沙蚕纤溶蛋白酶的生化与分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血栓栓塞性疾病(thrombotic disease, TD)已成为目前严重的医学问题,发病率、致残率、致死率皆高。药物溶栓是目前临床应用最广泛、最有效的治疗手段。迄今为止,溶栓剂已发展了三代,但依然存在一定的缺陷,有待开发出一种安全有效的新型溶栓剂。本研究旨在从中国渤海湾海洋环节动物沙蚕(Nereis virens)体内开发出一种新型的海洋生物溶栓剂,确定其分子特征、酶学特性及溶栓机制,并构建此生物cDNA表达型文库筛选其克隆基因,为进一步分子生物学方面的深入研究奠定基础。
     本研究成功地从中国渤海湾沙蚕(Nereis virens)体内发现并提纯出一种电泳纯的新型海洋纤溶活性成分——沙蚕纤溶酶,又名N-V蛋白酶,并明确其主要富集于沙蚕(Nereis virens)的体腔液和内脏组织中。此酶的纯化工艺非常稳定,每升组织粗提液约可获得0.2mg活性蛋白,回收率为28.9%。该酶及其纯化工艺已获取国家发明专利(沙蚕蛋白酶及其分离提取纯化方法和应用,申请号:02144828.0,公开号:CN 1500873A)。证实此酶为一种单链蛋白,属丝氨酸蛋白酶家族新成员,具有类胰蛋白酶特性,表观分子量为29,000Da,等电点为4.5。经专一性水解酶降解,MALDI-TOF质谱分析,获取酶分子中10段多肽链的N-端氨基酸序列,Swiss-Prot数据库申请登录号为P83433,经分析比对,证实此酶为一种新发现的蛋白酶。
     该酶的纤溶活力和体外溶栓效果明显,比活力达116280U/mg,且具有良好的热稳定性和pH稳定性。溶栓机制分析发现,该酶为一种类尿激酶作用位点的纤溶酶,并发现与蚓激酶相似,既具有直接纤溶活性,也具有激酶活性,即通过激活纤溶酶原,使其转化为纤溶酶的间接纤溶活性。其能高特异性水解纤维蛋白原的Aα-链,而对Bβ-和γ-链的水解活性较低(Aα>Bβ>γ),且能有效地水解纤维蛋白的α-链,而对β-和γ-γ链的水解活性较低(α>β>γ-γ),并经胶内蛋白酶水解活性实验证实此蛋白水解活性与29,000Da电泳蛋白带相关。此外,还成功构建了沙蚕(Nereis virens)虫体的完整性cDNA表达型文库,为进一步基因克隆和表达研究奠定了良好基础。
Thrombotic disease (TD) is a lethal medical complication with high incidence, especially when happen in brain and heart. Thromboembolism is the lending cause of human death in western affluent countries, which mainly damages the blood systems of heart, brainand lung, resulting in human death and disability in adult population. Thrombolytic agents have been extensively used as the therapeutic treatment of thromboembolism complication. At present, there are all three generations of thrombolytic agent, but more or less side effects are present in each of them.
     Many organisms are important sources of thrombolytic agents. The resource of marine biology is a resourceful warehouse of the novel medicinal exploitation in the future. The novel structure and unique function of marine biology are active domain of new medicinal exploitation. At 20th century, with a trend of blue medicine,“For Ocean Medicine”has become a novel mark. The exploitation of anti-thrombolytic activity of marine biology has been in the ascendant.
     The polychaete Nereis virens of the Bohai Sea of China is a common marine annelid with abundant protease, its activity needs to be further explored. For the reason, our laboratory has investigated and identified a novel marine biology thrombolytic agent, with a strong protelytic activity such as earthworm autolyzing. Therefore, in this paper the main achievements in our investigations are now showed as follows.
     1. We successfully identified a novel oceanic fibrinolytic activity component----- The clamworm fibrinolytic protease from the coelomic fluid and bowels. Isolation of this fibrinolytic enzyme was carried out by the combination of various column chromatographic steps: anion-exchange chromatography DEAE-Sepharose Fast Flow、canion-exchange chromatography CM-Sepharose Fast Flow、gel permeation chromatography Sephacryl S-200 High Resolution and Sephadex G-25 Superfine. Every litre of clamworm sample can get 0.2mg activity protein, yield is 28.9%. The clamworm fibrinolytic protease and its purified method have applied for invention patent (The clamworm fibrinolytic protease, its purified method and application, the number of application: 02144828.0, the open number: CN 1500873A).
     2. The clamworm fibrinolytic protease showed a protein band in the SDS-PAGE and PAGE, which indicated the purified produce has achieved electrophoretic standard, and the protease is a single chain protein. The protease was analyzed by 2-DE and MALDI-TOF MS, and the estimated molecular mass is 29,000Da, its pI was about 4.5.
     3. Peptide Mass Fingerprinting (PMF) of the clamworm fibrinolytic protease was obtained by MALDI-TOF mass spectrometry, showed 33 peaks. This result was supported by the fact that the clamworm fibrinolytic protease was digested by trypsin to 33 peptides. In further studies, we have obtained 10 N-amino-acid sequences of these peptides, as follows: 1. NVVAVK; 2. INL; 3. QAPNYSTASY; 4. FLSTNNK; 5. LYIHDTGVR; 6. AVYLAGMK; 7. NFPNYYINLY; 8. VYLAANPTASS; 9. QTFNSDTL; 10. VYILDTGI, and input the sequences into the Swiss-Prot annotated protein sequence database (N-V proteinase, No. P83433). We searched the NCBI nonredundant protein sequence database using the MS Fit algorithm to look for proteins that match the peptide mass spectra of the clamworm fibrinolytic protease, but retrieved no sequence. Therefore we conclude that the clamworm fibrinolytic protease is a novel and special protein in Nereis virens.
     4. The fibrinolytic activity of the clamworm fibrinolytic protease and its effect of dissolving thrombus in vitro were obvious. Its fibrinolytic activity was more strong than Urokinase (UK), especially when concentration decreasing and reactive time prolonging, its specific activity was about 1.16×105U /mg.
     5. The fibrinolytic activity of the clamworm fibrinolytic protease was stable in the range of pH 4~9, at 30~55℃, and was optimal at pH 7.8, 45℃. These results suggest that the clamworm fibrinolytic protease is a heat, pH-resist and stable protease.
     6. The clamworm fibrinolytic protease was sensitive to serine protease inhibitors, especially DFP (I50 = 5.8×10-4 M) and PMSF (I50 = 5.5×10-2 M), and also TLCK (I50 = 7.7×10-1 M). However, other serine protease inhibitors, including Aprotinin, Elastinal, SBTI and Benzamidine had no obvious effect on proteolytic activity. Cysteine protease inhibitors (Iodoacetate and E64) and the metalloprotease inhibitors (EDTA and EGTA) did not affect the activity of the clamworm fibrinolytic protease, either. These results suggest that the clamworm fibrinolytic protease is a trypsin-like serine protease.
     7. In substrates specificity assays, four substrates (S-2444; pyro-Glu-Gly-Arg- pNA;S-2252:H-D-Val-Leu-Lys-pNA·HCl;Benzoyl-Phe-Val-Arg-pNA;Tosyl-Gly-Pro-Arg-pNA) were used to detect its enzymatic parameters. The Michaelis-Menten constant (Km) of the clamworm fibrinolytic protease is much lower measured by S-2444 than other substrates. It indicates that the active site in the clamworm fibrinolytic protease is more similar to substrate of Urokinase.
     8. The clamworm fibrinolytic protease has been showed by fibrin plate that it could dissolve clotting through two pathways: (1) directly via hydrolyzing fibrin and fibrinogen; and (2) indirectly via activating plasminogen to plasmin, then has the similar procedure to Lumbrinonase.
     9. Analyzing the hydrolysis of the clamworm fibrinolytic protease showed that it completely and rapidly digested theα-chain, and slowly hydrolyzes theβ- andγ-γchains of fibrin (α>β>γ-γ), and hydrolyzed the Aα-chain of fibrinogen with a high efficiency, and the Bβ- andγ-chains with a lower efficiency. Moreover, the proteolytic activity is associated with 29,000Da protein band (the clamworm fibrinolytic protease) by an in-gel protease activity test.
     10. The cDNA expression library of Nereis virens has been constructed integrally. The unamplified cDNA library consists of 2.0×107 independent clones in which the percentage of recombinant clones is about 75.2%. The average size of inserts is 1.0kb, and the titer of amplified cDNA library is 1.0×1011 pfu/ml.
     In summary, the clamworm fibrinolytic protease is a novel fibrinolytic protease, and trypsin-like serine protease, and has the similar procedure to Urokinase (UK). The clamworm fibrinolytic protease can be used clinically in the future due to its obvious advantages such as strong fibrinolytic activity, high stable, long half-life et al. The cDNA expression library has an excellent quality and lays solid foundation for further screening its code gene by antibody.
引文
[1] Yu I.T.S., Li W., Wong T.W. Effects of age, period and cohort on acute myocardial infarction mortality in Hong Kong. International Journal of Cardiology, 2004, 97: 63-68.
    [2] Yang T.Y., Chung K.J., Huang T.L., Kung C.T. Massive pulmonary embolism in a young patient on clozapine therapy. The Journal of Emergency Medicine, 2004, 27(1): 27-29.
    [3] Ginsberg J.S. Antithrombotic therapy in children. Thrombosis Research, 2003, 109: 83.
    [4] Temple M., Williamsb S., Johna P., Chaita P., Connollya B. Percutaneous treatment of pediatric thrombosis. European Journal of Radiology, 2005, 53: 14-21.
    [5] Punukollu H., Khan I.A., Punukollu G., Gowda R.M., Mendoza C., Sacchi T.J. Acute pulmonary embolism in elderly: clinical characteristics and outcome. International Journal of Cardiology, 2005, 99: 213-216.
    [6] Sumino H., Ichikawab S., Sawadab Y., Sakamotoc H., Kumakurab H., Takayamab Y., Sakamakid T., Kurabayashi M. Effects of hormone replacement therapy on blood coagulation and fibrinolysis in hypertensive and normotensive postmenopausal women. Thrombosis Research, 2005, 115: 359-366.
    [7] Jiang Y., Kang Y.J. Metallothionein gene therapy for chemical-induced liver fibrosis in mice. Molecular Therapy, 2004, 10(6): 1130-1139.
    [8] Richard, S.G. Platelet aggregation inhibitors for use in peripheral vascular interventions:what can we learn from the experience in the coronary arteries?. J Vasc Intern Radiol, 2002, 13(3): 229.
    [9] S.S. Bajwa, H. Kirakossian, K.N.N. Reddy, F.S. Markland, Thrombin-like and fibrinolytic enzymes in the venoms from the gaboon viper (Bitis gabonica), eastern cottonmouth moccasin (Agkistrodon p. piscivourus) and southern copperhead (Agkistrodon c. contortrix) snakes, Toxicon 20(1982): 427-432.
    [10] E. Siigur, J. Siigur. Purification and characterization of lebetase, a fibrinolytic enzyme from Viper lebetina (snake) venom, Biochim. Biophys. Acta 1074(1991): 223-229.
    [11] Y. Zhang, A. Wisner, Y. Xiong., C. Bon. A novel plasminogen activator from snake venom, J. Biol. Chem 270(1995): 10246-10255.
    [12] 国家发展和改革委员会医药工业信息中心站, 中国医药经济战略研究, 上海医药工业研究院,2005.08.
    [13] Bum-Soo Hahn, So Yean Cho, et al. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis). Biochim et Bioph Acta 1430(1999): 376-386.
    [14] Guo Y.W., Chang T.Y., Lin K.T., Liu H.W., Shih K.C., Cheng S.H. Cloning and functional expression the mucrosobin protein, α,β-fibrinogenase of Trimeresurus mucrosquamatus (Taiwan Habu), Protein Expr Purif 23(2001): 483-490.
    [15] S.J. Gardell, L.T. Duong, R.E. Diehl, J.D. York, T.R. Hare, R.B. Register, J.J. Jacobs, R.A.Dixon, P.A.Friedman. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J. Biol. Chem 264(1989):17947-17952.
    [16] Hahn B.S., Cho S.Y., Ahn M.Y., Kim Y.S. Purification and characterization of a plasmin-like protease from Tenodera sinensis (Chinese mantis). Insect Biochem Mol Biol 31(2001): 573–581.
    [17] Ant?nio Fre M P, Ricardo D, et al, Lonofibrase, a novel α-fibrinogenase fromLonomia obliqua caterpillars. Thrombosis Reseach 113(2004): 147-154.
    [18] Sugimoto, M., Nakajima, N. Molecular cloning, sequencing, and expression of cDNA encoding serine protease with fibrinolytic activity from earthworm. Biosci. Biotechnol. Biochem 65(2001): 1575–1580.
    [19] Li, L., Zhao, J., He, R.Q. Isolation and some characterizations of a glycosylated fibrinolytic enzyme of earthworm, Eisenia fetida, Protein Pept. Lett 10(2003): 183–190.
    [20] A. M. Chudzinski-Tavassi, E. M. A. Kelen, C. A. M. Sampaio, C. Bon, L. Q. Tome , E. Anglés-Cano. Studies on hementerin, a fibrinogenolytic protein isolated from the salivary complex of the leech Haementeria depressa. 8(1994): 38.
    [21] Matsubara K., Hori K., Matsuura Y., Miyazama K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting in a marine green alga, Codium divaricatum. Comp Biochem Physiol, Part B Biochem Mol Biol 125(2000): 137– 143.
    [22] Kim, S.H., Choi, N.S. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang, Biosci. Biotech. Biochem. 64(2000): 1722–1725.
    [23] Park S.G., Kho C.W., Cho S., Lee do H., Kim S.H., Park B.C. A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics 2(2002): 206–211.
    [24] Segel G.B., Francis C.W. Anticoagulant Proteins in Childhood Venous and Arterial Thrombosis: A Review. Blood Cells, Molecules, and Diseases, 2000, 26(5) October: 540-560.
    [25] Tebbe V., Michels R., Adgey J., et al. Randomized double-blind study comparingsaruplase with streptokinase therapy in acute myocardial infarction: the compass equivalence trial. J Am Coll Cardiol, 1998 (31): 487-493.
    [26] Nakajima N., Mihara H., Sumi H. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Biosci Biotech Biochem, 1993 (57):1726~1730.
    [27] Reed G.L., Lin L.F., Parhamiseren B., et al. Prinary structure of streptokinase. Biochemisrey, 1995 (34): 10266-10271.
    [28] Jackson K.W., Esmon N., Tang J. Streptokinase and staphylokinase. Methods Enzymol. 1981(80): 387-394.
    [29] McLellan,D.S., Jurd K.M. Anticoagulants from marine algae. Blood Coagul. Fibrinolysis 1992(3): 69-77.
    [30] Shimonaka M., Hagiwara H., KojimaS., Inada Y. Successive study on the production of plasminogen activator in cultured endothelial cells by phytosterol.Thromb.Res. 1984(36): 217-222.
    [31] Matsubara K., Sumi H., Hori K. Platelet aggregation is inhibited by phycolectins. Experientia 1996(52): 540-543.
    [32] Andreasen P.A., Kjoller L., Christensen L., Duffy M.J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer, 1997, 72(1): 1-22.
    [33] Matsuo O., Rijken D.C., Collen D. Thrombolysis by human tissue plasmnogen activator and urokinase in rabbits with experimental pulmonary embolus. Nature, 1981(291): 590-591.
    [34] Hansen A.P., Petros A.M., Meadows R.P., Nettesheim D.G., Mazar A.P., Olejniczak E.T., Xu R.X., Pederson T.M., Henkin J., Fesik S.W. Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator. Biochemistry, 1994, 33(16): 4847-4864.
    [35] Liu J.N., Pannell R., Gurewich V. A transitional state of pro-urokinase that has a higher catalytic efficiency against glu-plasminogen than urokinase. J. Biol. Chem. 1992a, 267(22): 15289-15292.
    [36] Mihara. H., et al, Thrombotic proteases from earthworm. Eur Pat Appl EP 105, 092 C1C12 N9647, 11, Apr 1984, JP Aprl, 82/173669, 02 Oct. 1982.
    [37] 孙兆军, 袁桂枝, 梁国栋. 蚯蚓纤溶酶分子生物学进展. 生物工程进展. 2001, 21(6): 15-18.
    [38] Mihara H., et al. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus, Jpn. J. Physiol. 1991, 41(3): 461-721.
    [39] Ryu G.H., et al. Antithrombotic acticity of a lubrokinase immobilized polyurethane surface. ASAZO J, 1993, Jul-Sep; 39(3): M 314-318.
    [40] 赵晓瑜, 静天玉. 蚯蚓纤溶酶的成分分析. 中国生物化学与分子生物学报. 1998, 14(4): 407-411.
    [41] 路英华, 金汝成. 蚯蚓纤溶酶的提取、性质鉴定和溶解血栓的研究. 兰州大学学报(自然科学版). 1986, 22(1): 95-100.
    [42] 路英华, 金汝成, 吴应文, 孟雪琴. 钜齿远蚓(Amynthas dancataa)纤溶酶的分离纯化及其若干性质. 中国生物化学与分子生物学学报. 1988, 4(2): 166-172.
    [43] 程牛亮,牛 勃,张祖珣,赵景亥,单鸿仁. 双胸蚓纤溶酶的纯化及性质. 中国生物化学与分子生物学学报. 1990, 6(2): 186-190.
    [44] Yang J.S., Ru B.G. Purification and characterization of an SDS-activated fibrinolytic enzyme from Eisenia fetida. Comp. Biochem. Physiol. B. Biochem Mol. Bio, 1997 Nov: 118(3): 623-631.
    [45] Hrzenjak T.M., et al. Fibrinolytic and anticoagulative activities from the earthworm Eisenia foetida. Comp Biochem Physiol B Biochem Mol Biol, 1998, Apr. (1914): 825-832.
    [46] 邢宝东,殷慎敏,茹炳根. 蚯蚓纤溶酶的分离纯化及性质. 生物化学与生物物理学报. 1997,29(6):609-611.
    [47] 周元聪,朱 洪,陈远聪. 赤子爱胜蚓(Eisenia foelide)纤溶酶的分离纯化. 生物 化学与生物物理学报. 1988,20(1):35-42.
    [48] 徐建民,张国祯,陈松鹤. 赤子爱胜蚓纤维蛋白溶解酶的亲和层析纯化和生化特性. 上海医学大学学报,1991,18(4):252-255.
    [49] Hu R.L., Zhang S.F., Liang H.Y., Li N., Tu C.C. Codon optimization, expression, and characterization of recombinant lumbrokinase in goat milk. Protein Expression and Purification, 2004(37): 83-88.
    [50] Swenson S., Markland F.S. Snake venom fibrin(ogen)olytic enzyme. Toxicon, 2005(45): 1021-1039.
    [51] Liang X., Chen J., Zhou Y., Qiu P., Yan G. Purification and biochemical characterization of FIIa, a fibrinolytic enzyme from Agkistrodon acutus venom. Toxicon, 2001(39): 1133-1139.
    [52] 麦炜颐,曾群英,李玉杰,何 清,杜志民,陈国伟. 巴曲抗栓酶治疗不稳定型心绞痛的疗效及其对血小板聚集的影响. 临床心血管病杂志,1999.15(1):148-149.
    [53] 徐小龙,刘清亮. 尖吻蝮蛇毒内一种新抗凝血因子ACFII的纯化及特性. 生物化学与生物物理学报,2000,32(1):84-86.
    [54] Gardell S.J., Duong L.T., Diehl R.E., York J.D., Hare T.R., Register R.B., Jacolbs J.W., Dixon R.A.F., Friedman P.A. Isolation, characterization and cDNA cloning of a vampire bat salivary plasminogen activator. Journal of Biological Chemistry, 1989(64): 17947-17952.
    [55] Petri T., Langer G., Bringmann P., Cashion L., Shallow S., Schleuning W.D., Donner P. Production of vampire bat plasminogen activator DSPA-α1 in CHO and insect cells.Journal of Biotechnology, 1995, 39: 77-83.
    [56] Pinto A.F.M., Dobrovolski R., Veiga A.B.G., Guimaraes J.A.G. Lonofibrase, a novel α-fibrinogenase from Lonomia oblique caterpillars. Thrombosis Research, 2004: 113, 147-154.
    [57] Guerrero B., Perales J., Gil A., Arocha-Pinango C.L. Effect on platelet FXIII and partial characterization of Lonomin V, a proteolytic enzyme from Lonomia achelous caterpillars. Thrombosis Research, 1999, 93: 243-252.
    [58] 杨星勇,和惊秋,裴 炎等. 华广虻溶纤活性蛋白的纯化及生物活性分析. 中国生物化学与分子生物学报,1999,15(4):580-583.
    [59] Hahn B.S., Cho S.Y., Wu S.J., Chang I.M., Baek K., Kim Y.C. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis). Biochimica et Biophysica Acta, 1999, 1430: 376-386.
    [60] Hahn B.S., Cho S.Y., Ahn M.Y., Kim Y.S. Purification and characterization of a plasmin-like protease from Tenodera sinensis (Chinese mantis). Insect Biochemistry and Molecular Biology, 2001, 31: 573-581.
    [61] You W.K., Sohn Y.D., Kima K.Y., Park D.H., Jang Y., Chung K.H. Purification and molecular cloning of a novel serine protease from the centipede, Scolopendra subspinipes mutilans. Insect Biochemistry and Molecular Biology, 2004, 34: 239-250.
    [62] Ahn M.Y., Hahn B.S., Ryu K.S., Kim J.W., Kim I., Kim Y.S. Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus. Thrombosis Research, 2003, 112: 339-347.
    [63] Ratel D., Glazier G., Provencal M., Boivin D., Beaulieu E., Gingras D., Beliveau R. Direct-acting fibrinolytic enzymes in shark cartilage extract Potential therapeutic role in vascular disorders. Thrombosis Research, 2005, 115: 143-152.
    [64] 王佃亮, 刘万顺, 韩宝芹, 许瑞安, 张海智, 刘学英. 一种新型海洋纤溶酶体外抗凝与溶栓作用研究. 中国海洋药物 , 2006, (04):124-128.
    [65] Kim W., Choi K., Kim Y., Park H., Choi J., Lee Y., Oh H., Kwon I., Lee S. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62(7): 2482-2488.
    [66] Sun T., Liu B.H., Li P., Liu D.M., Li Z.H. 1998. New solid-state fermentation process for repeated batch production of fibrinolytic enzyme by Fusarium oxysporum. Process Biochem. 33(4): 419-422.
    [67] Sumi H., Hamada H., Tsushima H., Mihara H., Muraki H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia. 1987. 43(10): 1110-1111.
    [68] Kim W., Choi K., Kim Y., Park H., Choi J., Lee Y., Oh H., Kwon I. Lee S. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 1996. 62(7): 2482-1488.
    [69] Kim S.H., Choi N.S. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp strain DJ-4 screened from Doen-Jang. Biosci. Biotech. Biochem. 2000. 64: 1722-1725.
    [70]Kim H.K., Kim G.T., Kim U.K., Choi W.A., Park S.H., Jeong Y.K., Kong I.S. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 1997. 84(4):307-312
    [71] Chang C.T., Fan M.H., Kuo F.C., Sung H.Y. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem. 2000 48(8): 3210-3216
    [72] 彭勇,张义正. 豆豉溶栓酶产生菌的筛选及其酶学性质的初步研究. 高技术通讯. 2002.12(2): 30-34.
    [73] 韩润林,张小勇,张建安,李佐虎. 2000枯草杆菌溶栓酶的分离纯化研究. 中国生化药物杂志. 21(5):219-222.
    [74] Lee J., Park S., Choi W.A., Lee K.H., Jeong Y.K., Kong I.S., Park S. Production of a fibrinolytic enzyme in bioreactor culture by Bacillus subtilis BK-17. J. Microbiol. Biotechnol. 1999. 9(4): 443-449.
    [75] Ackson K.W., Esmon N. Tang J. Streptokinase and staphyiokinase. Methods Enz, ymol. 1981 80:387-394.
    [76] Sako T., Tsuchida N. Nucleotide sequence of the staphylokinase gene from Staphylococcus auneus. Nucleic Acids Res. 1983 11(22):7679-7693.
    [77] 赵 红,程 洁,陆 检,孟筱琦.产芽抱杆梭菌纤溶酶的纯化及特性中国生物制品学杂志. 2002 15(1 ): 27-31.
    [78] Chitte K.R., Dey S. Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SDS. Lett Appl Microbiol. 2000 31(6): 405-410.
    [79] Matsubara K, Hori K, Matsuura Y and Miyazawa K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 2000 125(1):137-143.
    [80] Matsubara K, Hori K, Matsuura Y and Miyazawa K. A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry. 1999 52(6):993-999.
    [81] El-Aassar S.A., EI-Badry H.M. Abdel-Fattah A.F. The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl. Microbiol. Biotechnol. 1990 33(1):26-30.
    [82] El-Aassar S.A. Production and properties enzyme in solid state cultures of Fusarium pallidoroseum. 13iotechnol. Lett. 1995 17(9):943-948.
    [83] Sun T., Liu B.H., Li P., Liu D.M., Li Z.H. New solid-state fermentation process forrepeated batch production of fibrinolytic enzyme by Fusarium oxysporum. Process Biochem. 1998 33(4): 419-422.
    [84] Abdel-Fattah A.F., Ismail A.S. Purification and some properties of pure Cochliobolus lunatus fibrinolytic enzyme. Biotech. Bioeng. 1984 26(5):407-411
    [85] Choi H.S., Shin P.H. Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia. 1998 90(4): 674-679.
    [86] Egorov N.S., Kochetov G.A., Khaidarova N.V. Isolation and properties of the fibrinolytic enzyme from the Actinomyces thermovulgaris cultural broth. Mikrobiologiia 1976 45:455-459.
    [87] Jackson K.M., Esmon N., Tang J. Streptokinase and staphylokinase. Methods Enzymol. 1981 80: 387-394.
    [88] Kim H.K., Kim G.T., Kim D.K., Choi W.A., Park S.H., Jeong Y.K., Kong I.S. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 1997. 84(4): 307-312.
    [89] Aujita M., Hong K., Ito Y. Transport of nattokinase across the rat intestinal tract. Biol. Pharm. Bull. 1995 18(9): 1194-1196.
    [90] 韩润林,张小勇,张建安,李佐虎.枯草杆菌溶栓酶的分离纯化研究. 中国生化药物杂志. 2000 21(5): 219-222.
    [91] Khan I.A.,Gowda R.M.Clinical perspectives and therapeutics of thrombolysis. International Journal of Cardiology, 2003, 91: 115-127.
    [92] Kramer W.B., Belfort M., Saade G.R., Surani S., Moise K.J. Successful urokinase treatment of massive pulmonary embolism in pregnancy. Obstetrics and Gynecology, 1995 (86): 660-662.
    [93] 李利红,王 辰,陈世伦,庞宝森,王 峰,伍燕兵,牛淑杰. 不同溶栓方案治疗肺栓塞时凝血纤溶变化的实验研究. 中国呼吸与危重监护杂志,2005,4(3):221-224.
    [94] 韩 敏,莫颖敏,李吕力,韦联星,甘照儒. 超早期溶栓治疗急性脑梗死. 临床荟萃,2005,20(7):361-363.
    [95] Suggs W.D., Cynamon J., Martin B., Sanchez L.A., Wahl S.I., Aronoff B., Veith F.J. When is urokinase treatment an effective sole or adjunctive treatment for acute limb ischemia secondary to native artery occlusion? American Journal of Surgery, 1999, 178: 103-106.
    [96] 宋或林,董玉红. 颈动脉注射尿激酶治疗超早期脑梗塞. 中国冶金工业医学杂志,2005,22(4):403-404.
    [97] Kim D.M., Lee S.J., Yoon S.K., Byun S.M., Specificity role of the streptokinase C-terminal domain in plasminogen activation. Biochemical and Biophysical Research Communications, 2002, 290: 585-588.
    [98] Zhang X.W., Sun T., Huang X.N., Liu X., Gu D.X., Tang Z.Q. Recombinant streptokinase production by fed-batch cultivation of Escherichia coli, Enzyme and Microbial Technology, 1999, 24: 647-650.
    [99] Cangir A.K., Yuksel C., Dakak., Ozgencil E., Gene O., Akay H. Use of intrapleural streptokinase in experimental minimal clotted hemothorax. European Journal of Cardio-thoracic Surgery, 2005, 27: 667-670.
    [100] Banerjee A., Chisti Y., Banerjee U.C., Streptokinase-a clinically useful thrombolytic agent. Biotechnology Advances, 2004, 22: 287-307.
    [101]贾茹芹. 重组链激酶与尿激酶临床应用观察. 实用诊断与治疗杂志,2003,17(5):393.
    [102]Lederer W., Lichtenberger C., Pechlaner C., Kinzl J., Kroesen G., Baubin M. Long-term survival and neurological outcome of patients who received recombinant arrest. Resuscitation, 2004, 61: 123-129.
    [103]Tachibana K. Ultrasound therapy for stroke and regenerative medicine. International Congress Series, 2004, 1274: 153-158.
    [104]杜 冰,姚汝华. 血栓溶酶研究进展. 广州药学院学报,2000,16(4):291-294.
    [105]Wang P., Zhang J., Sun Z., Chen Y., Gurewich V., Liu J. Catalytic and fibrinolytic properties of recombinant urokinase plasminogen activator from E.Coli, mammalian, and yeast cells. Thrombosis Research, 2000, 100: 461-467.
    [106] Verstraete M. Third-generation thrombolytic drugs. Am. J. Med., 2000, 109(1): 52-58.
    [107]Gardell S.J., Duong L.T., Diehl R.E., York J.D., Hare T.R., Register R.B., Jacobs J.W., Dixon R.A., Friedman P.A. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J. Biol. Chem., 1989, 264(30): 17947-17952.
    [108]Thchibana K. Ultrasound therapy for stroke and regenerative medicine. International Congress Series, 2004, 1274: 153-158.
    [109] Wilcox R.G. Randomised, double-blind comparison of reteplase double-bolus administration with streptokinase in acute myocardial infarction (INJECT): trial to investigate equivalence. The Lancet, 1995, 346: 326-329.
    [110]Lapchak P.A., Araujo D.A., Zivin J.A. Comparison of Tenecteplase with Alteplase on clinical rating scores following small clot embolic strokes in rabbits. Experimental Neurology, 2004, 185: 154-159.
    [111] Caldicott D., Parasivam S., Harding J., Edwards N., Bochner F. Tenecteplase for massive pulmonary embolus. Resuscitation, 2002, 55: 211-213.
    [112]Torrens I., Ojalvo A.G., Seralena A., Hayes O., Fuente J.D. A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic. Immunology Letters, 1999, 70: 213-218.
    [113]肖 蓉,赵 静,李庆伟. 嵌合体纤溶酶的研究进展. 生物物理学报,2005,21(2):90-94.
    [114]Erdogan S., Ozer A.Y., Bilgili H. In vivo behaviour of vesicular urokinase. International Journal of Pharmaceutics, 2005, 295: 1-6.
    [115] Jiao J., Yu M., Ru B. Characterization of a recombinant chimeric plasminogen activator with enhanced fibrin binding. Biochimica et Biophysica Acta, 2001,1546: 399-405.
    [116]Zhang L., Wang J., Yu M., Ru B. Functional properties of a recombinant chimeric plasminogen activator with platelet-targeted fibrinolytic and anticoagulant potential. Molecular Genetics and Metabolism. 2004, 82: 304-311.
    [117]Wirsching F., Luge C., Schwienhorst A. Modular design of a novel chimeric protein with combined thrombin inhibitory activity and plasminogen-activating. Potential Molecular Genetics and Metabolism, 2002, 75, 250-259.
    [118]孙 雷,黄仪秀,朱圣庚. 噬菌体单链抗体导向溶栓剂的构建. 北京大学学报(自然科学版),2000,36(6):881-884.
    [119]吕翠平,董小黎. 脂质体作为血栓性疾病药物载体的研究进展. 中华医药杂志,2005,5(2):126-128.
    [120]王红霞,杨 慧,郝 刚,曾翔俊,芦玲巧,江 瑛,朱 宪,姚兴海,张立克. 脂质体作为溶栓药物载体靶向抗血栓的实验研究. 首都医学大学学报,2004,25(3):290-293.
    [121]Swenson S., Bush L.R., Markland F.S. Chimeric derivative of fibrolase, a fibrinolytic enzyme from southern copperhead venom, possesses inhibitory activity on platelet aggregation. Archives of Biochemistry and Biophysics, 2000, 384(2): 227-237.
    [122]Lahteenmaki K., Kuusela P., Korhonen T.K. Bacterial plasminogen activators and receptors. FEMS Microbiology Reviews, 2001, 25: 531-552.
    [123]Sumi H., Hamado H., Tsushima H., Mihara H., Murica H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto: a typical and popular soybean food in the Japanese diet, Experientia, 1987, 43: 1110-1111.
    [124]Mine Y., Wong A.H.K., Jiang B. Fibrinolytic enzymes in Asian traditional fermented foods. Food Research International, 2005, 38: 243-250.
    [125]张洪伟. 急性心肌梗塞溶栓治疗的现状. 生物磁学,2005,5(1):41-42.
    [126]Song A., Liu J.N., Yu R.R., Cui D.F., Zhou T.M., Cui H.R., Zhu D.X. The structure basis of the poor fibrin specificity of urokinase (II)-The inhibition of urokinase A chain 149-157 on the fibrin stimulated activation of plasminogen by tissue type plasminogen activator. Sci China B. 1992, 35(8): 966-973.
    [127]Toombs C.F. New directions in thrombolytic therapy. Current Opinion in Pharmacology, 2001, 1: 164-168.
    [128]Khan I.A., Gowda R.M. Clinical perspectives and therapeutics of thrombolysis. International Journal of Cardiology, 2003, 91: 115-127.
    [129]Kandzari D.E., Granger C.B., Simoons M.L., White, H.D., Simes, J., Mahaffey K.W., Gore J., Weaver W.D., Longstreth W.T.Jr., Stebbins A., Lee K.L., Califf R.M., Topol E.J. Risk factors for intracranial hemorrhage and nonhemorrhagic stroke after fibrinolytic therapy (from the GUSTO-I trial). American Journal of Cardiology, 2004, 93: 458-461.
    [130]Smalling R.W. Molecular biology of plasminogen activators: what are the clinical implications of drug dedign? Am. J. Cardiol. 1996, 78(12A): 2-7.
    [131]Merlini P.A., Cugno M., Rossi M.L., Agricola P., Repetto A., Fetivean R., Diotallevi P., Canosi U., Mannucci P.M., Ardissino D. Activation of the contact system and inflammation after thrombolytic therapy in parients with acute myocardial infarction. The American Journal of Cardiology, 2004, 93: 822-825.
    [132]宋后燕. 重组溶血栓药物研制的进展. 2002,9(2):61-65.
    [133]余绍玲,刘 方. 尿激酶的不良反应. 中原医刊,2003,30(24):52.
    [134]秦学英,葛永芳. 尿激酶静滴致咯血. 药物不良反应杂志,2002,5:345.
    [135]闫双银,侯婷婷,王丽芳. 蚓激酶最新临床应用进展. 中国药事,2005,19(6):365-368.
    [136] Benchenane K., Lopez-Atalaya J.P., Fernandez-Monreal M., Touzani O., Vivien D. Equivocal roles of tissue-type plasminogen activator in stroke induced injury. Trends in Neurosciences, 2004, 27(3): 155-160.
    [137] Deutsch H., Rodriguez J.C., Titton R.L. Lower dose intraventricular t-PA fibrinolysis: case report. Surgical Neurology, 2004, 61: 460-463.
    [138]Alberts M.J. Hyperacute stroke therapy with tissue plasminogen activator. American Journal of Cardiology. 1997, 80(4C):29-34.
    [139]李金荣. 蛇毒酶治疗心脑血管病的概述. 2005,17(2):104-107.
    [140]张洪伟. 急性心肌梗塞溶栓治疗的现状. 生物磁学. 2005,5(1):41-42.
    [141]郭 瑛,李 奇,姜广智. 溶栓素的药效学研究. 长春中医学院学报,2003,19(2):33-34.
    [142] Rajapakse N., Jung W.K., Mendis E., Moon S.H., Kim S.K. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences, 2005, 76: 2607-2619.
    [143]璩竹玲,刘 赛,董 河,刘晨光,刘万顺. 海洋假单胞菌碱性蛋白酶对实验性家兔股动脉血栓的溶解作用. 中国海洋药物,2005,24(3):10-14.
    [144]Zhang Q., Qi H., Zhao T., Deslandes E., Ismaeli N.M., Molloy F., Critchley A.T. Chemical characteristics of a polysaccharide from Porphyra capensis (Rhodophyta). Carbohydrate Research, 2005, 340: 2447-2450.
    [145]钱风云,傅德贤,欧阳藩. 海带多糖生物功能研究进展. 中国海洋药物,2003,1:55-59 .
    [146]王静风,张学成,姜国良,葛 源,吴志强,陈先锋. 枝管藻多糖的提取及其抗凝血活性的初步研究. 青岛海洋大学学报,2003,33(1):75-79.
    [147]徐恒启,陈克利. 国内抗凝血、抗血栓多糖的药理研究进展. 生物学杂志,2005,22(1):14-16.
    [148]闫 冰,李 玲,易杨华. 海参多糖的生物活性研究概况. 药学实践杂志,2004,22(2):101-103.
    [149]Badr I.H.A., Feiler J., Bachas L.G. Response behavior of sodium-selective electrodes modified by surface attachment of the anticoagulant polysaccharides heparin and chondroitin sulfate. Talanta, 2005, 65: 261-266.
    [150]Xing R., Liu S., Yu H., Guo Z., Li Z., Li P. Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro. Carbohydrate Polymers, 2005, 61: 148-154.
    [151]杨晓峰,慕红丹,李红兵. 鲍鱼、海龟及海蒿子等提取物对凝血和纤溶系统的影响. 中国海洋药物,2000,2:35-36.
    [152]Norton T.R., Shibata S., Kashiwagi M. et a1. Isolation and character zation of the cardiotonic polypeptide anthopleurin-A from the sea anemone Anthopleura xanthogrammica. J. Pharm. Sci. 976, 65: 1368.
    [152]Hashimoto K.,Ochi R.,Hashimoto K.,et al.The ionic mechanism of prolongation of action potcntial duration of cardiac yentricular nmscle by anthopleurin-A and lts relationship to the inotropic effect.J Pharma eol Exp Ther. 1990, 215: 479.
    [153]Noda M.,Muramatsu I.,Kigoshi S.,et al. Lack of effects of carbachol on the Na-Ca exchange mechanism in frog atrial muscle treated with goniopora toxin.JpⅡ.J.Pharmaco1.1987, 43: 61.
    [154]顾克仁,许实波.用活体微循环方法测定三丙酮胺的降压及舒血管效应.中国药理学报.1987,8(1):49.
    [155]许实波,彭新建.三丙酮胺的来源及药理作用.中山大学学报(自然科学版),1990,29:236.
    [156]许实波等.海洋生物心血管活性物质的研究与开发.中国海洋药物, 1990, 9(4): 23.
    [157]冯建林,许实波.三丙酮胺抗心肌缺血缺氧研究.热带海洋,1 998.7(3):69.
    [158]Platou E.S., Refsum H., Hotvedt R. Class Ⅲ antiarrhythmic action linked with positive inotropy: antiarrhythmic, electrophysiological, and hemodynamic effects of the sea-anemone polypeptide ATX Ⅱ in the dog heart in situation. J.Cardiovasc.Pharmaco1. 1996, 8: 459.
    [159]Hoffman R.,Paper D.H.,Donaldson J.,et a1.Inhibition of angiogenesis and murine tumour growth by laminarin sulphate.Br.J.Cancer 1 996,73:1183.
    [160]Han Q.Q., Zhuang H.Z., Chen H.Z. A preliminary study on the hypolipidemic and anticoagulant effects of laminarin sulfate. Plant Physiol 1980. 8: 218.
    [161]Holmberg N., Harker M., Gibbard C.L., et a1. Sterol C-24 methyItransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed.Plant Physiol 2002, 130: 303.
    [162]张新江, 郑德舰. 陶氏太阳海星酸性粘多糖药物研究. 海洋药物, 1983, 3(1): 23.
    [163]Girard J.P., Marion C., Liutkus M. Hypotensive constituents of marine algae:1 Pharmacological studies of laminine. Planta Med, 1988, 54 (3): 193.
    [164]Fergnan G.B., Glasser A.H., Beretta C. Further studies of the action on smooth muscle of eledoisin. Fragments and eledoisin-like hepta and hexapeptides. EurJ Pharmacol, 1968, 4(4): 421.
    [165]Fuhrman F.A.,Fuhrman G.J.,Kim Y.H.,et al.Doridosine:a new hypotensive N-methylpurine riboside from the nudibrance Anisodoris nobilis. Science, 1980, 207(4427): 193.
    [166]Zelenshi S.G. A Cardioactive compound isolated from the sponge Dasyclxdina cyafhina. Marine Technol Soc, 1976: 288.
    [167]Golgsmith L.A. Pharmcological evaluation of asterosaponin from Asterias fotbesi.w ington D CMarine Technol 50C, 1976: 366.
    [168]Friess SL.Mode of action of marine saponins on neuromuscular tissues. Feb Proc,1972:31(3):l146.
    [169]邱光清,许实波.两种新的神经酰胺对心血管的药理作用.中国海洋药物,1999,18(1):16.
    [170]Matsubara K,Matsuura Y,Bacic A, et al.Anticoagulant Properties of a Sulfated Galactan Preparation From a Marine Green Alga,Codium Cylindricum. Int J Biol Macromol,2001, 28(5): 395.
    [171]Matsubara K., Hori K., Matsuura Y., et a1. Fibrinolytic Enzyme From a Marine Gteen Alga.Codium Latum. Phytochemistry. 1999, 52(6): 993.
    [172]郝秀兰,叶淑芳,吴钟高,等.鲨鱼软骨粘多糖抗凝血作用.中国海洋药物,1992,44(4):17.
    [173]Yasumoto T.,Murata M.Marine toxins.ChelnRev,1993,93:1897.
    [174]Igarashi T.,A take S.,Yasumoto T..Mechanisms Underlying the Hemolytic and Ichthyotoxic Activities ofMaitotoxin.Nut Toxins,1999,7(2):71.
    [175]Rho M.C.,Matsunaga K.,Yasuda K, et a1.A noveI monogamic tosyl acylglyceroI with inhibitory effect on platelet aggregation from the Cyanophyceas Oscillatoria Rosea.J Nut Prod,1996.39(3):308.
    [176]Rho M.C.,Matsunaga K.,Yasuda K., et a1. A novel inhibitor of platelet aggregation from the cyan0phyceae oscillatoria R0S4(NIES-208) Med, 1996, 62(5): 473.
    [177]Nakamura H., Asan T., et al. A isolation of zooxantheIlatoxins, noveI vasoconstrictixre substances from the Zooxanthella Svmbiodinium Sp.Toxicon,1993,31(4):371.
    [178]Moriya T., Ishida Y., Nakamura H., et a1. Vasoconstriction induced by ZooxantheIIat0xin B. a Polyoxygenated Long-Chain Product From a Marine alga.Eur J Pharmacol,1998,350(1):59.
    [179]Moriya T., Furukawa K., Nakamura H., et a1. The Vaso-contractiIe action of zooxanthllatoxin from a Marine dinofIagelate is Mediated Via Ca2-Influx in the Rab. Can J Physiol Pharmac, 2001, 79(12): 1030.
    [180]Rho M.C., Nakahata N., Nakamura H., et a1. Involvement of PhosphoIipase C-Gamma2 ln Activation of Mitogen-Activated Protein Kinase and Phospholipase A2 by Zooxanthellatoxin-A in Rabbit Platelets.J PharmacolExp Ther. 1997, 282(1): 496.
    [181]Rho M.C.,Nakahata N.,Nakamura H., et a1. Activa-tion of Rabbit Platelets by Ca0 Influx and Thromboxane A2 Release in an ExtermaI Ca(2+)-Dependent Manner byZooxanthellatoxin-A,a Novel Polyol. Br J Pharmacol. 1995, 115(3): 433.
    [182]Rho M.C., Nakahata N., Ohizumi Y. Two Distince Effects of 12S-Hydroxyeicosatetraenoic Acid on PIateIet Aggregation by zooxanthe atoxin-A and Ionomycin.Jp J PⅡ.1998,76(1):117.
    [183]Ikeda Y., Young L.H., Vournakis JN., et a1. Vascular Effects of Poly-N-Acetylglucosamine in Isolated Rat Aortic Rings. J Surg Res, 2002, 102(2): 215.
    [184]Klein R.C.,Galdzicki Z.,Castellino F.J.Inhibition of NMDA-Induced Currents by Conantokin-G and Conantokin-T in Cultured Embryonic Murine Hippocampal Neurons. Neuropharmacology, 1999,38(12): 181 9.
    [185]Kaul P.N.Compounds from the sea with actions on the cardiovascular and central nervous systems.Fed Proc, 1981, 40(1): 10.
    [186]Hollenbeak K.H. A dual adrenergic compound from the sponge veriogia fistularis.Norman:Oklahoma Univ Printing,1978,81.
    [187]Lin W.W.,Lee C.Y.,Bumett J.W.Effect of sea nettle (Chrysaora quinquecirrha)venom on isolated rat aorta.Toxicon 1988,26(12):1209.
    [188]Slastnikov G.S. Novy vid Nereis virens v Belom more(Nereis virens-the new specie in the White Sea). Priroda. 1939.1, 80-81.
    [189]Reise, K., Gollasch, S., Wolff W.J., 1999. Introduced marine species of the Northern sea coasts. Helgol. Meeresunters. 52, 219-234.
    [190]Dondya A.K., Fedorova G.E., Kletochnye cykly naraznych etapach embrionalnogo ilichinichnogo rasvitia Nereis virens Sars (Sell cleavage at the different stages of embryonic and larval development of Nereis virens Sars). Ontogenesis 1981.12 (6), 547–554.
    [191]Lewis C., Olive P.J.W., Bentley M.G., Watson G., Does seasonal reproduction occur at the optimal time for fertilization in the polychaetes Arenicola marina L. and Nereis virens Sars? Invertebr. Reprod. Dev. 2002. 41(1-3), 61-71.
    [192]Olga O., Ushakova Olga L., Sarantchova. The influence of salinity on fertilization and larval development of Nereis virens (Polychaeta, Nereidae) from the White Sea. 2004. 301: 129-139.
    [193]J. Deschenes, G. Desrosiers, J.Ferron, R.Cloutier, G.Stora. Environmental influence on activity level and behavioural allocation in the polychaete Nereis virens (Sars). 2005. 317: 203-212.
    [194]K. Shigeru, L.T. Marvin, Nereis cuticle collagen. Isolation and properties of a large fragment resistant to proteolysis by bacterial collagenase, J. Biol. Chem. 252 (1977) 8018e8022.
    [195]Jorgensen A., Rasmussen L.J., Andersen O. Characterisation of two novel CYP4 genes from the marine polychaete Nereis virens and their involvement in pyrene hydroxylase activity. Biochem Biophys Res Commun. 2005. 336(3):890-7.
    [196]Ellington W.R., Yamashita D., Suzuki T. Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase. Gene. 2004. 334:167-74.
    [197]Yu I.T.S.,Li W.,Wong T.W. Effects of age, period and cohort on acute myocardial infarction mortality in Hong Kong. International Journal of Cardiology, 2004, 97:63-68.
    [198]赵友春,赵淑梅,王革,张长恺.第三代溶血栓药物研究进展. 药学进展,2003, 28 (2): 72-75.
    [199]Sukhija R.,Aronow W. S., Lee J.,Kakar P.,McClung J. A.,Levy J. A.,Belkin R.N. Association of right ventricular dysfunction with in-hospital mortality in patients with acute pulmonary embolism and reduction in mortality in patients with right ventricular dysfunction by pulmonary embolectomy American Journal of Cardiology, 2005, 95: 695-696.
    [200]Perrotin F.,Tobal N.,Georgescu M.,Herv a P.,Lansac J.,Arbeille P. Fetal vascular response to maternal deep-vein thrombosis and subsequent heparin therapy. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2001, 99: 121-123.
    [201]邹和昌. 溶栓剂的发展及研究.中国药学杂志,1997, 32 (5) : 263-267.
    [202]Hu R.L.,Zhang S.F.,Liang H.Y.,Li N.,Tu C.C. Codon optimization, expression, and characterization of recombinant lumbrokinase in goat milk. Protein Expression and Purification, 2004, 37: 83-88.
    [203]魏 香,刘晨光,刘万顺,刘成圣,韩宝芹.一种来自海洋细菌的血纤维蛋白溶酶的分离纯化及性质研究. 海洋科学,2001,25(3): 1-4.
    [204]T. Astrup, S. Mullertz. The fibrin plate method for estimating fibrinolytic activity, Arch. Biochem. Biophys 1952, 40: 346-351.
    [205]L. Deogny, A. Weidenbach, J.W. Hampton, Improved fibrin plate method for fibrinolytic activity measurements: use of bentonite precipitation and agar solidification, Chin. Chin. Acta 60 (1975) 86e89.
    [206]赵 红,程 洁,陆 检,孟筱琦. 产芽抱杆梭菌纤溶酶的纯化及特性中国生物制品学杂志. 2002. 15(1): 27-31.
    [207]Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    [208]诸葛健, 王正祥. 1994.工业微生物实验手册,北京:中国轻工业出版社.P205-209.
    [209]李建武. 生物化学试验原理和方法.北京大学出版社,1994:174-176.
    [210]U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680-685.
    [211]R. Weitzdoerfer, M. Fountoulakis, G. Lubec, Reduction of actin-related protein complex 2/3 in fetal Down syndrome brain, Biochem. Biophys. Res. Commun 293 (2002) 836-841.
    [212]S.S. Keity, D.S. Lucilene, A.M. Maria, et al., Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.), Insect Biochem. Mol. Biol. 35 (2005) 85-91.
    [213]F. Gharahdaghi, C.R. Weinberg, D.A. Meagher, B.S. Imai, S.M. Mische, Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity, Electrophoresis 20 (1999) 601-605.
    [214]W. Zhang, B.T. Chait, ProFound: An expert system for protein identification using mass spectrometric peptide mapping information, Anal. Chem. 72 (2000) 2482-2489.
    [215]Nakajima N., Mihara H., Sumi H. Characterization of Potent Fibrinolytic Enzymes in
    Earthworm, Lumbricus racbelhcs. Biosci. Biotech. Biochem., 1993, 57(10): 1726-1730.
    [216]Wu C., Li L.,Zhao J.,Fan Q.,Tian W. Y.,He R. Q. Effect,of a a2M on earthworm fibrinolytic enzyme III-1 from Lumbricus rubellus. International Journal of Biological Macromolecules, 2002, 31: 71-77.
    [217]W. Kisiel, Molecular properties of the Factor V-activating enzyme from Russell’s viper venom, J. Biol. Chem. 254 (1979): 12230-12234.
    [218]C.C. Hung, S.H. Chiou, Expression of a kallikrein-like protease from the snake venom: engineering of autocatalytic site in the fusion protein to facilitate protein refolding, Biochem. Biophys. Res. Commun 275(2000): 924-930.
    [219]E. Siigur, A. Aaspollu, J. Siigur, Molecular cloning and sequence analysis of a cDNA for factor V activating enzyme, Biochem. Biophys.Res. Commun 262 (1999): 328-332.
    [220]Y.W. Guo, T.Y. Chang, K.T. Lin, H.W. Liu, K.C. Shih, S.H. Cheng, Cloning and functional expression the mucrosobin protein, a b-fibrinogenase of Trimeresurus mucrosquamatus (Taiwan Habu), Protein Expr.Purif 23 (2001): 483e490.
    [221]M.Y. Ahn, B.S. Hahn, et al., Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus, Thromb. Res. 112 (2003): 339-347.
    [222]S.M. Serrano, Y. Hagiwara, N. Murayama, S. Higuchi, R. Mentele, C.A. Sampaio, A.C. Camargo, E. Fink, Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase (KN-BJ) from the venom of Bothrops jararaca, and molecular cloning and sequence analysis of its cDNA, Eur. J. Biochem 251 (1998): 845-853.
    [223]Lijnen HR, Collen D. Fibrinolytic agents: mechanisms of activity and pharmacology. Thromb. Hccemost., 1995, 74(1): 387-390.
    [224]A. Jane, G. Paul, Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase, J. Biol. Chem.275 (2000) 24477-24483
    [225]K. Matsubara, K. Hori, Y. Matsuura, K. Miyazama, Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting in a marine green alga, Codium divaricatum, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 125 (2000) 137-143.
    [226]周远聪,朱 洪,陈远聪,陶宗晋. 1988.赤子爱胜蚓(Eisenia foelide)纤溶酶的分离纯化.生物化学与生物物理学报.20(1):3 5-41
    [227]G. Datta, A. Dong, J. Witt, A.T. Tu, Biochemical characterization of basilase, a fibrinolytic enzyme from Crotalus basiliscus basiliscus, Arch. Biochem. Biophys 317 (1995) 365-373.
    [228]U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680e685.
    [229]W. Maude, E. Hans, L. Anders, Determination of proteolytic activity:A sensitive and simple assay utilizing substrate adsorbed to a plastic surface and radial diffusion in gel, Anal. Biochem 118 (1981) 240-246.
    [230]Mihara H, Sumi H, Yoneta T, Mizumoto H, Ikedo R, Seiki M and Maruyama M. 1991.A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn. J. Physiol. 41(3):461-472.
    [231]Gurewich V, Lipinski B, Hyde E. leukocyte complexes. count on intravascular Thromb Haeh2ost, 1976, The effect of the fibrinogen concentration and the fibrin deposition from soluble fibrin monomer 36(3): 605-614.
    [232]Yunlong Zhang, Jiayue Cui, Rui Zhang, Yanpin Wang, Min Hong. A novel fibrinolytic serine protease from the polychaete Nereis (Neanthes) virens (Sars), Purification and characterization, Biochimie, 89(2007): 93-103.
    [233]Sakai T., Toyoda A., Hashimoto K., Maeda H. Isolation and characterization of a novel zinc finger gene, ZNF219, and mapping to the human chromosome 14q11region. DNA Res 2000 Apr 28; 7(2): 137-141.
    [234]Bauer D. et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Research (1993) 21: 4272.
    [235]Liu D, Rudland PS, Sibson D.R, Barraclough R. Identification of mRNAs diferentially-expressed between benign and malignant breast tumour cells. Br J Cancer. 2002 Aug 12; 87(4): 423-431.
    [236]Kuang W.W, Thompson D.A. et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast cancer, Nucleic Acids Res.1998,26(4):1116-1123.
    [237]Clark J., Edwards S. Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clones. Genes Chromosome Cancer.2002 May; 34(1): 104-114.
    [238]Endege W.O., Steinmann K.E., Representative cDNA library and their utility in gene expression profiling. Biotechniques,19 99,26(3):542-550.
    [239]Li Y., Yang L. Construction of cDNA representational difference analysis based on two cDNA libraries and identification of garlic inducible expression genes in human gastric cancer cell. World J Gastroenterol.2002.Apr;8(2):208-212.
    [240]Kisiel W., Kondo S., Smith K.J., McMullen B.A., Smith L.F. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom. J. Biol. Chem. 1987, 262: 12607– 12613.
    [241]Pan, H., Du, X., Yang, G., Zhou, Y., Wu, X., cDNA cloning and expression of acutin. Biochem. Biophys. Res. Commun. 1999. 255: 412–415.
    [242]Wang, Y.M., Wang, S.R., Tsai, I.H., Serine protease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Biochem. J. 2001.354: 161–168.
    [243]Au L.C., Lin S.B., Chou J.S., Teh G.W., Chang K.J., Shih C.M. Molecular cloning and sequence analysis of the cDNA for ancrod, a thrombin-like enzyme from the venom of Calloselasma rhodostoma. Biochem. J. 1993. 294, 387–390.
    [244]Itoh N., Tanaka N., Mihashi S., Yamashina I., Molecular cloning and sequence analysis of cDNA for batroxobin, a thrombin-like snake venom enzyme. J. Biol. Chem. 1987. 262: 3132–3135.
    [245]Nikai T., Ohara A., Komori Y., Fox J.W., Sugihara H., Primary structure of a coagulant enzyme, bilineobin, from Agkistrodon bilineatus venom. Arch. Biochem. Biophys. 1995.318: 89–96.
    [246]N. Murayama, K. Saguchi, R. Mentele, T. Marina, Assakura, Hiroaki Ohi, Yoshiaki F., Antonio C. M. The unusual high molecular mass of Bothrops protease A, a trypsin-like serine peptidase from the venom of Bothrops jararaca, is due to its high carbohydrate content. Biochimica et Biophysica Acta Proteins & Proteomics. 2003, 1652(3): 1-6.
    [247]Nishida, S., Fujimura, Y., Miura, S., Ozaki, Y., Usami, Y., Suzuki, M., Tita′n, K., Yoshida, E., Sugimoto, M., Yoshioka, A., Fukui, H., Biochemistry. 1994.33: 1843–1849.
    [248]Lee, J.W., Seu, J.H., Rhee, I.K., Jin, I., Kawamura, Y., Park, W., Purification and characterization of brevinase, a heterogeneous two-chain fibrinolytic enzyme from the venom of Korean snake, Agkistrodon blomhoffii brevicaudus. Biochem. Biophys. Res. Commun. 1999. 260: 665–670.
    [249]Hahn B.S., Yang K.Y., Park E.M., Chang I.M., Kim Y.S. Purification and molecular cloning of calobin, a thrombin-like enzyme from Agkistrodon caliginosus (Korean viper). J. Biochem. (Tokyo) 1996. 119: 835–843.
    [250]Dekhil H., Wisner A., Marrakchi N., El Ayeb M., Bon C., Karoui H. Molecularcloning and expression of a functional snake venom serine proteinase, with platelet aggregating activity, from the Cerastes cerastes viper. Biochemistry 2003. 42: 10609–10618.
    [251]Amiconi, G., Amoresano, A., Boumis, G., Brancaccio, A., De Cristofaro, R., De Pascalis, A., Di Girolamo, S., Maras, B., Scaloni, A., A novel venombin B from Agkistrodon contortrix contortrix: evidence for recognition properties in the surface around the primary specificity pocket different from thrombin. Biochemistry .2000. 39: 10294–10308.
    [252]Hahn, B.S., Baek, K., Kim, W.S., Lee, C.S., Chang, I.L., Kim, Y.S., Molecular cloning of capillary permeability-increasing enzyme-2 from Agkistrodon caliginosus (Korean viper).Toxicon 1998. 36: 1887–1893.
    [253]Markland Jr., F.S., Kettner, C., Schiffman, S., Shaw, E., Bajwa, S.S., Reddy, K.N., Kirakossian, H., Patkos, G.B., Theodor, I., Pirkle, H., Kallikrein-like activity of crotalase, a snake venom enzyme that clots fibrinogen. Proc. Natl Acad. Sci. USA 1982. 79: 1688–1692.
    [254]Yamamoto, C., Tsuru, D., Oda-Ueda, N., Ohno, M., Hattori, S., Kim, S.T., Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase. Immunology. 2002. 107: 111–117.
    [255]Matsui, T., Sakurai, Y., Fujimura, Y., Hayashi, I., Oh-Ishi, S., Suzuki, M., Hamako, J., Yamamoto, Y., Yamazaki, J., Kinoshita, M., Titani, K., Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen and kininogen. Eur. J. Biochem. 1998. 252: 569–575.
    [256]Park D., Kim H., Chung K., Kim D.S., Yun Y. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon. 1998.36:1807–1819.
    [257]Serrano S.M., Hagiwara Y., Murayama N., Higuchi S., Mentele R., Sampaio C.A., Camargo A.C., Fink E., Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase (KN-BJ) from the venom of Bothrops jararaca, and molecular cloning and sequence analysis of its cDNA. Eur. J. Biochem. 1998. 251: 845–853.
    [258]Guo, Y.W., Chang, T.Y., Lin, K.T., Liu, H.W., Shih, K.C., Cheng, S.H., Cloning and functional expression of the mucrosobin protein, a beta-fibrinogenase of Trimeresurusmucrosquamatus (Taiwan Habu). Protein Exp. Purif. 2001. 23: 483–490.
    [259]Santos, B.F., Serrano, S.M., Kuliopulos, A., Niewiarowski, S., Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett. 2000. 477: 199–202.
    [260]Tokunaga F., Nagasawa K., Tamura S., Miyata T., Iwanaga S., Kisiel W., The factor V-activating enzyme (RVV-V) from Russell’s viper venom Identification of isoproteins RVV-V alpha, -V beta, and -V gamma and their complete amino acid sequences. J. Biol. Chem. 1988. 263: 17471–17481.
    [261]Braud, S., Parry, M.A., Maroun, R., Bon, C., Wisner, A., The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases. J. Biol. Chem. 2000. 275: 1823–1828.
    [262]Hung C.C., Chiou S.H. Expression of a kallikrein-like protease from the snake venom: engineering of autocatalytic site in the fusion protein to facilitate protein refolding. Biochem. Biophys. Res. Commun. 2000. 275: 924–930.
    [263]Siigur E., Aaspollu A., Siigur J. Molecular cloning and sequence analysis of a cDNA for factor V activating enzyme. Biochem. Biophys. Res. Commun. 1999. 262: 328–332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700