS技术分析了酸降解鱿鱼墨寡糖的结构序列,结果表明这些寡糖具有一个三糖为基本结构序列的重复单位。结合核磁共振和甲基化技术,对糖的构型和连接方式进行了确证,得并出鱿鱼墨多糖SIP的结构为-[3GlcAβ1-4(GalNAca 1-3)Fuca 1]n-。得到子一个非常有用的0,2A系列离子碎片,并应用到归属它对归属4-连接的Fuc和GalNAc以支链连接的方式与Fuc。本部分建立了质谱法解析寡糖结构的方法,为进一步研究海参寡糖结构奠定理论基础。
     2)核磁共振技术比较四种海参硫酸软骨素和岩藻聚糖硫酸酯的结构。以4种不同种类和不同生长海域的海参为研究对象,分离纯化获得4种海参硫酸软骨素(SC-CHS)和海参岩藻聚糖硫酸酯(SC-FUC),对其进行系统了生化性质分析。结果表明所有SC-CHS的组成单糖在种类上为类硫酸软骨素的特征,主要由葡萄糖醛酸(GlcUA)、氨基半乳糖(GlaN)和岩藻糖(Fuc)构成,它们之间的摩尔比约为1:1:1,但是呈现一定的种间差异,而硫酸基:葡萄糖醛酸的含量在2.6-3.1。首次采用1HNMR分析比较了四种SC-CHS的结构特征,不同SC-CHS的岩藻糖异头氢存在一定差异,根据SC-CHS硫酸酯化岩藻糖支链上异头氢信号特征,可以将岩藻糖支链硫酸基取代类型归纳为3种类型:1)寒带海域海参,以2,4-di OSO3双取代为主,并存在在非常独特2,4-di OSO3取代;2)温带海域海参,以2,4-di OSO3取代为主,含部分4-OSO3取代;3)热带亚热带海域海参,以4-OSO3为主,并含有其他硫酸基取代方式。13CNMR和二维核磁COSY, TOCSY对所得的结构进行确证。1HNMR可以作为鉴别海参中多糖品质差异的工具。
     SC-FUC仅有岩藻糖组成,含有不同含量的硫酸基。经1HNMR分析比较,不同SC-FUC中岩藻糖残基的取代情况也存在较大差异,也可以作为初步鉴定海参品种的备选工具,但是有待于进一步的研究。
     3)质谱结合核磁技术分析美国肉参岩藻聚糖特异性酸降解寡糖的结构。以美国肉参岩藻聚糖硫酸酯为研究对象,采用温和酸降解法制备其寡糖。首次发现了一种规律性酸降解的海参岩藻聚糖硫酸酯,酸特异性的作用于海参硫酸软骨素中非硫酸化岩藻糖(单元D)和第二个2,4-sulfated岩藻糖(单元A),且降解过程中未发生明显的脱硫酸基,这和05年mulloy等人报道的从海胆中的降解不一样,后者降解过程中2-SO4易发生脱硫酸基,并且酸的作用的岩藻糖单元的位置也不一样。分离纯化了所得的寡糖,并结合核磁和质谱技术进行了结构解析,得出美国肉参岩藻聚糖硫酸酯的结构为:[3-Fucp-a-(2,4SO4)-(1→3)-Fucp-a-(1→3)-Fucp-(2SO4)-a-(1→3)-Fucp-1→]n,为一种新的岩藻聚糖硫酸酯结构。
     4)氧化降解法制备美国肉参岩藻糖基化硫酸软骨素寡糖及寡糖的抗凝血活性分析。本部分研究了海参硫酸软骨素酸降解和氧化降解的机理。酸降解法易导致fCS-Ib支链岩藻糖基的脱落,且对主链氨基半乳糖的硫酸基也有影响,因此所得的低分子量组分不能准确反应fCS-Ib的结构和活性特点。而Cu2+催化的自由基作用于硫酸软骨素具有一定的选择性,主要作用葡萄糖醛酸C-2和C-3位点上,并且对支链岩藻糖和主链的氨基半乳糖的硫酸基取代都无影响,因此能够制备得含岩藻糖支链的寡糖。结合二维核磁和ESI-MS-MS的结果,对主要的寡糖组分的结构进行鉴定,最终推出美国肉参硫酸软骨素的结构为:-[3GalNAcp(4,6S)1-4GlcAβ(Fuca(2,4S)1-3)1]n-。并进一步的阐明了其自由基作用的机理。
     5)海参多糖的抗凝血抗血栓活性研究。对四种海参硫酸软骨素的体外实验研究表明其抗凝血作用与支链岩藻糖硫酸基的取代方式相关,支链为2,4-S04取代的活性较好,而对美国肉参岩藻聚糖硫酸酯的抗凝分析表明其能显著延长APTT和TT,但是效果明显弱于海参硫酸软骨素多糖。对凝血因子抑制实验则表明海参硫酸软骨素主要通过抑制凝血因子FIIa发挥作用,其中HCII的抑制凝血酶活性强度明显高于标准肝素,说明海参硫酸软骨素主要通过抑制内源性凝血途径发挥抗凝血作用,2,4-O-disulfate双硫酸基取代的岩藻糖支链为主的美国肉参硫酸软骨素(fCS-Ib)抑制因子的活性明显强于以4-O-sulfate硫酸基取代的岩藻糖支链为主的菲律宾刺参硫酸软骨素(fCS-Pg)。美国肉参岩藻聚糖硫酸酯主要通过ATIII介导的抑制凝血因子FIIa发挥作用,此外还有显著的抑制因子FXa活性。体外血栓实验的结果则表明,海参硫酸软骨素的体外抑制血栓形成活性明显强于岩藻聚糖硫酸酯。海参硫酸软骨素中2,4-O-disulfate双硫酸基取代的岩藻糖支链为主的海参硫酸软骨素作用后的大鼠血液形成体外血栓明显轻于以4-O-sulfate硫酸基取代的岩藻糖支链为主的海参硫酸软骨素。
     对美国肉参硫酸软骨素氧化降解所得寡糖的抗凝血活性进行研究。受试寡糖样品D1-D9I都有显著的延长APTT的效果,但是不能延长TT和PT。凝血因子实验的结果则表明抗凝血作用主要通过抑制内源性凝血因子FIIa来发挥作用,说明寡糖主要通过内源性凝血途径来实现抗凝血效果。美国肉参硫酸软骨素寡糖对凝血因子FIIa最小作用寡糖为一个七糖结构,结构为GalNAcOOHβ(4,6S)1-4GlcAp (Fuca(2,4S) 1-3)1-3GalNAcp(4,6S)-4GlcAp (Fuca(2,4S)1-3)1-3GalNAcp(4,6S),为一种潜在的抗凝抗栓寡糖药物。
     6)海参类似多—鱿鱼墨多糖的硫酸酯化及硫酸酯化产物的抗凝血和抑制癌转移活性的研究。首次对结构独特的鱿鱼墨多糖进行硫酸酯化,并采用红外光谱和核磁共振技术解析出其主要结构为:-[3GlcAβ1-4(4,6-SO4-GalNAca1-3) Fuca1]n-.。进一步的凝血活性分析表明有较好的延长APTT和PT时间效果。对凝血因子的抑制实验则表明,硫酸化后的鱿鱼墨多糖TBA-1对FIIa和FXa均有显著的抑制作用。鱿鱼墨多糖还具有显著的抑制HepG2细胞转移和侵袭的活性,并且能够抑制CAM上血管新生。
Heparin, a complex glycosaminoglycan polysaccharide, is widely used as an anticoagulant in a number of settings, including kidney dialysis and acute coronary syndromes for many years.-Recently, certain heparins have been proved to associate with an acute, rapid onset of serious side effects indicative of an allergic-type reaction. These observations indicate that we still need alternatives to heparin, perhaps new polysaccharides with fewer side effects and which would be more appropriate for each clinical condition. There is now more interest in therapeutics prepared from non-mammalian sources, thus avoiding the risk of contamination with pathogenic agents. The sulfated polysaccharides from marine are important nature resources. In this article we focused on analyzing structure and bioactivity of three kinds of sea animal acid polysaccharides, the Fucosylated chondroitin sulfate (FCS) and the sulfated fucan from sea cucumber, as well as a glycosaminoglycans-like non-sulfated polysaccharide from squid ink. The content includes the following five parts:
     1) Structure determination of the a non-sulfated polysaccharide from squid ink. A non-sulfated polysaccharide was isolated from the ink sac of squid Ommastrephes bartrami after removal of the melanin granules. The carbohydrate sequence of this polysaccharide was assigned by negative-ion electrospray tandem mass spectrometry with collision-induced dissociation of the oligosaccharide fractions produced by partial acid hydrolysis of the polysaccharide. The structural determination was completed by NMR for assignment of anomeric configuration and confirmation of linkage and it was unambiguously identified as a glycosaminoglycan-like polysaccharide containing a glucuronic acid-fucose (GlcA-Fuc) disaccharide repeat in the main chain and a branched N-acetylgalactosamine (GalNAc) at the Fuc position:-[3GlcAβ1-4(GalNAca1-3)Fucal]n-. Partial hydrolysis of the polysaccharide to obtain several oligosaccharide fractions with different numbers of the repeating unit assisted the assignment.In the negative-ion tandem mass spectrometric analysis, the unique 0,2A type fragmentation was important to establish the presence of a 4-linked fucose in the main polysaccharide chain and a GalNAc branch at the Fuc position of the disaccharide repeat.
     2) Comparison on Structure and anticoagulant activity comparasion of Fucosylated chondroitin sulfates (fCSs) from four kinds of sea cucumbers. the Fucosylated chondroitin sulfates (fCSs) were isolated from four sea cucumbers, Pearsonothuria graeffei (Indo-Pacific), Stichopus tremulus (Western Indian Ocean), Holothuria vagabunda (Norwegian coast), and Isostichopus badionotus (Western Atlantic). The detailed sequences of fCSs, particularly their fucose branches, were characterized and compared.'H-and 13C-NMR of the polysaccharides clearly identified three different sulfation patterns on the branched fucoses,4-O-mono-,2,3-O-di-and 2,4-O-disulfation, variously distributed in the four fCSs. Anticoagulant activities of the four fCSs were assessed and compared.
     3) Selective mild acid hydrolysis of a novel fucan from sea cucumber with no sulfate loss: preparation and structure analysis using analysis using ESI-MS and NMR, and anticoagulant activity of the oligosaccharides. A novel linear sulfated fucan was isolated from sea cucumber Isostichopus badionotus, no specific enzymatic or chemical method is available for the preparation of tailored oligosaccharides from sulfated fucans. We employ an apparently nonspecific approach to cleave this polysaccharide based on mild hydrolysis with acid. Surprisingly, the linear sulfated fucan was cleaved by mild acid hydrolysis on an ordered sequence. The structural determination of the fucan was assigned by 1D and 2D NMR firstly, and the sequence of this polysaccharide and was further confirmed by negative-ion electrospray tandem mass spectrometry with collision-induced dissociation of the oligosaccharide fractions. The structure of the fucan was finally identified as a regular repeating sequence of [3-a-L-Fucp-(2,4SO4)-(1→3)-a-L-Fucp-(2SO4)-(1→3)-a-L-Fucp-(2SO4)-(1→3)-a-L-Fucp-(1→]. And acid choose a preferential cleavage of the glycosidic linkage formed between the nonsulfated residue (D in Figure 1) and the second 2,4-sulfated unit (unit A), no obvious loose of sulfate group happened. In the negative-ion tandem mass spectrometric analysis, the unique 1,4A ions in squid was important to establish the presence of a 3-linked fucose in the main polysaccharide chain.
     4) Preparation of the fucosylated chondrotin sulfate oligosaccharides from sea cucumberⅠ. badionotus using peroxide oxidation and the anticoagulant activity of the oligosaccharides. The fucose branches are reported to be the key factor on the keeping the bioactivity of FCS and it is liable to lose in acid condition. The mechanism of the acid hydrolysis and the peroxide were investigated.Acid hydrolysis brought on loss of fucose branches and sulfate group in the backbone GalNAc, which will resulted in loss of anticoagulant activity. Using a peroxide strategy mediated by the copper ions, we prepared oligosaccharides with different degree of polymerization from a new fCS fromⅠ. badionotus, the free radical mainly attacked on the GlcA in the backbone and have no obvious effect on the sulfated fucose branch and sulfation pattern of the backbone GalNAc. ESI-MS/MS and NMR were used to analyze the structure of these highly sulfated oligosaccharides. The structure of fucosylated chondrotin sulfate were determination to be:-[3GalNAcβ(4,6S)1-4GlcAβ(Fuca(2,4S)1-3) 1]n-.
     5) Anticoagulant and anti-thrombosis activity analysis of sea cucumber chondroitin sufalte The results indicated that the difference in their anticoagulant activities can be attributed to the difference in sulfation pattern of the fucose branch of the chondroitin sulfate, and 2,4-O-disulfation is important for anticoagulant activity. Their influence on anti-thrombin and anti-FXa activities mediated by antithrombinⅢand heparin cofactorⅡwere further evaluated. The fucosylated chondroitin sulfate inhibits thrombin by mainly heparin cofactorⅡ, whereas the sulfated fucan inhibits both thrombin and FXa activities mediated by antithrombinⅢ. Those SC-CHS with 2,4-SO4 have better effect than the 4-SO4 fucose branch. As a result of the complex anticoagulant mechanism, the invertebrate polysaccharides differ in their effects on experimental thrombosis in vitro indicated those with 2,4-SO4 sulfated fucose branches also have a better effect, but both of the SC-CHS have better effect than the sulfated fucan FUC-Ib.
     Further bioactivity research on the oligosaccharides from geltration and HPLC-SAX shows a both the oligosaccharides D1-D8 and D4Ⅱ, D7I prolong APTT, but have no effect on PT and TT. Further evaluating their influence on anti-thrombin activities mediated by antithrombinⅢand heparin cofactorⅡindicated the oligosaccharides D1 and D4II have the effect of on inhibition of thrombin mediated by heparin cofactorⅡ, and D4Ⅱthe heptasacchride with 10 sulfates is the minimum unit to have an anticoagulant activity, the structure of the oligosaccharide were:GalNAcOOHβ(4,6S)1-4GlcAβ(Fuca(2,4S)1-3)1-3GalNAcβ(4,6S)-4GlcAβ(Fuca(2,4S)1-3) 1-3GalNAcβ(4,6S). This is the first research on structure-activity relationship about sea cucumber FCSs in an oligosaccharides level.
     6) Sulfation of squid ink polysaccharides and its effect on anticoagulant and tumor metastasis. The squid ink polysaccharides (SIP) and tributylammonium salt of SIP were firstly sulfated with pyridine-sulphur-trioxide complex in DMSO sulfated. Structure characterization of sulfated SIPs using NMR indicated that sulfation mainly occurred at the 4,6-postion of GalNAc. Anticoagulant activity assay shows it has no obvious effect on TT, but prolong PT and APTT, which indicated the anticoagulant effects multi-coagulation processes. By evaluating their influence on anti-thrombin and anti-FXa activities mediated by antithrombinⅢand heparin cofactorⅡ, the sulfate SIP TBA-1 obviously inhibited the activity of FIIa and FXa. The effects of the sulfated SIP (TBA-1) on tumor cell growth, invasion, and migration were examined in vitro, and its antiangiogenesis effect was measured in vivo using the chick embryo chorioallantoic membrane (CAM) assay. TBA-1 did not have any obvious effects on the proliferation of HepG2 tumor cells, but induced a dose-dependent suppression of cell invasion and migration in HepG2. Moreover, TBA-1 significantly inhibited angiogenesis in a CAM model. Thus, our results indicate that TBA-1 is a potential candidate compound for the prevention of tumor metastasis.
引文
1. Bertozzi, C.; Kiessling, L., Chemical glycobiology. Science 2001,291, (5512),2357.
    2. Potin, P.; Bouarab, K.; Salaun, J.; Pohnert, G.; Kloareg, B., Biotic interactions of marine algae. Current opinion in plant biology 2002,5, (4),308-317.
    3. Carpita, N.; McCann, M.; Griffing, L., The plant extracellular matrix:news from the cell's frontier. The Plant Cell 1996,8, (9),1451.
    4. Durand, G.; Seta, N., Protein glycosylation and diseases:blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clinical Chemistry 2000,46, (6),795.
    5. Kim, M.; Joo, H., Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunology letters 2007.
    6. Ghosh, T.; Chattopadhyay, K.; Marschall, M.; Karmakar, P.; Mandal, P.; Ray, B., Focus on antivirally active sulfated polysaccharides:from structure-activity analysis to clinical evaluation. Glycobiology 2009,19, (1),2.
    7. Melo, F.; Pereira, M.; Monteiro, R.; Foguel, D.; Mour o, P., Sulfated galactan is a catalyst of antithrombin-mediated inactivation of α-thrombin. BBA-General Subjects 2008,1780, (9), 1047-1053.
    8. McCarthy, B., Antivirals—an increasingly healthy investment. Nature Biotechnology 2007, 25,(12),1390-1394.
    9. Zhang, C.; Yang, F.; Zhang, X.; Wang, S.; Li, M.; Lin, L.; Ding, J., Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. British journal of pharmacology 2006,148, (6),741.
    10. Umemura, K.; Yanase, K.; Suzuki, M.; Okutani, K.; Yamori, T.; Andoh, T., Inhibition of DNA topoisomerases Ⅰ and Ⅱ, and growth inhibition of human cancer cell lines by a marine microalgal polysaccharide. Biochemical pharmacology 2003,66, (3),481-487.
    11. Sathivel, A.; Raghavendran, H.; Srinivasan, P.; Devaki, T., Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on d-Galactosamine induced hepatitis in rats. Food and Chemical Toxicology 2008,46, (10),3262-3267.
    12. Vilela-Silva, A.; HIROHASHI, N.; MOUR O, P., The structure of sulfated polysaccharides ensures a carbohydrate-based mechanism for species recognition during sea urchin fertilization. Int. J. Dev. Biol 2008,52,551-559.
    13. Ruperez, P.; Ahrazem, O.; Leal, J., Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem 2002,50, (4), 840-845.
    14. Veena, C; Josephine, A.; Preetha, S.; Varalakshmi, P., Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria. Food Chemistry 2007,100, (4),1552-1559.
    15. Laremore, T.; Zhang, F.; Dordick, J.; Liu, J.; Linhardt, R., Recent progress and applications in glycosaminoglycan and heparin research. Current Opinion in Chemical Biology 2009.
    16. Landeira-Fernandez, A.; Aquino, R.; Mour o, P.; de Meis, L., Ca2+-transport in sea urchin unfertilized eggs:Regulation by endogenous sulfated polysaccharides and K+. BBA-General Subjects 2006,1760, (10),1529-1535.
    17. Roberts, J.; Buck, C.; Thompson, C.; Kines, R.; Bernardo, M.; Choyke, P.; Lowy, D.; Schiller, J., Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nature medicine 2007,13, (7),857-861.
    18. Melo, F.; Pereira, M.; Foguel, D.; Mourao, P., Antithrombin-mediated anticoagulant activity of sulfated polysaccharides:different mechanisms for heparin and sulfated galactans. Journal of Biological Chemistry 2004,279, (20),20824-20835.
    19.刘莺;刘新;牛筛龙,海洋生物活性多糖的研究进展.医药导报2006,10.
    20. Hsu, J.; Huang, H.; Chen, S.; Wong, C.; Juan, H., Ganoderma lucidum Polysaccharides Induce Macrophage-like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. Evidence-based Complementary and Alternative Medicine 2009.
    21. Matsuda, M.; Yamori, T.; Naitoh, M.; Okutani, K., Structural revision of sulfated polysaccharide B-l isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Marine Biotechnology 2003,5, (1),13-19.
    22. Salter, I.; Zubkov, M.; Warwick, P.; Burkill, P., Marine bacterioplankton can increase evaporation and gas transfer by metabolizing insoluble surfactants from the air-seawater interface. FEMS Microbiology Letters 2009,294, (2),225-231.
    23. Liu, H.; Geng, M.; Xin, X.; Li, F.; Zhang, Z.; Li, J.; Ding, J., Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities. Glycobiology 2005,15, (5),501.
    24.廖玉麟,我国的海参.生物学通报2001,36,(009),1-3.
    25.董正之,中国动物志.世界科技研究与发展 2002,24,(003),44-48.
    26.杨阳,海参的食疗价值.山东食品科技2003,(07).
    27.张春云;王印庚;荣小军;孙惠玲;董树刚,国内外海参自然资源,养殖状况及存在问题.海洋水产研究2004,25,(003),89-97.
    28.姜健,杨.邰.,海参资源及其生物活性物质的研究.生物技术通讯2004,(05).
    29. Cui, F.; Xue, C.; Li, Z.; Zhang, Y.; Dong, P.; Fu, X.; Gao, X., Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chemistry 2007,100,(3),1120-1125.
    30. Saito, M.; Kunisaki, N.; Urano, N.; Kimura, S., Collagen as the Major Edible Component of Sea Cucumber (Stichopus japonicus). Journal of Food Science 2002,67, (4),1319-1322.
    31. Yamada, K., Chemo-pharmaceutical studies on the glycosphingolipid constituents from echinoderm, sea cucumbers, as the medicinal materials. Chemlnform 2003,34, (16).
    32. Zou, Z.; Yi, Y.; Wu, H.; Wu, J.; Liaw, C.; Lee, K., Intercedensides AC, three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert. J Nat Prod 2003, 66,(8),1055-60.
    33.逄龙;王静凤;王玉明;盛文静;薛长湖,北极刺参多糖、皂苷和胶原蛋白多肽对血管内皮细胞的保护作用.中国药科大学学报2007,(05).
    34.杨宝灵,姜.张.刘.苏.王.,海参生物活性物质的研究.云南大学学报(自然科学版)2004,(S2).
    35.黄洽,话说海参.食品与生活1999,(002),32-33.
    36.姜健;杨宝灵;邰阳,海参资源及其生物活性物质的研究.生物技术通讯2004,15,(005),537-540.
    37.郭承华;徐作成,棘皮动物氨基多糖的提取与活性研究概况.海洋通报1998,17,(005),84-87.
    38. Vieira, R.; Mourao, P., Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. Journal of Biological Chemistry 1988,263, (34),18176-18183.
    39. Mourao, P. A.; Pereira, M. S.; Pavao, M. S.; Mulloy, B.; Tollefsen, D. M.; Mowinckel, M. C.; Abildgaard, U., Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem 1996,271, (39),23973-84.
    40. Mulloy, B.; Ribeiro, A.; Alves, A.; Vieira, R.; Mourao, P., Sulfated fucans from echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the 0-2 and 0-4 positions. Journal of Biological Chemistry 1994,269, (35),22113-22123.
    41.黄益丽,郑.苏.陈.吴.方.,二色桌片参的化学成分研究Ⅲ.二色桌片参多糖-1——岩藻聚糖的免疫调节作用.海洋通报2001,(01).
    42. Vieira, R.; Mulloy, B.; Mourao, P., Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. Journal of Biological Chemistry 1991,266, (21),13530-13536.
    43. Yoshida, K.; Minami, Y.; Nemoto, H.; Numata, K.; Yamanaka, E., Structure of DHG, a depolymerized glycosaminoglycan from sea cucumber, Stichopus japonicus. Tetrahedron letters 1992,33, (34),4959-4962.
    44. Kariya, Y.; Watabe, S.; Hashimoto, K.; Yoshida, K., Occurrence of chondroitin sulfate E in glycosaminoglycan isolated from the body wall of sea cucumber Stichopus japonicus. Journal of Biological Chemistry 1990,265, (9),5081-5085.
    45. Kariya, Y.; Sakai, T.; Kaneko, T.; Suzuki, K.; Kyogashima, M., Enhancement of t-PA-mediated plasminogen activation by partially defucosylated glycosaminoglycans from the sea cucumber Stichopus japonicus. JBiochem 2002,132, (2),335-43.
    46. Kariya, Y; Watabe, S.; Kyogashima, M.; Ishihara, M.; Ishii, T., Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus. Carbohydr Res 1997,297, (3),273-9.
    47. Kariya, Y.; Mulloy, B.; Imai, K.; Tominaga, A.; Kaneko, T.; Asari, A.; Suzuki, K.; Masuda, H.; Kyogashima, M.; Ishii, T., Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydrate research 2004,339, (7),1339-1346.
    48. SASAKI, A., Isolation and Characterization of Serologically Active Phosphatidylinositol Oligomannosides of Mycobacterium tuberculosis. Journal of Biochemistry 1975,78, (3),547.
    49. Carr, S.; Huddleston, M.; Bean, M., Selective identification and differentiation of N-and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 1993,2, (2),183-96.
    50. Ka urakova, M.; Mathlouthi, M., FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydrate Research 1996,284, (2),145-157.
    51. Surewicz, W.; Leddy, J.; Mantsch, H., Structure, stability, and receptor interaction of cholera toxin as studied by Fourier-transform infrared spectroscopy. Biochemistry 1990,29, (35),8106.
    52. Powell, D.; Turula, V.; Dehaseth, J.; Vanhalbeek, H.; Meyer, B., Sulfate Detection in Glycoprotein-Derived Oligosaccharides by Artificial Neural Network Analysis Fourier-Transform Infrared Spectra. Analytical biochemistry 1994,220, (1),20-27.
    53. He, Z.; Aristoteli, L.; Kritharides, L.; Garner, B., HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation. Biochemical and Biophysical Research Communications 2006,343, (2),496-503.
    54. OLIGOSACCHARIDES, F.; COLUMNS, O., HPLC Methods for the Fractionation and Analysis of Negatively Charged Oligosaccharides and Gangliosides. Current Protocols in Molecular Biology 1995,17,11-17.21.
    55. Shilova, N.; Galanina, O.; Rubina, A.; Butvilovskaya, V.; Huflejt, M.; Chambers, J.; Roucoux, A.; Bovin, N.,2-Aminopyridine—a label for bridging of oligosaccharides HPLC profiling and glycoarray printing. Glycoconjugate Journal 2008,25, (1),11-14.
    56. Volpi, N., On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal. Chem 2007,79, (16),6390-6397.
    57. Albrecht, S.; Schols, H.; Klarenbeek, B.; Voragen, A.; Gruppen, H., Introducing Capillary Electrophoresis with Laser-Induced Fluorescence (CE-LIF) as a Potential Analysis and Quantification Tool for Galactooligosaccharides Extracted from Complex Food Matrices.
    58. Albrecht, S.; van Muiswinkel, G.; Schols, H.; Voragen, A.; Gruppen, H., Introducing Capillary Electrophoresis with Laser-Induced Fluorescence Detection (CE-LIF) for the Characterization of Konjac Glucomannan Oligosaccharides and Their in Vitro Fermentation Behavior. Journal of Agricultural and Food Chemistry 2009,57, (9),3867-3876.
    59. Fermas, S.; Gonnet, F.; Sutton, A.; Charnaux, N.; Mulloy, B.; Du, Y.; Baleux, F.; Daniel, R., Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 2008,18,(12),1054.
    60. Tseng, H.; Gattolin, S.; Pritchard, J.; Newbury, H.; Barrett, D.; Biotechnology, U., Analysis of mono-, di-and oligosaccharides by CE using a two-stage derivatization method and LIF detection. Electrophoresis 2009,30, (8),1399-1405.
    61. Min, J.; Toyo'oka, T.; Kato, M.; Fukushima, T., Resolution of N-linked oligosaccharides in glycoproteins based upon transglycosylation reaction by CE-TOF-MS. Chemical Communications 2005,2005, (27),3484-3486.
    62. Mulloy, B.; Mourao, P. A.; Gray, E., Structure/function studies of anticoagulant sulphated polysaccharides using NMR. JBiotechnol 2000,77, (1),123-35.
    63. Alves, A.; Mulloy, B.; Diniz, J.; Mourao, P., Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins. Journal of Biological Chemistry 1997,272, (11),6965.
    64. Castro, M.; Pomin, V.; Santos, L.; Vilela-Silva, A.; Hirohashi, N.; Pol-Fachin, L.; Verli, H.; Mourao, P., A Unique 2-Sulfatedβ-Galactan from the Egg Jelly of the Sea Urchin Glyptocidaris crenularis. Journal of Biological Chemistry 2009,284, (28),18790.
    65. Kato, K.; Sasakawa, H.; Kamiya, Y.; Utsumi, M.; Nakano, M.; Takahashi, N.; Yamaguchi, Y, 920 MHz ultra-high field NMR. approaches to structural glycobiology. BBA-General Subjects 2008,1780, (3),619-625.
    66. Chai, W.; Piskarev, V.; Lawson, A., Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem 2001,73, (3),651-657.
    67. Yu, G.; Zhao, X.; Yang, B.; Ren, S.; Guan, H.; Zhang, Y.; Lawson, A.; Chai, W., Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry. Anal. Chem 2006,78, (24),8499-8505.
    68. Chai, W.; Leteux, C.; Lawson, A.; Stoll, M., On-line overpressure thin-layer chromatographic separation and electrospray mass spectrometric detection of glycolipids. Anal. Chem 2003,75, (1), 118-125.
    69. Fukuyama, Y.; Nakaya, S.; Yamazaki, Y.; Tanaka, K., Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal. Chem 2008, 80, (6),2171-2179.
    70. Zhang, Z.; Linhardt, R., Sequence Analysis of Native Oligosaccharides Using Negative ESI Tandem MS. Current Analytical Chemistry 2009,5, (3),225-237.
    71. Zhang, Y.; Iwamoto, T.; Radke, G.; Kariya, Y.; Suzuki, K.; Conrad, A.; Tomich, J.; Conrad, G., On-target derivatization of keratan sulfate oligosaccharides with pyrenebutyric acid hydrazide for MALDI-TOF/TOF-MS. Journal of Mass Spectrometry 2008,43, (6),765-772.
    72. Doneanu, C.; Chen, W.; Gebler, J., Analysis of Oligosaccharides Derived from Heparin by Ion-Pair Reversed-Phase Chromatography/Mass Spectrometry. Analytical chemistry 2009.
    73. Bultel, L.; Landoni, M.; Grand, E.; Couto, A.; Kovensky, J., UV-MALDI-TOF Mass Spectrometry Analysis of Heparin Oligosaccharides Obtained by Nitrous Acid Controlled Degradation and High Performance Anion Exchange Chromatography. Journal of the American Society for Mass Spectrometry 2009.
    74. Wolff, J.; Laremore, T.; Busch, A.; Linhardt, R.; Amster, I., Electron Detachment Dissociation of Dermatan Sulfate Oligosaccharides. Journal of the American Society for Mass Spectrometry 2008,19, (2),294-304.
    75. Laremore, T.; Zhang, F.; Linhardt, R., Ionic liquid matrix for direct UV-MALDI-TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides. Analytical chemistry 2007, 79,(4),1604-1610.
    76. Estrella, R.; Whitelock, J.; Packer, N.; Karlsson, N., Graphitized Carbon LC-MS Characterization of the Chondroitin Sulfate Oligosaccharides of Aggrecan. Anal. Chem 2007,79, (10),3597-3606.
    77. Chen, S.; Xu, J.; Xue, C.; Dong, P.; Sheng, W.; Yu, G.; Chai, W., Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconjugate Journal 2008,25, (5),481-492.
    78. Pabst, M.; Altmann, F., Influence of Electrosorption, Solvent, Temperature, and Ion Polarity on the Performance of LC-ESI-MS Using Graphitic Carbon for Acidic Oligosaccharides. Analytical chemistry 2008,80, (19),7534-7542.
    79. Suzuki, S.; Kakehi, K.; Honda, S., Comparison of the sensitivities of various derivatives of oligosaccharides in LC/MS with fast atom bombardment and electrospray ionization interfaces. Anal. Chem 1996,68, (13),2073-2083.
    80. Yamashita, M.; Fenn, J., Negative ion production with the electrospray ion source. The Journal of Physical Chemistry 1984,88, (20),4671-4675.
    81. Tissot, B.; Salpin, J.; Martinez, M.; Gaigeot, M.; Daniel, R., Differentiation of the fucoidan sulfated L-fucose isomers constituents by CE-ESIMS and molecular modeling. Carbohydrate Research 2006,341, (5),598-609.
    82. Anastyuk, S.; Shevchenko, N.; Nazarenko, E.; Dmitrenok, P.; Zvyagintseva, T., Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydrate Research 2009,344, (6),779-787.
    83. Cabalkova, J.; Wahlund, K.; Chmelik, J., Complex analytical approach to characterization of the influence of carbon dioxide concentration on carbohydrate composition in Norway spruce needles. Journal of Chromatography A 2007,1148, (2),189-199.
    84.杨波.海洋硫酸半乳聚糖特异性降解,寡糖和糖脂的制备与序列分析及其寡糖芯片的构建.中国海洋大学,2009.
    85. Stadlmann, J.; Pabst, M.; Kolarich, D.; Kunert, R.; Altmann, F., Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 2008,8, (14), 2858-2871.
    86. Gage, D.; Rathke, E.; Costello, C.; Jones, M., Determination of sequence and linkage of tissue oligosaccharides in caprine β-mannosidosis by fast atom bombardment, collisionally activated dissociation tandem mass spectrometry. Glycoconjugate Journal 1992,9, (3),126-131.
    87. Penn, S.; Cancilla, M.; Lebrilla, C., Collision-induced dissociation of branched oligosaccharide ions with analysis and calculation of relative dissociation thresholds. Anal. Chem 1996,68, (14),2331-2339.
    88. Weiskopf, A.; Vouros, P.; Harvey, D., Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal. Chem 1998,70, (20), 4441-4447.
    89. Solouki, T.; Reinhold, B.; Costello, C.; O'Malley, M.; Guan, S.; Marshall, A., Electrospray ionization and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of permethylated oligosaccharides. Anal. Chem 1998,70, (5), 857-864.
    90. Chai, W.; Lawson, A.; Piskarev, V., Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. Journal of the American Society for Mass Spectrometry 2002,13, (6),670-679.
    91. Westling, W.; Ten Feizi, U., Relative Susceptibilities of the Glucosamine-Glucuronic Acid and N-Acetylglucosamine-Glucuronic Acid Linkages to Heparin Lyase III. Biochemistry 2004,43, 26.
    92. Chai, W.; Piskarev, V.; Zhang, Y.; Lawson, A.; Kogelberg, H., Structural determination of novel lacto-N-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Archives of Biochemistry and Biophysics 2005,434,(1),116-127.
    93. Barbara, W.; Evans, M.; Lawson, H., Analysis of Chain and Blood Group Type and Branching Pattern of Sialylated Oligosaccharides by Negative Ion Electrospray Tandem Mass Spectrometry. Analytical chemistry 2006,78, (5).
    94. Zaia, J.; Costello, C., Compositional analysis of glycosaminoglycans by electrospray mass spectrometry. Anal. Chem 2001,73, (2),233-239.
    95. Miller, M.; Costello, C.; Malmstrom, A.; Zaia, J., A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms. Glycobiology 2006,16, (6),502.
    96. Zhang, Y.; Conrad, A.; Tasheva, E.; An, K.; Corpuz, L.; Kariya, Y.; Suzuki, K.; Conrad, G., Detection and quantification of sulfated disaccharides from keratan sulfate and chondroitin/dermatan sulfate during chick corneal development by ESI-MS/MS. Investigative ophthalmology & visual science 2005,46, (5),1604.
    97. Okamoto, M., A comparative study on structural elucidation of sialyl oligosaccharides by mass spectrometry with fast atom bombardment, electrospray ionization, and matrix assisted laser desorption/ionization. Bioscience, biotechnology, and biochemistry 2001,65, (11),2519-2527.
    98. Antonopoulos, A.; Favetta, P.; Lafosse, M.; Helbert, W., Characterisation of i-carrageenans oligosaccharides with high-performance liquid chromatography coupled with evaporative light scattering detection. Journal of Chromatography A 2004,1059, (1-2),83-87.
    99. Park, Y.; Lebrilla, C., Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. Mass spectrometry reviews 2005,24, (2),232-264.
    100. Levigne, S.; Ralet, M.; Quemener, B.; Pollet, B.; Lapierre, C.; Thibault, J., Isolation from sugar beet cell walls of arabinan oligosaccharides esterified by two ferulic acid monomers. Plant Physiology 2004,134,(3),1173.
    101. Tissot, B.; Gasiunas, N.; Powell, A.; Ahmed, Y.; Zhi, Z.; Haslam, S.; Morris, H.; Turnbull, J.; Gallagher, J.; Dell, A., Towards GAG glycomics:Analysis of highly sulfated heparins by MALDI-TOF mass spectrometry. Glycobiology 2007,17, (9),972.
    102.王曼玲.海参糖胺聚糖抑制血小板—内皮细胞粘附及其机制的研究.复旦大学,2006.
    103.苏秀榕;娄永江;常亚青;张静;邢茹莲,海参的营养成分及海参多糖的抗肿瘤活性的研究.营养学报2003,25,(002),181-182.
    104. Moon, J.; Ryu, H.; Yang, H.; Suh, J., Antimutagenic and Anticancer Effects of Glycoprotein and Chondroitin Sulfates from Sea Cucumber (Stichopus japonicus). JOURNAL-KOREAN SOCIETY OF FOOD AND NUTRITION 1998,27,350-358.
    105.周湘盈;徐贵发,东海刺海参冻干粉对S180荷瘤小鼠的抑瘤作用及免疫功能的影响.山东营养学会营养产业与功能食品成分学术研讨会论文汇编2007.
    106. Imanari, T.; Washio, Y.; Huang, Y.; Toyoda, H.; Suzuki, A.; Toida, T., Oral absorption and clearance of partially depolymerized fucosyl chondroitin sulfate from sea cucumber. Thromb Res 1999,93, (3),129-35.
    107. Mauray, S.; Sternberg, C.; Theveniaux, J.; Millet, J.; Sinquin, C.; Tapon-Bretaudiere, J.; Fischer, A., Venous antithrombotic and anticoagulant activities of a fucoidan fraction. Thrombosis and haemostasis 1995,74, (5),1280.
    108. Buyue, Y.; Sheehan, J., Fucosylated chondroitin sulfate inhibits plasma thrombin generation via targeting of the factor IXa heparin-binding exosite. Blood 2009,114, (14),3092.
    109. Nagase, H.; Enjyoji, K.; Minamiguchi, K.; Kitazato, K.; Kitazato, K.; Saito, H.; Kato, H., Depolymerized holothurian glycosaminoglycan with novel anticoagulant actions:antithrombin Ⅲ-and heparin cofactor Ⅱ-independent inhibition of factor X activation by factor IXa-factor Ⅷa complex and heparin cofactor II-dependent inhibition of thrombin. Blood 1995,85, (6),1527.
    110. Nagase, H.; Enjyoji, K.; Shima, M.; Kitazato, K.; Yoshioka, A.; Saito, H.; Kato, H., Effect of depolymerized holothurian glycosaminoglycan (DHG) on the activation of factor VIII and factor V by thrombin. Journal of Biochemistry 1996,119, (1),63.
    111. Tovar, A.; Mourao, P., High affinity of a fucosylated chondroitin sulfate for plasma low density lipoprotein. Atherosclerosis 1996,126, (2),185-195.
    112. Zhang, Y.; Song, S.; Song, D.; Liang, H.; Wang, W.; Ji, A., Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus. Journal of bioscience and bioengineering 109, (1),67-72.
    113. Diao, H.; Song, S.; Liang, H.; Wang, Y.; Wang, W; Ji, A., Protective effect of polysaccharides from sea cucumber on glu-induced neurotoxicity in PC 12 cells. Zhongyao cai= Zhongyaocai=Journal of Chinese medicinal materials 2009,32, (3),398.
    114.邱鹏新;黎明涛,黑海参多糖对β—淀粉样蛋白诱导的皮质神经元凋亡的保护作用.中草药2000,31,(004),271-274.
    115.曾,樊.,海参:海中人参—关于海参及其成分保健医疗功能的研究与开发.中国 海洋 药物2001,20,(004),37-44.
    116. Li, J.; Lian, E., Mechanism of rabbit platelet agglutination induced by acidic mucopolysaccharide extracted from Stichopus japonicus Selenka. Thrombosis and haemostasis 1988,59, (3),432.
    117. Li, J.; Lian, E., Aggregation of human platelets by acidic mucopolysaccharide extracted from Stichopus japonicus Selenka. Thrombosis and haemostasis 1988,59, (3),435.
    118.胡俊斌;沈迪,刺参酸性粘多糖与洗涤的人血小板的结合.中国药理学报1990,11,(001),47-50.
    119.王华亭;蔡生业;姚成芳;朱宗涛;王丽;张维东,复方花刺参粘多糖对家兔血管成形术后内皮功能及超微结构的影响.中国动脉硬化杂志2004,12,(005),,497-501.
    120. Tao, G.; Di, S.; Shanjun, S.; Wenning, W., Effect of SJAMP on human platelet cytoplasmic Ca 2+. Journal of Huazhong University of Science and Technology-Medical Sciences-- 1998,18, (4),230-232.
    121.阮长耿;陈宏;张威;刘延祖;郭玉华,海参粘多糖Sjamp对兔血小板的作用.苏州大学学报(医学版)1986,1.
    122.李家增;包承鑫;陈关珍;张桂珍;张敬芬;樊绘曾;陈菊娣;郝晓阁,刺参酸性粘多糖对止血功能影响的初步观察.中药通报1983,8,(5),36-39.
    123. Shen, D., SJAMP-induced platelet aggregation defect. Chinese medical journal 1996,109, (1),46.
    124. Kitazato, K.; Kitazato, K.; Nagase, H.; Minamiguchi, K., DHG, a new depolymerized holothurian glycosaminoglycan, exerts an antithrombotic effect with less bleeding than unfractionated or low molecular weight heparin, in rats. Thrombosis Research 1996,84, (2),111.
    125. Minamiguchi, K.; Nagase, H.; Kitazato, K.; Kitazato, K., Interaction of a new depolymerized holothurian glycosaminoglycan with proteins in human plasma. Thrombosis Research 1996,83, (3),253.
    126. Sasaki, E.; Minamiguchi, K.; Kitazato, K.; Nagase, H.; Kitazato, K., Neutralization of DHG, a new depolymerized holothurian glycosaminoglycan, by protamine sulfate and platelet factor 4. Pathophysiology of Haemostasis and Thrombosis 1997,27, (4),174-183.
    127. li, G., Basic and clinical study on the antithrombotic mechanism of glycosaminoglycan extracted from sea cucumber. Chinese medical journal 2000,113, (8),706-711.
    128.杨晓光;陈关珍,Sjamp对纤溶系统影响的初步观察.中国医学科学院学报1990,12,(003),187-192.
    129. Tapon-Bretaudiere, J.; Drouet, B.; Matou, S.; Mour o, P.; Bros, A.; Letourneur, D.; Fischer, A., Modulation of vascular human endothelial and rat smooth muscle cell growth by a fucosylated chondroitin sulfate from echinoderm. Thrombosis and haemostasis 2000,84, (2),332.
    130. Nagase, H.; Enjyoji, K.; Kamikubo, Y.; Kitazato, K.; Kitazato, K.; Saito, H.; Kato, H., Effect of depolymerized holothurian glycosaminoglycan(DHG) on tissue factor pathway inhibitor:In vitro and in vivo studies. Thrombosis and haemostasis 1997,78, (2),864-870.
    131. Sakai, T.; Kyogashima, M.; Kariya, Y.; Urano, T.; Takada, Y.; Takada, A., Importance of GlcUAbetal-3GalNAc(4S,6S) in chondroitin sulfate E for t-PA-and u-PA-mediated Glu-plasminogen activation. Thromb Res 2000,100, (6),557-65.
    132. Suzuki, N.; Kitazato, K.; Takamatsu, J.; Saito, H., Antithrombotic and anticoagulant activity of depolymerized fragment of the glycosaminoglycan extracted from Stichopus japonicus Selenka. Thromb Haemost 1991,65, (4),369-73.
    133. Tapon-Bretaudiere, J.; Chabut, D.; Zierer, M.; Matou, S.; Helley, D.; Bros, A.; Mourao, P. A.; Fischer, A. M., A fucosylated chondroitin sulfate from echinoderm modulates in vitro fibroblast growth factor 2-dependent angiogenesis. Mol Cancer Res 2002,1, (2),96-102.
    134.李志广;王学锋,糖胺聚糖对受刺激内皮细胞组织因子和凝血酶调节蛋白表达….中华血液学杂志2000,21,(004),201-204.
    135. Liu, H.; Ko, W.; Hu, M., Hypolipidemic effect of glycosaminoglycans from the sea cucumber Metriatyla scabra in rats fed a cholesterol-supplemented diet. J. Agric. Food Chem 2002,50, (12), 3602-3606.
    136.樊绘曾,玉足海参酸性粘多糖的研究.药学学报1983,18,(3),203-203.
    137. Borsig, L.; Wang, L.; Cavalcante, M. C.; Cardilo-Reis, L.; Ferreira, P. L.; Mourao, P. A.; Esko, J. D.; Pavao, M. S., Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. J Biol Chem 2007,282, (20),14984-91.
    138. Fonseca, R.; Santos, G.; Mour o, P., Effects of polysaccharides enriched in 2,4-disulfated fucose units on coagulation, thrombosis and bleeding. Thromb Haemost 2009,102,829-836.
    139.张佩文;骆苏芳;钟春宁;王强基,玉足海参酸性粘多糖的抗凝血作用.中国药理学与毒理学杂志1988,2,(2),98-98.
    140.黄益丽;吴萍茹,二色桌片参的化学成分研究:Ⅲ,二色桌片参多糖—1——岩藻聚糖的免疫调节.海洋通报2001,20,(001),88-91.
    141. Kim, S.; Kim, S.; Song, K., Partial Purification and Characterization of an Angiotensin-converting Enzyme Inhibitor from Squid Ink. Agricultural Chemistry and biotechnology 2003.
    142. Takaya, Y.; Uchisawa, H.; Matsue, H.; OKUZAKI, B.; Narumi, F.; SASAKI, J.; Ishida, K., An investigation of the antitumor peptidoglycan fraction from squid ink. Biological & pharmaceutical bulletin 1994,17, (6),846-849.
    143. Takaya, Y.; Uchisawa, H.; Hanamatsu, K.; Narumi, F.; OKUZAKI, B.; Matsue, H., Novel fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure(-6 GalNac a 1-3 GlcAβ1-3 Fuc a 1-)□n □. Biochemical and biophysical research communications(Print) 1994,198, (2),560-567.
    144. Takaya, Y; Uchisawa, H.; Narumi, F.; Matsue, H., Illexins A, B, and C from squid ink should have a branched structure. Biochemical and Biophysical Research Communications 1996,226, (2), 335-338.
    145. Sasaki, J.; Ishita, K.; Takaya, Y.; Uchisawa, H.; Matsue, H., Anti-tumor activity of squid ink. Journal of nutritional science and vitaminology 1997,43,455-461.
    146. Rajaganapathi, J.; Thyagarajan, S.; Edward, J., Study on cephalopod's ink for anti-retroviral activity. Indian journal of experimental biology 2000,38, (5),519.
    147. Naraoka, T.; Uchisawa, H.; Mori, H.; Matsue, H.; Chiba, S.; Kimura, A., Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, lllex argentinus. European Journal of Biochemistry 2003,270, (19),4026.
    148. Russo, G.; De Nisco, E.; Fiore, G.; Di Donato, P.; d'Ischia, M.; Palumbo, A., Toxicity of melanin-free ink of Sepia officinalis to transformed cell lines:identification of the active factor as tyrosinase. Biochemical and Biophysical Research Communications 2003,308, (2),293-299.
    149. Sadok, S.; Abdelmoulah, A.; El Abed, A., Combined effect of sepia soaking and temperature on the shelf life of peeled shrimp Penaeus kerathurus. Food Chemistry 2004,88, (1),115-122.
    150.李孝东;王凤山;宋允胜;曹吉超;徐斌,乌贼墨糖胺聚糖的制备与理化性质研究.中国海岸药物2004,23,(004),24-27.
    1. Bultel, L.; Landoni, M.; Grand, E.; Couto, A.; Kovensky, J., UV-MALDI-TOF Mass Spectrometry Analysis of Heparin Oligosaccharides Obtained by Nitrous Acid Controlled Degradation and High Performance Anion Exchange Chromatography. Journal of the American Society for Mass Spectrometry 2009.
    2. Wolff, J.; Laremore, T.; Busch, A.; Linhardt, R.; Amster, I., Electron detachment dissociation of dermatan sulfate oligosaccharides. Journal of the American Society for Mass Spectrometry 2008,19, (2), 294-304.
    3. Chai, W.; Piskarev, V.; Lawson, A., Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem 2001,73, (3),651-657.
    4. Yu, G.; Zhao, X.; Yang, B.; Ren, S.; Guan, H.; Zhang, Y.; Lawson, A.; Chai, W., Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry. Anal. Chem 2006,78, (24),8499-8505.
    5. Sasaki, J.; Ishita, K.; Takaya, Y.; Uchisawa, H.; Matsue, H., Anti-tumor activity of squid ink. Journal of nutritional science and vitaminology 1997,43,455-461.
    6. Wang, S.; Cheng, Y.; Wang, F.; Sun, L.; Liu, C.; Chen, G.; Li, Y.; Ward, S.; Qu, X., Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomedicine & Pharmacotherapy 2008.
    7. Takaya, Y.; Uchisawa, H.; Hanamatsu, K.; Narumi, R.; OKUZAKI, B.; Matsue, H., Novel fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure(-6 GalNaca 1-3 GlcA β1-3 Fuc a 1-)□n□. Biochemical and biophysical research communications(Print) 1994,198, (2),560-567.
    8. 陈士国.鱿鱼墨多糖和黑色素的研究.中国海洋大学,2007.
    9. Strydom, D., Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. Journal of chromatography. A 1994,678, (1),17-23.
    10. Chai, W.; Lawson, A.; Piskarev, V., Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. Journal of the American Society for Mass Spectrometry 2002,13, (6), 670-679.
    11. Westling, W.; Ten Feizi, U., Relative Susceptibilities of the Glucosamine-Glucuronic Acid and N-Acetylglucosamine-Glucuronic Acid Linkages to Heparin Lyase Ⅲ. Biochemistry 2004,43,26.
    1. Vieira, R.; Mourao, P., Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. Journal of Biological Chemistry 1988,263, (34),18176-18183.
    2. 姜健,杨.邰.,海参资源及其生物活性物质的研究.生物技术通讯2004,(05).
    3. Minamiguchi, K.; Nagase, H.; Kitazato, K.; Kitazato, K., Interaction of a new depolymerized holothurian glycosaminoglycan with proteins in human plasma. Thrombosis Research 1996,83, (3),253.
    4. Kariya, Y.; Watabe, S.; Hashimoto, K.; Yoshida, K., Occurrence of chondroitin sulfate E in glycosaminoglycan isolated from the body wall of sea cucumber Stichopus japonicus. Journal of Biological Chemistry 1990,265, (9),5081-5085.
    5. Vieira, R.; Mulloy, B.; Mourao, P., Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. Journal of Biological Chemistry 1991,266, (21),13530-13536.
    6. Mourao, P. A.; Pereira, M. S.; Pavao, M. S.; Mulloy, B.; Tollefsen, D. M.; Mowinckel, M. C.; Abildgaard, U., Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem 1996,271, (39),23973-84.
    7. Kariya, Y.; Watabe, S.; Kyogashima, M.; Ishihara, M.; Ishii, T., Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus. Carbohydr Res 1997,297, (3),273-9.
    8. Kariya, Y.; Sakai, T.; Kaneko, T.; Suzuki, K.; Kyogashima, M., Enhancement of t-PA-mediated plasminogen activation by partially defucosylated glycosaminoglycans from the sea cucumber Stichopus japonicus. JBiochem 2002,132, (2),335-43.
    9. 尹利昂.不同海参多糖的分离纯化及生化性质分析.中国海洋大学,2009.
    10. Ohira, S.; Toda, K., Ion chromatographic measurement of sulfide, methanethiolate, sulfite and sulfate in aqueous and air samples. Journal of Chromatography A 2006,1121, (2),280-284.
    11. Strydom, D., Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. Journal of chromatography. A 1994,678, (1),17-23.
    12. Bernardi, G.; Springer, G., Properties of highly purified fucan. Journal of Biological Chemistry 1962,237, (1),75-80.
    13. Duarte, M.; Cardoso, M.; Noseda, M.; Cerezo, A., Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydrate Research 2001,333, (4),281-293.
    14. Yoshida, K.; Minami, Y.; Nemoto, H.; Numata, K.; Yamanaka, E., Structure of DHG, a depolymerized glycosaminoglycan from sea cucumber, Stichopus japonicus. Tetrahedron letters 1992,33, (34),4959-4962.
    15. Ribeiro, A. C.; Vieira, R. P.; Mourao, P. A.; Mulloy, B., A sulfated alpha-L-fucan from sea cucumber. Carbohydr Res 1994,255,225-40.
    1. 林洪;江洁,褐藻岩藻聚糖结构和活性研究进展.中国海洋药物2002,21,(006),42-47.
    2. 李八方.羊栖菜功能多糖化学及其生物活性研究.中国科学院研究生院(海洋研究所),2003.
    3. 周裔彬;汪东风;杜先锋;倪晓波,酸化法提取海带多糖及其纯化的研究.南京农业大学笋报2006,29,(003),103-107.
    4. 何云海;汪秋宽;刘红丹,用复合酶酶解提取海带岩藻聚糖硫酸酯的工艺研究.大连水产学院学报2006,21,(001),55-58.
    5. Berteau, O.; Mulloy, B., Sulfated fucans, fresh perspectives:structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003,13, (6),29R.
    6. Pereira, M.; Mulloy, B.; Mourao, P., Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. Journal of Biological Chemistry 1999, 274, (12),7656.
    7. Adhikari, U.; Mateu, C.; Chattopadhyay, K.; Pujol, C.; Damonte, E.; Ray, B., Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 2006,67, (22),2474-2482.
    8. Senni, K.; Gueniche, F.; Foucault-Bertaud, A.; Igondjo-Tchen, S.; Fioretti, F.; Colliec-Jouault, S.; Durand, P.; Guezennec, J.; Godeau, G.; Letourneur, D., Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Archives of Biochemistry and Biophysics 2006,445, (1),56-64.
    9. Pomin, V.; Mourao, P., Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008,18, (12),1016.
    10.董平;薛长湖;李兆杰;徐杰;赵雪;蔡跃飘;张永勤,岩藻聚糖硫酸酯低聚糖的制备及其抗氧化活性研究.中国海洋大学学报2006,36,(B05),59-62.
    11.廖建民;沈子龙,海带多糖中不同组分降血脂及抗肿瘤作用的研究.中国药科大学学报2002,33,(001),55-57.
    12. Li, B.; Lu, F.; Wei, X.; Zhao, R., Fucoidan:structure and bioactivity. Molecules 2008,13, 1671-1695.
    13.张英慧;曲爱琴;宋剑秋;王琪琳;徐中平;王海仁,海带多糖FGS对小鼠巨噬细胞细胞毒活性的影响.免疫学杂志2002,18,(005),403-403.
    14.陈蕾;吴皓,多糖降解方法的研究进展.中华中医药学刊2008,(001),133-135.
    15.王长云;管华诗,多糖抗病毒作用研究进展Ⅱ.硫酸多糖机病毒作用.生物工程进展2000,20,(002),3-8.
    16. Pomin, V.; Pereira, M.; Valente, A.; Tollefsen, D.; Pavao, M.; Mourao, P., Selective cleavage and anticoagulant activity of a sulfated fucan:stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology 2005,15, (4),369
    17. Chen, S.; Xu, J.; Xue, C.; Dong, P.; Sheng, W.; Yu, G.; Chai, W., Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconjugate Journal 2008,25, (5),481-492.
    18. Mourao, P. A.; Pereira, M. S.; Pavao, M. S.; Mulloy, B.; Tollefsen, D. M.; Mowinckel, M. C.; Abildgaard, U., Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem 1996,271, (39),23973-84.
    19. Kariya, Y.; Sakai, T.; Kaneko, T.; Suzuki, K.; Kyogashima, M., Enhancement of t-PA-mediated plasminogen activation by partially defucosylated glycosaminoglycans from the sea cucumber Stichopus japonicus. J Biochem 2002,132, (2),335-43.
    20. Ribeiro, A. C.; Vieira, R. P.; Mourao, P. A.; Mulloy, B., A sulfated alpha-L-fucan from sea cucumber. Carbohydr Res 1994,255,225-40.
    1. Mourao, P. A.; Pereira, M. S.; Pavao, M. S.; Mulloy, B.; Tollefsen, D. M.; Mowinckel, M. C.; Abildgaard, U., Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J Biol Chem 1996,271, (39),23973-84.
    2. Vieira, R. P.; Mourao, P. A., Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. J Biol Chem 1988,263, (34),18176-83.
    3. Vieira, R.; Mulloy, B.; Mour?o, P., Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. Journal of Biological Chemistry 1991,266, (21),13530-13536.
    4. Ribeiro, A. C.; Vieira, R. P.; Mourao, P. A.; Mulloy, B., A sulfated alpha-L-fucan from sea cucumber. Carbohydr Res 1994,255,225-40.
    5. Kariya, Y.; Sakai, T.; Kaneko, T.; Suzuki, K.; Kyogashima, M., Enhancement of t-PA-mediated plasminogen activation by partially defucosylated glycosaminoglycans from the sea cucumber Stichopus japonicus. JBiochem 2002,132, (2),335-43.
    6. Kariya, Y.; Watabe, S.; Kyogashima, M.; Ishihara, M.; Ishii, T., Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus. Carbohydr Res 1997, 297, (3),273-9.
    7. Glauser, B.; Pereira, M.; Monteiro, R.; Mourao, P., Serpin-independent anticoagulant activity of a fucosylated chondroitin sulfate. Thromb Haemost 2008,100, (3),420-8.
    8. Mourao, P. A.; Boisson-Vidal, C.; Tapon-Bretaudiere, J.; Drouet, B.; Bros, A.; Fischer, A., Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm. Thromb Res 2001,102, (2),167-76.
    9. Imanari, T.; Washio, Y.; Huang, Y.; Toyoda, H.; Suzuki, A.; Toida, T., Oral absorption and clearance of partially depolymerized fucosyl chondroitin sulfate from sea cucumber. Thromb Res 1999,93, (3), 129-35.
    10. Sheehan, J.; Walke, E., Depolymerized holothurian glycosaminoglycan and heparin inhibit the intrinsic tenase complex by a common antithrombin-independent mechanism. Blood 2006,107, (10), 3876.
    11. Mourao, P. A.; Giumaraes, B.; Mulloy, B.; Thomas, S.; Gray, E., Antithrombotic activity of a fucosylated chondroitin sulphate from echinoderm:sulphated fucose branches on the polysaccharide account for its antithrombotic action. Br JHaematol 1998,101, (4),647-52.
    12. Tovar, A.; Mourao, P., High affinity of a fucosylated chondroitin sulfate for plasma low density lipoprotein. Atherosclerosis 1996,126, (2),185-195.
    13. Tapon-Bretaudiere, J.; Chabut, D.; Zierer, M.; Matou, S.; Helley, D.; Bros, A.; Mourao, P. A.; Fischer, A. M., A fucosylated chondroitin sulfate from echinoderm modulates in vitro fibroblast growth factor 2-dependent angiogenesis. Mol Cancer Res 2002,1, (2),96-102.
    14. Borsig, L.; Wang, L.; Cavalcante, M. C.; Cardilo-Reis, L.; Ferreira, P. L.; Mourao, P. A.; Esko, J. D.; Pavao, M. S., Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. JBiol Chem 2007,282, (20),14984-91.
    15.樊绘曾;吴世馥,刺渗糖胺聚糖的亚分级和各级分的理化特征与抗凝性质.生物化学杂志1993,9,(002),146-151
    16. Liu, Z.; Perlin, A., Evidence of a selective free radical degradation of heparin, mediated by cupric ion. Carbohydrate research 1994,255,183-191.
    17. Chen, S.; Xu, J.; Xue, C.; Dong, P.; Sheng, W.; Yu, G.; Chai, W., Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconjugate Journal 2008,25, (5),481-492.
    1. Guerrini, M.; Beccati, D.; Shriver, Z.; Naggi, A.; Viswanathan, K.; Bisio, A.; Capila, I., Lansing, J.; Guglieri, S.; Fraser, B., Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nature Biotechnology 2008,26, (6),669-675.
    2. Mourao, P. A.; Giumaraes, B.; Mulloy, B.; Thomas, S.; Gray, E., Antithrombotic activity of a fucosylated chondroitin sulphate from echinoderm:sulphated fucose branches on the polysaccharide account for its antithrombotic action. Br JHaematol 1998,101, (4),647-52.
    3. 姚成芳;蔡生业,复方花刺参制剂抗凝血机制的实验研究.中国海洋药物2000,19,(001),33-35.
    4. Mourao, P. A.; Boisson-Vidal, C.; Tapon-Bretaudiere, J.; Drouet, B.; Bros, A.; Fischer, A., Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm. Thromb Res 2001,102, (2),167-76.
    5. Tojo, E.; Prado, J., Chemical composition of carrageenan blends determined by IR spectroscopy combined with a PLS multivariate calibration method. Carbohydrate Research 2003,338, (12), 1309-1312.
    6. Fonseca, R.; Santos, G.; Mour o, P., Effects of polysaccharides enriched in 2,4-disulfated fucose units on coagulation, thrombosis and bleeding. Thromb Haemost 2009,102,829-836.
    7. Takaya, Y.; Uchisawa, H.; Hanamatsu, K.; Narumi, F.; OKUZAKI, B.; Matsue, H., Novel fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure(-6 GalNac a 1-3 GlcA 31-3 Fuc a 1-)□n□. Biochemical and biophysical research communications (Print) 1994,198, (2),560-567.
    8. Takaya, Y.; Uchisawa, H.; Narumi, F.; Matsue, H., Illexins A, B, and C from squid ink should have a branched structure. Biochemical and Biophysical Research Communications 1996,226, (2),335-338.
    9. Chen, S.; Xu, J.; Xue, C.; Dong, P.; Sheng, W.; Yu, G.; Chai, W., Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconjugate Journal 2008,25, (5),481-492.
    10.史宝军;许正宏,硫酸酯化灰树花多糖的制备与分析.无锡轻工业大学学报:食品与生物技术2003,22,(002),75-78.
    11.于广利;高昊东;杨波;赵峡;郝翠,一种水不溶灰树花菌丝体多糖(GF4A)硫酸酯化研究.中国海洋大学学报2008,38,(001),17-22.
    12. Falshaw, R.; Hubl, U.; Ofman, D.; Slim, G.; Amjad Tariq, M.; Watt, D.; Yorke, S., Comparison of the glycosaminoglycans isolated from the skin and head cartilage of Gould's arrow squid (Nototodarus gouldi). Carbohydrate Polymers 2000,41, (4),357-364.
    13. Ohira, S.; Toda, K., Ion chromatographic measurement of sulfide, methanethiolate, sulfite and sulfate in aqueous and air samples. Journal of Chromatography A 2006,1121, (2),280-284.
    14. Strydom, D., Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. Journal of chromatography. A 1994,678, (1),17-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700